Opuscula Math. 35, no. 6 (2015), 867-887

Opuscula Mathematica

Inversion of the Riemann-Liouville operator and its dual using wavelets

C. Baccar
N. B. Hamadi
H. Herch
F. Meherzi

Abstract. We define and study the generalized continuous wavelet transform associated with the Riemann-Liouville operator that we use to express the new inversion formulas of the Riemann-Liouville operator and its dual.

Keywords: inverse problem, Riemann-Liouville operator, Fourier transform, wavelets.

Mathematics Subject Classification: 35R30, 42B10, 42C40.

Full text (pdf)

  • C. Baccar
  • Higher Institute of Informatics of El Manar 2, Department of Applied Mathematics, Rue Abou Raïhan El Bayrouni - 2080 Ariana, Tunisia
  • N. B. Hamadi
  • Department of Mathematics, Preparatory Institute for Engineering Studies El Manar, 2092 El Manar 2 Tunis, Tunisia
  • H. Herch
  • F. Meherzi
  • Received: 2014-11-10.
  • Revised: 2014-12-29.
  • Accepted: 2015-01-05.
Opuscula Mathematica - cover

Cite this article as:
C. Baccar, N. B. Hamadi, H. Herch, F. Meherzi, Inversion of the Riemann-Liouville operator and its dual using wavelets, Opuscula Math. 35, no. 6 (2015), 867-887, http://dx.doi.org/10.7494/OpMath.2015.35.6.867

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.