Opuscula Math. 35, no. 2 (2015), 251-271
http://dx.doi.org/10.7494/OpMath.2015.35.2.251
Opuscula Mathematica
Steering projections in von Neumann algebras
Abstract. A steering projection of an arbitrary von Neumann algebra is introduced. It is shown that a steering projection always exists and is unique (up to Murray-von Neumann equivalence). A general decomposition of arbitrary projections with respect to a steering projection is established.
Keywords: Murray-von Neumann order, central projection, steering projection.
Mathematics Subject Classification: 46L10.
- B. Blackadar, Operator Algebras. Theory of \(C^*\)-algebras and von Neumann Algebras, Springer-Verlag, Berlin, 2006.
- E.L. Griffin Jr., Some contributions to the theory of rings of operators, Trans. Amer. Math. Soc. 75 (1953), 471-504.
- E.L. Griffin Jr., Some contributions to the theory of rings of operators II, Trans. Amer. Math. Soc. 79 (1955), 389-400.
- R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. 1, Academic Press, New York, 1983.
- R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol. 2, Academic Press, London, 1986.
- P. Niemiec, Unitary equivalence and decompositions of finite systems of closed densely defined operators in Hilbert spaces, Dissertationes Math. (Rozprawy Mat.) 482 (2012).
- S. Sakai, \(C^*\)-algebras and \(W^*\)-algebras, Springer-Verlag, Berlin, 1971.
- J.T. Schwartz, \(W^*\)-algebras, Gordon and Breach, Science Publishers Inc., New York, 1967.
- D. Sherman, On the dimension theory of von Neumann algebras, Math. Scand. 101 (2007), 123-147.
- M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, 2002.
- J. Tomiyama, Generalized dimension function for \(W^*\)-algebras of infinite type, Tôhoku Math. J. 10 (1958) 2, 121-129.
- Adam Wegert
- Jagiellonian University, Faculty of Mathematics and Computer Science, ul. Łojasiewicza 6, 30-348 Krakow, Poland
- Communicated by Aurelian Gheondea.
- Received: 2014-04-14.
- Revised: 2014-07-31.
- Accepted: 2014-08-06.
- Published online: 2014-11-18.

