Opuscula Math. 35, no. 2 (2015), 161-169
http://dx.doi.org/10.7494/OpMath.2015.35.2.161
Opuscula Mathematica
Simple eigenvectors of unbounded operators of the type "normal plus compact"
Abstract. The paper deals with operators of the form \(A=S+B\), where \(B\) is a compact operator in a Hilbert space \(H\) and \(S\) is an unbounded normal one in \(H\), having a compact resolvent. We consider approximations of the eigenvectors of \(A\), corresponding to simple eigenvalues by the eigenvectors of the operators \(A_n=S+B_n\) (\(n=1,2, \ldots\)), where \(B_n\) is an \(n\)-dimensional operator. In addition, we obtain the error estimate of the approximation.
Keywords: Hilbert space, linear operators, eigenvectors, approximation, integro-differential operators, Schatten-von Neumann operators.
Mathematics Subject Classification: 47A75, 47B10, 65F15.
- H. Abels, M. Kassmann, The Cauchy problem and the martingale problem for integro-differential operators with non-smooth kernels, Osaka J. Math. 46 (2009), 661-683.
- R. Banuelos, M.M.H. Pang, Stability and approximations of eigenvalues and eigenfunctions for the Neumann Laplacian, I, Electron. J. Differential Equations, 2008 (2008) 145, 1-13.
- S.A. Buterin, On an inverse spectral problem for a convolution integro-differential operator, Resulta Math. 50 (2007), 173-181.
- X. Ding, P. Luo, Finite element approximation of an integro-differential operator, Acta Mathematica Scientia 29B (2009), 1767-1776.
- D. Fortin, Eigenvectors of Toeplitz matrices under higher order three term recurrence and circulant perturbations, Int. J. Pure Appl. Math. 60 (2010) 2, 217-228.
- M.I. Gil', Perturbations of simple eigenvectors of linear operators, Manuscripta Math. 100 (1999), 213-219.
- M.I. Gil', Operator Functions and Localization of Spectra, Lecture Notes in Mathematics, Vol. 1830, Springer-Verlag, Berlin, 2003.
- I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Trans. Mathem. Monographs, Vol. 18, Amer. Math. Soc., Providence, R.I., 1969.
- E. Hunsicker, V. Nistor, J.O. Sofo, Analysis of periodic Schrödinger operators: regularity and approximation of eigenfunctions, J. Math. Phys. 49 (2008) 8, 083501, 21 pp.
- T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980.
- M. Marcus, H. Minc, A Survey of Matrix Theory and Matrix Inequalities, Allyn and Bacon, Boston, 1964.
- F. Nardini, Approximation of Schrödinger eigenvalues and eigenfunctions by canonical perturbation theory: The periodically driven quantum rotator, J. Math. Phys. 30 (1989), 2599-2606.
- M.M.H. Pang, Approximation of ground state eigenvalues and eigenfunctions of Dirichlet Laplacians, Bull. Lond. Math. Soc. 29 (1997), 720-730.
- M.M.H. Pang, Stability and approximations of eigenvalues and eigenfunctions for the Neumann Laplacian, Part 2, J. Math. Anal. Appl. 345 (2008) 1, 485-499.
- M.M.H. Pang, Stability and approximations of eigenvalues and eigenfunctions of the Neumann Laplacian, Part 3, Electron. J. Differential Equations 2011 (2011) 100, 54 pp.
- G. Wang, J. Sun, Approximations of eigenvalues of Sturm-Liouville problems in a given region and corresponding eigenfunctions, Pac. J. Appl. Math. 3 (2011) 1-2, 73-94.
- Michael Gil'
- Ben Gurion University of the Negev, Department of Mathematics, P.O. Box 653, Beer-Sheva 84105, Israel
- Communicated by P.A. Cojuhari.
- Received: 2014-04-16.
- Revised: 2014-06-07.
- Accepted: 2014-06-07.
- Published online: 2014-11-18.