Opuscula Math. 25, no. 2 (2005), 275-285

 
Opuscula Mathematica

On intertwining and w-hyponormal operators

M. O. Otieno

Abstract. Given \(A, B\in B(H)\), the algebra of operators on a Hilbert Space \(H\), define \(\delta_{A,B}: B(H) \to B(H)\) and \(\Delta_{A,B}: B(H) \to B(H)\) by \(\delta_{A,B}(X)=AX-XB\) and \(\Delta_{A,B}(X)=AXB-X\). In this note, our task is a twofold one. We show firstly that if \(A\) and \(B^{*}\) are contractions with \(C_{.}o\) completely non unitary parts such that \(X \in \ker \Delta_{A,B}\), then \(X \in \ker \Delta_{A*,B*}\). Secondly, it is shown that if \(A\) and \(B^{*}\) are \(w\)-hyponormal operators such that \(X \in \ker \delta_{A,B}\) and \(Y \in \ker \delta_{B,A}\), where \(X\) and \(Y\) are quasi-affinities, then \(A\) and \(B\) are unitarily equivalent normal operators. A \(w\)-hyponormal operator compactly quasi-similar to an isometry is unitary is also proved.

Keywords: \(w\)-hyponormal operators, contraction operators, quasi-similarity.

Mathematics Subject Classification: 47B20.

Full text (pdf)

  • M. O. Otieno
  • University of Nairobi, Department of Mathematics, P.O. Box 30197, Nairobi, Kenya
  • Received: 2005-01-20.
Opuscula Mathematica - cover

Cite this article as:
M. O. Otieno, On intertwining and w-hyponormal operators, Opuscula Math. 25, no. 2 (2005), 275-285

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

We advise that this website uses cookies to help us understand how the site is used. All data is anonymized. Recent versions of popular browsers provide users with control over cookies, allowing them to set their preferences to accept or reject all cookies or specific ones.