Opuscula Math. 33, no. 3 (2013), 439-453
http://dx.doi.org/10.7494/OpMath.2013.33.3.439
Opuscula Mathematica
Existence results for Dirichlet problems with degenerated p-Laplacian
Abstract. In this article, we prove the existence of entropy solutions for the Dirichlet problem \[(P)\left\{ \begin{array}{ll} & -{\rm div}[{\omega}(x){\vert{\nabla}u\vert}^{p-2}{\nabla}u]= f(x) - {\rm div}(G(x)),\ \ {\rm in} \ \ {\Omega} \\ & u(x)=0, \ \ {\rm in} \ \ {\partial\Omega} \end{array} \right.\] where \(\Omega\) is a bounded open set of \(\mathbb{R}^N\) \( (N \geq 2)\), \(f \in L^1(\Omega)\) and \(G/\omega \in [L^p(\Omega,\omega)]^N\).
Keywords: degenerate elliptic equations, entropy solutions, weighted Sobolev spaces.
Mathematics Subject Classification: 35J70, 35J60, 35J92.
- Albo Carlos Cavalheiro
- Universidade Estadual de Londrina (State University of Londrina), Departamento de Matemática (Department of Mathematics), 86057-970, Londrina - PR, Brazil
- Received: 2012-10-29.
- Accepted: 2012-12-10.