Opuscula Math. 33, no. 3 (2013), 439-453
http://dx.doi.org/10.7494/OpMath.2013.33.3.439

 
Opuscula Mathematica

Existence results for Dirichlet problems with degenerated p-Laplacian

Albo Carlos Cavalheiro

Abstract. In this article, we prove the existence of entropy solutions for the Dirichlet problem \[(P)\left\{ \begin{array}{ll} & -{\rm div}[{\omega}(x){\vert{\nabla}u\vert}^{p-2}{\nabla}u]= f(x) - {\rm div}(G(x)),\ \ {\rm in} \ \ {\Omega} \\ & u(x)=0, \ \ {\rm in} \ \ {\partial\Omega} \end{array} \right.\] where \(\Omega\) is a bounded open set of \(\mathbb{R}^N\) \( (N \geq 2)\), \(f \in L^1(\Omega)\) and \(G/\omega \in [L^p(\Omega,\omega)]^N\).

Keywords: degenerate elliptic equations, entropy solutions, weighted Sobolev spaces.

Mathematics Subject Classification: 35J70, 35J60, 35J92.

Full text (pdf)

  • Albo Carlos Cavalheiro
  • Universidade Estadual de Londrina (State University of Londrina), Departamento de Matemática (Department of Mathematics), 86057-970, Londrina - PR, Brazil
  • Received: 2012-10-29.
  • Accepted: 2012-12-10.
Opuscula Mathematica - cover

Cite this article as:
Albo Carlos Cavalheiro, Existence results for Dirichlet problems with degenerated p-Laplacian, Opuscula Math. 33, no. 3 (2013), 439-453, http://dx.doi.org/10.7494/OpMath.2013.33.3.439

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.