Opuscula Math. 33, no. 2 (2013), 283-291
http://dx.doi.org/10.7494/OpMath.2013.33.2.283
Opuscula Mathematica
Inequalities for regularized determinants of operators with the Nakano type modulars
Abstract. Let \(\{p_k\}\) be a nondecreasing sequence of integers, and \(A\) be a compact operator in a Hilbert space whose eigenvalues and singular values are \(\lambda_k(A)\) and \(s_k(A)\) \((k=1, 2, .... )\), respectively. We establish upper and lower bounds for the regularized determinant \[\prod_{k=1}^\infty (1-\lambda_k(A)){\rm exp}\;[\sum_{m=1}^{p_k-1} \frac{\lambda_k^m(A)}{m}],\mbox{ assuming that } \sum_{j=1}^{\infty} \frac{s_j^{p_j}(A/c)}{p_j}\lt \infty\] for a constant \(c\in (0,1)\).
Keywords: Hilbert space, compact operators, regularized determinant, Nakano type modular.
Mathematics Subject Classification: 47B10, 47A55.
- Michael Gil'
- Ben Gurion University of the Negev, Department of Mathematics, P.O. Box 653, Beer-Sheva 84105, Israel
- Received: 2012-11-12.
- Revised: 2012-12-11.
- Accepted: 2012-12-12.