Opuscula Math. 35, no. 2 (2015), 251-271
http://dx.doi.org/10.7494/OpMath.2015.35.2.251

 
Opuscula Mathematica

Steering projections in von Neumann algebras

Adam Wegert

Abstract. A steering projection of an arbitrary von Neumann algebra is introduced. It is shown that a steering projection always exists and is unique (up to Murray-von Neumann equivalence). A general decomposition of arbitrary projections with respect to a steering projection is established.

Keywords: Murray-von Neumann order, central projection, steering projection.

Mathematics Subject Classification: 46L10.

Full text (pdf)

  1. B. Blackadar, Operator Algebras. Theory of \(C^*\)-algebras and von Neumann Algebras, Springer-Verlag, Berlin, 2006.
  2. E.L. Griffin Jr., Some contributions to the theory of rings of operators, Trans. Amer. Math. Soc. 75 (1953), 471-504.
  3. E.L. Griffin Jr., Some contributions to the theory of rings of operators II, Trans. Amer. Math. Soc. 79 (1955), 389-400.
  4. R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. 1, Academic Press, New York, 1983.
  5. R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. 2, Academic Press, London, 1986.
  6. P. Niemiec, Unitary equivalence and decompositions of finite systems of closed densely defined operators in Hilbert spaces, Dissertationes Math. (Rozprawy Mat.) 482 (2012).
  7. S. Sakai, \(C^*\)-algebras and \(W^*\)-algebras, Springer-Verlag, Berlin, 1971.
  8. J.T. Schwartz, \(W^*\)-algebras, Gordon and Breach, Science Publishers Inc., New York, 1967.
  9. D. Sherman, On the dimension theory of von Neumann algebras, Math. Scand. 101 (2007), 123-147.
  10. M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, 2002.
  11. J. Tomiyama, Generalized dimension function for \(W^*\)-algebras of infinite type, Tôhoku Math. J. 10 (1958) 2, 121-129.
  • Adam Wegert
  • Jagiellonian University, Faculty of Mathematics and Computer Science, ul. Łojasiewicza 6, 30-348 Krakow, Poland
  • Communicated by Aurelian Gheondea.
  • Received: 2014-04-14.
  • Revised: 2014-07-31.
  • Accepted: 2014-08-06.
  • Published online: 2014-11-18.
Opuscula Mathematica - cover

Cite this article as:
Adam Wegert, Steering projections in von Neumann algebras, Opuscula Math. 35, no. 2 (2015), 251-271, http://dx.doi.org/10.7494/OpMath.2015.35.2.251

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.