Opuscula Math. 33, no. 3 (2013), 565-574
http://dx.doi.org/10.7494/OpMath.2013.33.3.565

 
Opuscula Mathematica

The Putnam-Fuglede property for paranormal and ∗-paranormal operators

Patryk Pagacz

Abstract. An operator \(T \in {\cal B}(H)\) is said to have the Putnam-Fuglede commutativity property (PF property for short) if \(T^*X = XJ\) for any \(X \in {\cal B}(K,H)\) and any isometry \(J \in {\cal B}(K)\) such that \(TX = XJ^*\). The main purpose of this paper is to examine if paranormal operators have the PF property. We prove that \(k*\)-paranormal operators have the PF property. Furthermore, we give an example of a paranormal without the PF property.

Keywords: power-bounded operators, paranormal operators, \(*\)-paranormal operators, \(k\)-paranormal operators, \(k*\)-paranormal operators, the Putnam-Fuglede theorem.

Mathematics Subject Classification: 47B20, 47A05, 47A62.

Full text (pdf)

  • Patryk Pagacz
  • Uniwersytet Jagielloński, Instytut Matematyki, ul. Łojasiewicza 6, PL-30348 Kraków, Poland
  • Received: 2012-06-20.
  • Revised: 2013-01-23.
  • Accepted: 2013-02-12.
Opuscula Mathematica - cover

Cite this article as:
Patryk Pagacz, The Putnam-Fuglede property for paranormal and ∗-paranormal operators, Opuscula Math. 33, no. 3 (2013), 565-574, http://dx.doi.org/10.7494/OpMath.2013.33.3.565

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.