Opuscula Math. 25, no. 2 (2005), 169-179
Opuscula Mathematica
Calculation of distribution of temperature in three-dimensional solid changing its shape during the process
Abstract. The present paper suplements and continues [Bożek B., Filipek R., Holly K., Mączka C.: Distribution of temperature in three-dimensional solids. Opuscula Mathematica 20 (2000), 27-40]. Galerkin method for the Fourier–Kirchhoff equation in the case when \(\Omega(t)\) – equation domain, dependending on time \(t\), is constructed. For special case \(\Omega(t) \subset \mathbb{R}^2\) the computer program for above method is written. Binaries and sources of this program are available on http://wms.mat.agh.edu.pl/~bozek.
Keywords: parabolic partial differential equations, non-stationary distribution of heat, finite element method, Galerkin method.
Mathematics Subject Classification: 65M60, 65Y99.
- Bogusław Bożek
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Cracow, Poland
- Czesław Mączka
- AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Cracow, Poland
- Received: 2004-11-03.