Opuscula Math. 35, no. 6 (2015), 867-887
http://dx.doi.org/10.7494/OpMath.2015.35.6.867
Opuscula Mathematica
Inversion of the Riemann-Liouville operator and its dual using wavelets
C. Baccar
N. B. Hamadi
H. Herch
F. Meherzi
Abstract. We define and study the generalized continuous wavelet transform associated with the Riemann-Liouville operator that we use to express the new inversion formulas of the Riemann-Liouville operator and its dual.
Keywords: inverse problem, Riemann-Liouville operator, Fourier transform, wavelets.
Mathematics Subject Classification: 35R30, 42B10, 42C40.
- M. Agranovsky, P. Kuchment, E.T. Quinto, Range descriptions for the spherical mean Radon transform, J. Funct. Anal. 248 (2007) 2, 344-386.
- L.E. Andersson, On the determination of a function from spherical averages, SIAM J. Math. Anal. 19 (1988) 1, 214-234.
- L.E. Andersson, H. Helesten, An inverse method for the processing of synthetic aperture radar data, Inverse Problems 3 (1987) 1, 111-124.
- C. Baccar, N.B. Hamadi, L.T. Rachdi, Inversion formulas for the Riemann-Liouville transform and its dual associated with singular partial differential operators, Int. J. Math. Math. Sci. 2006 (2006) 86238, 1-26.
- C. Baccar, N.B. Hamadi, L.T. Rachdi, Best approximation for Weierstrass transform connected with Riemann-Liouville operator, Commun. Math. Anal. 5 (2008) 1, 65-83.
- C. Baccar, L.T. Rachdi, Spaces of \(D_{L^p}\)-type and a convolution product associated with the Riemann-Liouville operator, Bull. Math. Anal. Appl. 1 (2009) 3, 16-41.
- J. Cohen, N. Bleistein, Velocity inversion procedure for acoustic waves, Geophysics 44 (1979) 6, 1077-1087.
- I. Daubechies, The wavelet transform, time-frequency localization and signal analysis, IEEE Trans. Inform. Theory 36 (1990) 5, 961-1005.
- A. Erdely, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions II, McGraw-Hill, New York, 1953.
- J.A. Fawcett, Inversion of N-dimensional spherical averages, SIAM J. Appl. Math. 45 (1985) 2, 336-341.
- E. Foufoula-Georgiou, P. Kumar, Wavelets in Geophysics, vol. 4 of Wavelet Analysis and Its Applications, Academic Press, New York, 1994.
- A. Grossman, J. Morlet, T. Paul, Transforms associated to square integrable group representations I. General results, J. Math. Phys. 26 (1985), 2473-2479.
- A. Grossman, J. Morlet, T. Paul, Transforms associated to square integrable group representations II. Examples, Ann. Henri Poincaré 45 (1986), 293-309.
- N.B. Hamadi, L.T. Rachdi, Weyl transforms associated with the Riemann-Liouville operator, Int. J. Math. Sci. 2006 (2006), 94768, 1-19.
- S. Helgason, The Radon Transform, Birkhäuser, Boston, 1999.
- M. Herberthson, A numerical implementation of an inverse formula for CARABAS Raw Data, National Defense Research Institute, Internal Report, D 30430-3.2, FOA, Linköping, Sweden, 1986.
- W. Joines, Y. Zhang, C. Li, R. Jirtle, The measured electrical properties of normal and malignant human tissue from 50 to 900 Mhz, Med. Phys. 21 (1994) 4, 547-550.
- T.H. Koornwinder, The continuous wavelet transform, [in:] Wavelets: An Elementary Treatment of Theory and Applications, vol. 1 of Series in Approximations and Decompositions, World Scientific, Singapore, 1993, 27-48.
- R.S. Laugesen, N. Weaver, G.L. Weiss, E.N. Wilson, A characterization of the higher dimensional groups associated with continuous wavelets, J. Geom. Anal. 12 (2002) 1, 89-102.
- N.N. Lebedev, Special Functions and Their Applications, Courier Dover Publications, New York, 1972.
- D. Ludwig, The Radon transform on euclidean space, Comm. Pure Appl. Math. 19 (1966) 1, 49-81.
- Y. Meyer, Wavelets and Operators, vol. 1 of Cambridge Studies in Advanced Mathematics, Cambridge University Press, Cambridge, 1995.
- M.M. Nessibi, L.T. Rachdi, K. Trimèche, Ranges and inversion formulas for spherical mean operator and its dual, J. Math. Anal. Appl. 196 (1995) 3, 861-884.
- M.M. Nessibi, K. Trimèche, Inversion of the Radon transform on the Laguerre hypergroup by using generalized wavelets, J. Math. Anal. Appl. 208 (1997) 2, 337-363.
- S. Omri, L.T. Rachdi, Heisenberg-Pauli-Weyl uncertainty principle for the Riemann-Liouville operator, J. Inequal. Pure Appl. Math. 9 (2008) 3, Art. 88, 23 pp.
- D.C. Solmon, Asymptotic formulas for the dual Radon transform, Math. Z. 195 (1987) 3, 321-343.
- E.M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956) 2, 482-492.
- K. Trimèche, Weyl integral transform and Paley-Wiener theorem associated with a singular differential operator on \((0,+\infty)\), J. Math. Pures Appl. 60 (1981), 51-98 [in French].
- K. Trimèche, Inversion of the Lions transmutation operators using generalized wavelets, Appl. Comput. Harmon. Anal. 4 (1997) 1, 97-112.
- G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, Cambridge, 1995.
- C. Baccar
- Higher Institute of Informatics of El Manar 2, Department of Applied Mathematics, Rue Abou Raïhan El Bayrouni - 2080 Ariana, Tunisia
- N. B. Hamadi
- Department of Mathematics, Preparatory Institute for Engineering Studies El Manar, 2092 El Manar 2 Tunis, Tunisia
- H. Herch
- F. Meherzi
- Communicated by Semyon B. Yakubovich.
- Received: 2014-11-10.
- Revised: 2014-12-29.
- Accepted: 2015-01-05.
- Published online: 2015-06-06.