Opuscula Math. 33, no. 2 (2013), 283-291
http://dx.doi.org/10.7494/OpMath.2013.33.2.283

 
Opuscula Mathematica

Inequalities for regularized determinants of operators with the Nakano type modulars

Michael Gil'

Abstract. Let \(\{p_k\}\) be a nondecreasing sequence of integers, and \(A\) be a compact operator in a Hilbert space whose eigenvalues and singular values are \(\lambda_k(A)\) and \(s_k(A)\) \((k=1, 2, .... )\), respectively. We establish upper and lower bounds for the regularized determinant \[\prod_{k=1}^\infty (1-\lambda_k(A)){\rm exp}\;[\sum_{m=1}^{p_k-1} \frac{\lambda_k^m(A)}{m}],\mbox{ assuming that } \sum_{j=1}^{\infty} \frac{s_j^{p_j}(A/c)}{p_j}\lt \infty\] for a constant \(c\in (0,1)\).

Keywords: Hilbert space, compact operators, regularized determinant, Nakano type modular.

Mathematics Subject Classification: 47B10, 47A55.

Full text (pdf)

  • Michael Gil'
  • Ben Gurion University of the Negev, Department of Mathematics, P.O. Box 653, Beer-Sheva 84105, Israel
  • Received: 2012-11-12.
  • Revised: 2012-12-11.
  • Accepted: 2012-12-12.
Opuscula Mathematica - cover

Cite this article as:
Michael Gil', Inequalities for regularized determinants of operators with the Nakano type modulars, Opuscula Math. 33, no. 2 (2013), 283-291, http://dx.doi.org/10.7494/OpMath.2013.33.2.283

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.