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Abstract. The analytic and formal solutions to a family of singularly perturbed
partial differential equations in the complex domain involving two complex time
variables are considered. The analytic continuation properties of the solution of an
auxiliary problem in the Borel plane overcomes the absence of adequate domains which
would guarantee summability of the formal solution. Moreover, several exponential
decay rates of the difference of analytic solutions with respect to the perturbation
parameter at the origin are observed, leading to several asymptotic levels relating the
analytic and the formal solution.
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1. INTRODUCTION

The main aim of the present work is to describe the asymptotic relation existing
between the analytic and the formal solutions of a family of singularly perturbed
nonlinear partial differential equations in two complex time variables of the form

Q(∂z)u(t1, t2, z, ϵ)
= ϵ∆0(tk1+1

1 ∂t1)δ1(tk2+1
2 ∂t2)δ2R(∂z)u(t1, t2, z, ϵ)

+ P (t1, t2, ∂t1 , ∂t2 , z, ∂z, ϵ)u(t1, t2, z, ϵ)
+ (P1(ϵ, ∂z)u(t1, t2, z, ϵ)) (P2(ϵ, ∂z)u(t1, t2, z, ϵ)) + f(t1, t2, z, ϵ),

(1.1)

under initial data u(t1, 0, z, ϵ) ≡ u(0, t2, z, ϵ) ≡ 0. In the previous equation ϵ acts as
a small complex perturbation parameter. In addition to this, Q(X), R(X) ∈ C[X]
and P1, P2 are polynomials in their second variable, with coefficients in the space
of holomorphic functions on some neighborhood of the origin. ∆0, k1, k2, δ1, δ2 are
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nonnegative integers. The function P (T1, T2, S1, S2, Z, S3, ϵ) turns out to be a polyno-
mial in T1, T2, S1, S2, S3 with coefficients being holomorphic and bounded functions
on a horizontal strip, say H, w.r.t. the space variable Z, and some neighborhood of
the origin in the perturbation parameter, say D. The forcing term f is a polynomial
in its two first variables, with coefficients being holomorphic and bounded functions
on H ×D. The precise shape and assumptions on the elements involved in the equation
is described in detail in Section 2.

This work puts a step forward in the theory of analytic and asymptotic solutions
to singularly perturbed partial differential equations in the complex domain, in several
complex time variables. Different advances in this direction have been achieved in
the last years. In [15], the two last authors observed a multilevel Gevrey asymptotic
phenomenon with respect to the perturbation parameter relating the formal and the
analytic solutions to a family of the form (1.1) where the leading operator

Q(∂z) − ϵ∆0(tk1+1
1 ∂t1)δ1(tk2+1

2 ∂t2)δ2R(∂z) (1.2)

is replaced by a product of operators in the form Qj(∂z) − ϵ∆j (tkj+1
j ∂tj

)δj Rj(∂z),
j = 1, 2. This leads to symmetric asymptotic properties of the solutions. Afterwards,
the situation in which the role of the Borel time variables is asymmetric was initially
considered in [12], observing a small division phenomena. In the present work, the
configuration of the main problem does not allow us to follow the previous procedures
developed in [12, 15] due to the shape of the operator (1.2).

It is worth mentioning the phenomena observed in the previous works from a geo-
metric point of view. Indeed, the analytic solution of the main problem is constructed
as a Laplace-like transform of a function defined in the Borel space. In the work [15],
this function can be defined with respect to the Borel time variables on sets of the form
(D1 ∪ S1) × (D2 ∪ S2). Here, Sj denotes an infinite sector with vertex at the origin, and
Dj stands for a disc centered at the origin, j = 1, 2. In [12], the asymmetric behavior
of the time variables causes that the function in the Borel space is only defined on
sets of the form (D1 ∪ S1) × S2, but not on sets of the form S1 × (D2 ∪ S2). In the
present work, the auxiliary function in the Borel domain can not be defined on sets
of the previous form: (D1 ∪ S1) × (D2 ∪ S2), nor S1 × (D2 ∪ S2), nor (D1 ∪ S1) × S2,
but only on sets of the form S1 × S2. As a result, the deformation of the integration
path defining the solution as a double Laplace-like operator is not available. This is
essential in order to estimate the difference of two solutions which share a common
domain in the perturbation parameter. Therefore, a strategy of a direct application of
a Ramis–Sibuya theorem is no longer valid in the present situation. Alternatively, the
analytic continuation of the auxiliary functions in the Borel space and an adequate
splitting of the integration paths involved in the definition of the solutions will play
the key point to achieve an asymptotic meaning of the solution. In the end, a fine
structure related to the analytic solution is observed, involving two Gevrey orders,
k1 and k2 which remain linked to the singular operators involved in the leading
term of equation (1.1). This fine structure appears in the form of a decomposition of
the formal and the analytic solution as the sum of terms involving different Gevrey
asymptotic orders, appearing in Balser’s decomposition approach to multisummability
(see [18, Section 7.5]).



Parametric formal Gevrey asymptotic expansions. . . 7

The appearance of a scheme involving several levels relating the analytic and the
formal solutions to ordinary differential equations in the complex domain (under
the action of a small perturbation complex parameter or not) has been a field of
interest in the scientific community during the last three decades. See the classical
references [1, 4, 5, 17, 21, 25, 28]. Regarding partial differential equations in the
complex domain, the advances on multilevel solutions are much more limited. We
refer to the works [3, 22–24, 26, 27] and the references therein, among many others.
Multilevel results have also been recently extended to other more general functional
equations in the last years, such as [9, 16, 23], in the context of moment partial
differential equations.

The study of solutions to singularly perturbed partial differential equations in-
volving several complex time variables has also been considered regarding boundary
layer expansions, distinguishing outer and inner solutions, together with their asymp-
totic representation. This is the case of [13] in which a failure of the application of
a Borel–Laplace procedure is also observed.

The main motivation for the present study consists on considering the nonlinear
situation related to two previous research, namely [14] and [6]. In [14], the two last
authors consider a linearized problem with respect to (1.1). In both works, the leading
term coincides with that in (1.1), that we are about to study. However, in our new
setting there is more freedom in the choice of the other terms in the linear part
which not only allow powers of irregular operators in the time variables of the same
nature as those in the distinguished term, i.e. of the form (tk1+1

1 ∂t1)δℓ1 (tk2+1
2 ∂t2)δℓ2 ,

but a wider variety of irregular operators tℓ1
1 ∂ℓ2

t1 tℓ3
2 ∂ℓ4

t2 , regarding the hypothesis (2.3)
of the present work.

In that previous work, a small divisor phenomenon occurs so that the Borel–Laplace
classical procedure in two time variables does not apply, and one has to search for
solutions in the form

1
(2π)1/2

∞∫

−∞

∫

Ld

ω(u, m, ϵ) exp
(

−
(

u

ϵt1

)k1

−
(

u

ϵt2

)k2
)

du

u
eizmdm,

where Ld is an infinite ray with direction d ∈ R, for some function ω. This approach
leads to the construction of analytic solutions which adopt inner and outer asymptotic
solutions as asymptotic representations.

On the other hand, in the work [6] one searches for analytic solutions of a linearized
version of the equation under study in the form of a Fourier, truncated Laplace and
Laplace transform of certain function

1
(2π)1/2

∞∫

−∞

∫

Ld1,ϵ

∫

Ld2

ω(u1, u2, m, ϵ) exp
(

−
(

u1
ϵt1

)k1

−
(

u2
ϵt2

)k2
)

du2
u2

du1
u1

eizmdm,

for some d1, d2 ∈ R and where Ld2 is an infinite ray with direction d2, with Ld1,ϵ is
the segment [0, h1(ϵ)eid1 ], for some holomorphic function ϵ 7→ h1(ϵ). In that previous
work, all the terms except from the leading term are of the form (tk1+1

1 ∂t1)δℓ1 t
dℓ2
2 ∂

δℓ2
t2 ,
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in contrast to the freedom acquired in the present work. One can additionally observe
that the freedom acquired on the possible values of the parameters involved in the
second time variable coincide in both works (see the second condition in (2.2).

The strategy of the present work is as follows. First, we search for solutions to
the main problem in the form of a double Laplace and inverse Fourier transform
of some auxiliary function. This allows us to substitute the main equation (1.1) by
an auxiliary convolution problem in the Borel domain (see (3.6)). The solution to
this auxiliary equation, say (τ1, τ2, m, ϵ) 7→ ω(τ1, τ2, m, ϵ) is in principle defined on
S1 × S2 × R × D, where S1 × S2 stands for a product of unbounded sectors, and D is
a punctured disc at the origin. However, it is proved (see Proposition 3.11) that such
function can be analytically extended as follows:

– for all τ1 ∈ S1 near the origin, m ∈ R and ϵ ∈ D, the map τ2 7→ ω(τ1, τ2, m, ϵ),
defined on S2, can be analytically continued to some neighborhood of the origin.

– for all τ2 ∈ S2 near the origin, m ∈ R and ϵ ∈ D, the map τ1 7→ ω(τ1, τ2, m, ϵ),
defined on S1, can be analytically continued to some neighborhood of the origin.

The construction of the analytic solution u(t1, t2, z, ϵ) is achieved by means of a dou-
ble Laplace transform with respect to (τ1, τ2) (see Theorem 3.12) following a classical
procedure. It turns out to be holomorphic and bounded on T1 × T2 × Hβ′ × E , with
Tj , E being bounded sectors with vertex at the origin, and Hβ′ a horizontal strip.
Although the mentioned construction of the analytic solution u(t1, t2, z, ϵ) needs
no analytic continuation of the auxiliary function ω(τ1, τ2, m, ϵ) to be defined, such
analytic continuation is indeed needed for setting the existence of an asymptotic
expansion.

In order to attain such asymptotic expansion, we split the solution as the sum of
three terms, J1 (see Section 4.1), J2 and J3 (see Section 4.2). The term J2 (resp. J3) has
null Gevrey asymptotic expansion of order 1/k2 (resp. 1/k1), see Proposition 4.7 and
Proposition 4.8. On the other hand, a parametric Gevrey series expansion associated
to J1 is attained by completing J1 into a set (J1,p)0≤p≤ς−1, each of them holomorphic
on a finite sector Ep, where (Ep)0≤p≤ς describes a good covering (see Definition 4.1)
and by describing the exponential decay of the difference of two consecutive maps
(i.e. with nonempty intersection of their domains of definition) in the perturbation
parameter (see Proposition 4.2).

The application of a multilevel Ramis–Sibuya Theorem (RS) to J1 allows to
conclude the main result of the present work (Theorem 4.9). More precisely, this result
states the existence of a decomposition of the analytic solution of the main problem in
the form

u(t1, t2, z, ϵ) = a(t1, t2, z, ϵ) + u1(t1, t2, z, ϵ) + u2(t1, t2, z, ϵ),

where a(t1, t2, z, ϵ) turns out to be a holomorphic function on some neighborhood of
the origin with respect to the perturbation parameter ϵ, and with coefficients belonging
to the Banach space of holomorphic and bounded functions on T1 ×T2 ×Hβ′ . Moreover,
uj are holomorphic and bounded functions on T1 × T2 × Hβ′ × E , for j = 1, 2. On
the other hand, there exist formal power series in ϵ with coefficients in the Banach
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space of holomorphic and bounded functions on T1 × T2 × Hβ′ , say û1(t1, t2, z, ϵ) and
û2(t1, t2, z, ϵ), which satisfy that uj admits ûj as its common Gevrey asymptotic
expansion of order 1/kj with respect to ϵ on E , j = 1, 2.

Throughout the paper, we use the following notation.
We write N for the set of positive integers, and N0 = N ∪ {0}.
For all z0 ∈ C and r > 0, we denote the open disc centered at z0 and radius r

by D(z0, r).
Given two open and bounded sectors in the complex domain E and T , with vertex

at the origin, we say that T is a proper subsector of E , and denote it by T ≺ E
whenever T \ {0} ⊆ E .

Given a complex Banach space E and a nonempty open set U ⊆ C, we write
Ob(U,E) for the set of holomorphic functions defined on U with values in E. We simply
write Ob(U) in the case that E = C. We write E{ϵ} for the set of holomorphic
functions with values on E, defined on ϵ, which are convergent on some neighborhood
of the origin.

2. STATEMENT OF THE MAIN PROBLEM

In this section, we establish the main Cauchy problem under study, providing the
details on the elements involved in the problem.

Let k1, k2 be positive integer numbers. Let us assume that k1 > k2 ≥ 1 and fix
ϵ0 > 0. We also consider positive integers δ1, δ2 and a finite set I ⊆ N4. We assume
δ1k1 = δ2k2, and define ∆0 := k1δ1 + k2δ2.

We assume that for every ℓ = (ℓ1, ℓ2, ℓ3, ℓ4) ∈ I, one has ℓ2 and ℓ4 are positive
integers such that

ℓ1 = ℓ2(k1 + 1) + dk1,ℓ1,ℓ2 and ℓ3 = ℓ4(k2 + 1) + dk2,ℓ3,ℓ4 , (2.1)

for some positive integers dk1,ℓ1,ℓ2 , dk2,ℓ3,ℓ4 . Moreover, for every ℓ = (ℓ1, ℓ2, ℓ3, ℓ4) ∈ I
we fix an integer number ∆ℓ such that

∆ℓ ≥ ℓ1 − ℓ2 + ℓ3 − ℓ4 + 1. (2.2)

We also assume that

k1 ≤ ℓ1 − ℓ2 = ℓ3 − ℓ4 ≤ δ1k1, (ℓ1, ℓ2, ℓ3, ℓ4) ∈ I. (2.3)

Let us fix polynomials Q(X), R(X), Rℓ(X) ∈ C[X], for ℓ ∈ I. We assume that

deg Q ≥ deg R ≥ deg(Rℓ), ℓ ∈ I, (2.4)

and
R(im) ̸= 0, Q(im) ̸= 0, Rℓ(im) ̸= 0 (2.5)

for every m ∈ R and all ℓ ∈ I. In addition to this, we assume the existence of an infinite
sector SQ,R, centered at the origin such that

{
Q(im)
R(im) : m ∈ R

}
⊆ SQ,R. (2.6)
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Remark 2.1. An example of a situation in which the previous assumption holds
is that in which one considers polynomials Q and R with positive coefficients with
only powers which are divisible by 4, and where SQ,R is a sector containing the set of
positive real numbers.

We also fix polynomials P1(ϵ, X), P2(ϵ, X) ∈ Ob(D(0, ϵ0))[X]. We assume that

deg R ≥ max{deg(P1), deg(P2)}. (2.7)

In view of the assumptions made on P1 and P2, there exist CP1 , CP2 > 0 such that

|P1(ϵ, im)| ≤ CP1(1 + |m|)deg(P1), |P2(ϵ, im)| ≤ CP2(1 + |m|)deg(P2), (2.8)

for every m ∈ R and ϵ ∈ D(0, ϵ0). We also assume that CP1 and CP2 are small enough
(see Proposition 3.9).

We consider the following nonlinear initial value problem

Q(∂z)u(t1, t2, z, ϵ)
= ϵ∆0(tk1+1

1 ∂t1)δ1(tk2+1
2 ∂t2)δ2R(∂z)u(t1, t2, z, ϵ)

+
∑

ℓ=(ℓ1,ℓ2,ℓ3,ℓ4)∈I

ϵ∆ℓcℓ(z, ϵ)tℓ1
1 ∂ℓ2

t1 tℓ3
2 ∂ℓ4

t2 Rℓ(∂z)u(t1, t2, z, ϵ)

+ (P1(ϵ, ∂z)u(t1, t2, z, ϵ)) (P2(ϵ, ∂z)u(t1, t2, z, ϵ)) + f(t1, t2, z, ϵ),

(2.9)

under vanishing initial data u(0, t2, z, ϵ) = u(t1, 0, z, ϵ) = 0.
Remark 2.2. Observe all the previous assumptions made on the parameters in-
volved in the problem are compatible. An example of equation satisfying the previous
assumptions is the following:

(∂4
z + 1)u(t1, t2, z, ϵ)

= ϵ12(t4
1∂t1)2(t3

2∂t2)3 + ϵ11c(6,1,7,2)(z, ϵ)t6
1∂t1t7

2∂2
t2(−∂2

z + 2)u(t1, t2, z, ϵ)
+ (P1(ϵ, ∂z)u(t1, t2, z, ϵ)) (P2(ϵ, ∂z)u(t1, t2, z, ϵ)) + f(t1, t2, z, ϵ),

with max{deg(P1), deg(P2)} ≤ 2. The functions f and c(6,1,7,2) are attained to the
construction described below.

We choose β > 0 and fix µ > 0 such that

µ > max{deg(P1), deg(P2), max
ℓ∈I

{deg(Rℓ)}} + 1. (2.10)

Let 0 < β′ < β be fixed. We denote Hβ′ the horizontal strip

Hβ′ = {z ∈ C : |Im(z)| < β′} .

For every ℓ ∈ I, the function cℓ belongs to Ob(Hβ′ × D(0, ϵ0)). The function f turns
out to be a polynomial in its two first variables, and a holomorphic and bounded
function on Hβ′ × D(0, ϵ0) with respect to (z, ϵ). These functions are constructed
as follows.
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Given ℓ ∈ I, we choose a function R × D(0, ϵ0) ∋ (m, ϵ) 7→ Cℓ(m, ϵ) under the
following assumptions.
– For every ϵ ∈ D(0, ϵ0), the function R ∋ m 7→ Cℓ(m, ϵ) is continuous on R, and it

satisfies there exists Kℓ(ϵ) > 0 with |Cℓ(m, ϵ)| ≤ Kℓ(ϵ) 1
(1+|m|)µ e−β|m|, for m ∈ R.

Moreover, there exists K > 0 such that

sup
ℓ∈I

sup
ϵ∈D(0,ϵ0)

Kℓ(ϵ) ≤ K.

– For all m ∈ R, the mapping D(0, ϵ0) ∋ ϵ 7→ Cℓ(m, ϵ) is a holomorphic function
on D(0, ϵ0).
In view of the previous assumptions, and the properties of inverse Fourier transform,

one defines
cℓ(z, ϵ) := F−1 (m 7→ Cℓ(m, ϵ)

)
(z)

which represents a holomorphic and bounded function on Hβ′ × D(0, ϵ0).
Remark 2.3. Observe that

sup
ℓ∈I

sup
ϵ∈D(0,ϵ0)

sup
m∈R

(1 + |m|)µeβ|m||Cℓ(m, ϵ)| ≤ K. (2.11)

For the construction of the forcing term, we make use of the following well-known
property of Laplace transform.
Lemma 2.4. Let k, n be positive integers. We also fix d ∈ R. For every T ∈ C⋆ with
cos((d − arg(T ))k) > 0, it holds that

k

∫

Ld

un−1 exp
(

−
( u

T

)k
)

du = T nΓ
(n

k

)
,

with Ld being the integration path [0, ∞) ∋ r 7→ reid. Here, Γ(·) stands for Gamma
function.

The forcing term f is constructed as follows. Let N1, N2 ⊆ N be two nonempty
finite subsets of positive integers. For every (n1, n2) ∈ N1 × N2, let

R × D(0, ϵ0) ∋ (m, ϵ) 7→ Fn1,n2(m, ϵ)

be a function under the following assumptions.
– For every ϵ ∈ D(0, ϵ0), the function m 7→ Fn1,n2(m, ϵ) is continuous on R, and

it satisfies there exists Kn1,n2(ϵ) > 0 such that

|Fn1,n2(m, ϵ)| ≤ Kn1,n2(ϵ) 1
(1 + |m|)µ

e−β|m|, m ∈ R.

– For all m ∈ R, the mapping D(0, ϵ0) ∋ ϵ 7→ Fn1,n2(m, ϵ) is a holomorphic function.
Moreover, there exists K̃ > 0 such that

sup
(n1,n2)∈N1×N2

sup
ϵ∈D(0,ϵ0)

Kn1,n2(ϵ) ≤ K̃.
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Let us define the function Ψ on C2 × R × D(0, ϵ0) by

Ψ(τ1, τ2, m, ϵ) :=
∑

(n1,n2)∈N1×N2

Fn1,n2(m, ϵ) τn1
1

Γ
(

n1
k1

) τn2
2

Γ
(

n2
k2

) ,

and consider its inverse Fourier and double Laplace transform, giving rise to the function

f(t1, t2, z, ϵ)

:= k1k2
(2π)1/2

∞∫

−∞

∫

Ld1

∫

Ld2

Ψ(τ1, τ2, m, ϵ) exp
(

−
(

τ1
ϵt1

)k1

−
(

τ2
ϵt2

)k2
)

eizm dτ2
τ2

dτ1
τ1

dm.

Here, d1, d2 ∈ R are arbitrary numbers, and Ldj denotes the integration path [0, ∞)eidj ,
for j = 1, 2. Observe that, due to Cauchy Theorem and the fact that Ψ is a polynomial
in its two first variables, the directions d1 and d2 can be arbitrarily chosen. In addition
to that, in view of Lemma 2.4, it is straight to check that f determines a bounded
holomorphic function with respect to (z, ϵ) on Hβ′ × D(0, ϵ0), and a polynomial with
respect to its first two variables. In addition to this,

f(t1, t2, z, ϵ)

=
∑

(n1,n2)∈N1×N2


 1

(2π)1/2

∞∫

−∞

Fn1,n2(m, ϵ)eizmdm


 (ϵt1)n1(ϵt2)n2

=:
∑

(n1,n2)∈N1×N2

Fn1,n2(z, ϵ)(ϵt1)n1(ϵt2)n2 , (t1, t2, z, ϵ) ∈ C2 × Hβ′ × D(0, ϵ0).

Remark 2.5. Observe that

sup
ϵ∈D(0,ϵ0),(n1,n2)∈N1×N2

sup
m∈R

(1 + |m|)µeβ|m||Fn1,n2(m, ϵ)| ≤ K̃. (2.12)

It is straightforward to check that for every ϵ ∈ D(0, ϵ0) and ρ1, ρ2 > 0, one has that
Ψ ∈ B(β,µ,ρ1,ρ2) (see Definition 5.1 from Subsection 5.1.1). Indeed,

∥Ψ(τ1, τ2, m, ϵ)∥(β,µ,ρ1,ρ2) ≤ K̃
∑

(n1,n2)∈N1×N2

ρn1−1
1

Γ
(

n1
k1

) ρn2−1
2

Γ
(

n2
k2

) =: CΨ < ∞. (2.13)

Observe this quantity can be diminish as desired as long as K̃ is small enough.

3. ANALYTIC SOLUTIONS TO THE MAIN PROBLEM

This section is devoted to the construction of analytic solutions to the main problem
under study (2.9). First, we sketch the strategy to follow, and later we describe the
solution by means of auxiliary problems solved by means of fixed point arguments
involving certain operators defined on appropriate Banach spaces.
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3.1. STRATEGY FOR THE CONSTRUCTION OF
THE ANALYTIC SOLUTIONS TO (2.9)

We consider that the assumptions and constructions associated to the main prob-
lem (2.9), made in Section 2 hold, and we search for solutions of (2.9) in the form of an
inverse Fourier and double Laplace transform, for every fixed value of the perturbation
parameter ϵ. More precisely, we will search for solutions of (2.9) in the form

u(t1, t2, z, ϵ)

= k1k2
(2π)1/2

∞∫

−∞

∫

Ld1

∫

Ld2

ω(u1, u2, m, ϵ) exp
(

−
(

u1
ϵt1

)k1

−
(

u2
ϵt2

)k2
)

eizm du2
u2

du1
u1

dm

(3.1)

for some d1, d2 ∈ R to be determined, and where Ldj
is the integration path [0, ∞)eidj ,

for j = 1, 2.
We proceed by following several steps in the search of a solucion of (2.9) in the

form (3.1). First, let us search for a function u(t1, t2, z, ϵ) showing a monomial behavior
with respect to its first two variables, i.e. assume that u(t1, t2, z, ϵ) = U(ϵt1, ϵt2, z, ϵ),
for some function U defined on appropriate domains, to be specified. A direct inspection
of the previous elements yields the next result.

Lemma 3.1. From the formal point of view, u(t1, t2, z, ϵ) solves (2.9) whenever
U(T1, T2, z, ϵ) provides a formal solution of

Q(∂z)U(T1, T2, z, ϵ)
= (T k1+1

1 ∂T1)δ1(T k2+1
2 ∂T2)δ2R(∂z)U(T1, T2, z, ϵ)

+
∑

ℓ=(ℓ1,ℓ2,ℓ3,ℓ4)∈I

ϵ∆ℓ−ℓ1+ℓ2−ℓ3+ℓ4cℓ(z, ϵ)T ℓ1
1 ∂ℓ2

T1
T ℓ3

2 ∂ℓ4
T2

Rℓ(∂z)U(T1, T2, z, ϵ)

+ (P1(ϵ, ∂z)U(T1, T2, z, ϵ)) (P2(ϵ, ∂z)U(T1, T2, z, ϵ)) + F (T1, T2, z, ϵ),

(3.2)

where F (T1, T2, z, ϵ) is given by

k1k2
(2π)1/2

∞∫

−∞

∫

Ld1

∫

Ld2

Ψ(τ1, τ2, m, ϵ) exp
(

−
(

τ1
T1

)k1

−
(

τ2
T2

)k2
)

eizm dτ2
τ2

dτ1
τ1

dm. (3.3)

As a second step, we rewrite the terms involved in the equation (3.2) by means of
the next result.

Lemma 3.2 ([27, Formula (8.7)]). Let m, k be positive integers. Then, for all
1 ≤ ℓ ≤ m − 1, there exists a constant Am,ℓ ∈ R such that

T m(k+1)∂m
T = (T k+1∂T )m +

m−1∑

ℓ=1
Am,ℓT

k(m−ℓ)(T k+1∂T )ℓ.
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Taking into account the previous Lemma, together with the assumption (2.1) made
on the elements involved in the equation, one can write (3.2) in the form

Q(∂z)U(T1, T2, z, ϵ)
= (T k1+1

1 ∂T1)δ1(T k2+1
2 ∂T2)δ2R(∂z)U(T1, T2, z, ϵ)

+
∑

ℓ=(ℓ1,ℓ2,ℓ3,ℓ4)∈I

ϵ∆ℓ−ℓ1+ℓ2−ℓ3+ℓ4cℓ(z, ϵ)

× T
dk1,ℓ1,ℓ2
1

[
(T k1+1

1 ∂T1)ℓ2 +
ℓ2−1∑

h=1
Aℓ2,hT

k1(ℓ2−h)
1 (T k1+1

1 ∂T1)h

]

× T
dk2,ℓ3,ℓ4
2


(T k2+1

2 ∂T2)ℓ4 +
ℓ4−1∑

j=1
Aℓ4,jT

k2(ℓ4−j)
2 (T k2+1

2 ∂T2)j


Rℓ(∂z)U(T1, T2, z, ϵ)

+ (P1(ϵ, ∂z)U(T1, T2, z, ϵ)) (P2(ϵ, ∂z)U(T1, T2, z, ϵ)) + F (T1, T2, z, ϵ),
(3.4)

for Aℓ2,h, Aℓ4,j for 1 ≤ h ≤ ℓ2 − 1 and 1 ≤ j ≤ ℓ4 − 1 determined in Lemma 3.2.
Our strategy of finding solutions of (2.9) in the form (3.1) lead us to search for

solutions of (3.4) in the form

U(T1, T2, z, ϵ)

= k1k2
(2π)1/2

∞∫

−∞

∫

Ld1

∫

Ld2

ω(u1, u2, m, ϵ) exp
(

−
(

u1
T1

)k1

−
(

u2
T2

)k2
)

eizm du2
u2

du1
u1

dm,

(3.5)
defined on certain domains to be clarified.

The following result describes the action of some operators on an expression of the
form (3.5).
Lemma 3.3. Assume the expression of U(T1, T2, z, ϵ) is formally defined by (3.5).
The following statements hold:

(i) For j = 1, 2, the expression T
kj+1
j ∂Tj

U(T1, T2, z, ϵ) equals

k1k2
(2π)1/2

∞∫

−∞

∫

Ld1

∫

Ld2

kju
kj

j ω(u1, u2, m, ϵ) exp
(

−
(u1

T1

)k1
−
(u2

T2

)k2)
eizm du2

u2

du1
u1

dm,

(ii) For every positive integer m1, the expression T m1
1 U(T1, T2, z, ϵ) equals

k1k2
(2π)1/2

∞∫

−∞

∫

Ld1

∫

Ld2


 uk1

1

Γ
(

m1
k1

)
u

k1
1∫

0

(uk1
1 − s1)

m1
k1

−1ω(s
1

k1
1 , u2, m, ϵ)ds1

s1




× exp
(

−
(

u1
T1

)k1

−
(

u2
T2

)k2
)

eizm du2
u2

du1
u1

dm,
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(iii) For every positive integer m2, the expression T m2
2 U(T1, T2, z, ϵ) equals

k1k2
(2π)1/2

∞∫

−∞

∫

Ld1

∫

Ld2


 uk2

2

Γ
(

m2
k2

)
u

k2
2∫

0

(uk2
2 − s2)

m2
k2

−1ω(u1, s
1

k2
2 , m, ϵ)ds2

s2




× exp
(

−
(

u1
T1

)k1

−
(

u2
T2

)k2
)

eizm du2
u2

du1
u1

dm,

(iv) The expression (P1(ϵ, ∂z)U(T1, T2, z, ϵ)) (P2(ϵ, ∂z)U(T1, T2, z, ϵ)) equals

k1k2
(2π)1/2

∞∫

−∞

∫

Ld1

∫

Ld2

[
uk1

1 uk2
2

u
k1
1∫

0

u
k2
2∫

0

1
(2π)1/2

∞∫

−∞

P1(ϵ, i(m − m1))

× ω
(

(uk1
1 − s1)1/k1 , (uk2

2 − s2)1/k2 , m − m1, ϵ
)

× P2(ϵ, im1)ω
(

s
1/k1
1 , s

1/k2
2 , m1, ϵ

)

× 1
(uk1

1 − s1)
1
s1

1
(uk2

2 − s2)
1
s2

dm1ds2ds1

]

× exp
(

−
(

u1
T1

)k1

−
(

u2
T2

)k2
)

eizm du2
u2

du1
u1

dm.

Proof. The expressions (i) is a direct consequence of the derivation under the integral
symbol. (ii) and (iii) are derived from Fubini theorem. The formula (iv) is derived
from Fubini’s theorem and an application of the identities in Lemma 1 of [12].

For the sake of clarity, we simplify the expressions involving a convolution product,
as in (iv) above, as follows. We write

f ⋆ g(m) := 1
(2π)1/2

∞∫

−∞

h(m − m1)g(m1)dm1, m ∈ R.

The actions of the operators described in Lemma 3.3 and the expression of the
auxiliary equation (3.4) allow us to reduce the problem of finding U(T1, T2, z, ϵ) to that
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of searching a function ω(τ1, τ2, m, ϵ), defined in appropriate domains, which solves
the following convolution equation in the Borel–Fourier plane:

Q(im)ω(τ1, τ2, m, ϵ)
= (k1τk1

1 )δ1(k2τk2
2 )δ2R(im)ω(τ1, τ2, m, ϵ)

=
∑

ℓ=(ℓ1,ℓ2,ℓ3,ℓ4)∈I

ϵ∆ℓ−ℓ1+ℓ2−ℓ3+ℓ4Cℓ(m, ϵ) ⋆
[
A1(τ1, τ2, m, ϵ) + A2(τ1, τ2, m, ϵ)

+ A3(τ1, τ2, m, ϵ) + A4(τ1, τ2, m, ϵ)
]

+ τk1
1 τk2

2

τ
k1
1∫

0

τ
k2
2∫

0

(P1(ϵ, im)

× ω
(

(τk1
1 − s1)1/k1 , (τk2

2 − s2)1/k2 , m, ϵ
)

) ⋆ (P2(ϵ, im)ω(s1/k1
1 , s

1/k2
2 , m, ϵ))

× 1
(τk1

1 − s1)
1
s1

1
(τk2

2 − s2)
1
s2

ds2ds1 + Ψ(τ1, τ2, m, ϵ),

(3.6)

where the expressions Aj for 1 ≤ j ≤ 4 are determined by

A1(τ1, τ2, m1, ϵ) = τk1
1

Γ
(

dk1,ℓ1,ℓ2
k1

) τk2
2

Γ
(

dk2,ℓ3,ℓ4
k2

)

×
τ

k1
1∫

0

τ
k2
2∫

0

(τk1
1 − s1)

dk1,ℓ1,ℓ2
k1

−1(τk2
2 − s2)

dk2,ℓ3,ℓ4
k2

−1

× (k1s1)ℓ2(k2s2)ℓ4Rℓ(im1)ω(s1/k1
1 , s

1/k2
2 , m1, ϵ)ds2

s2

ds1
s1

,

(3.7)

A2(τ1, τ2, m1, ϵ) =
∑

1≤h≤ℓ2−1
Aℓ2,h

τk1
1

Γ
(

k1(ℓ2−h)+dk1,ℓ1,ℓ2
k1

) τk2
2

Γ
(

dk2,ℓ3,ℓ4
k2

)

×
τ

k1
1∫

0

τ
k2
2∫

0

(τk1
1 − s1)

k1(ℓ2−h)+dk1,ℓ1,ℓ2
k1

−1(τk2
2 − s2)

dk2,ℓ3,ℓ4
k2

−1

× (k1s1)h(k2s2)ℓ4Rℓ(im1)

× ω(s1/k1
1 , s

1/k2
2 , m1, ϵ)ds2

s2

ds1
s1

,

(3.8)
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A3(τ1, τ2, m1, ϵ) =
∑

1≤q≤ℓ4−1
Aℓ4,q

τk1
1

Γ
(

dk1,ℓ1,ℓ2
k1

) τk2
2

Γ
(

k2(ℓ4−q)+dk2,ℓ3,ℓ4
k2

)

×
τ

k1
1∫

0

τ
k2
2∫

0

(τk1
1 − s1)

dk1,ℓ1,ℓ2
k1

−1(τk2
2 − s2)

k2(ℓ4−q)+dk2,ℓ3,ℓ4
k2

−1

× (k1s1)ℓ2(k2s2)qRℓ(im1)

× ω(s1/k1
1 , s

1/k2
2 , m1, ϵ)ds2

s2

ds1
s1

,

(3.9)

A4(τ1, τ2, m1, ϵ)

=
∑

1≤h≤ℓ2−1,1≤q≤ℓ4−1
Aℓ2,hAℓ4,q

τk1
1

Γ
(

k1(ℓ2−h)+dk1,ℓ1,ℓ2
k1

) τk2
2

Γ
(

k2(ℓ4−q)+dk2,ℓ3,ℓ4
k2

)

×
τ

k1
1∫

0

τ
k2
2∫

0

(τk1
1 − s1)

k1(ℓ2−h)+dk1,ℓ1,ℓ2
k1

−1(τk2
2 − s2)

k2(ℓ4−q)+dk2,ℓ3,ℓ4
k2

−1

× (k1s1)h(k2s2)q

× Rℓ(im1)ω(s1/k1
1 , s

1/k2
2 , m1, ϵ)ds2

s2

ds1
s1

.

(3.10)

3.2. SOLUTION TO AN AUXILIARY PROBLEM. I

In this section, we preserve the assumptions made considering the main problem (2.9),
in Section 2. We seek for a solution to the auxiliary problem (3.6) belonging to certain
Banach spaces of functions, described in Section 5.1.1. This goal is attained by means
of the estimation obtained in the next result.

For every m ∈ R, we consider the polynomial

Pm(τ1, τ2) = Q(im) − R(im)(k1τk1
1 )δ1(k2τk2

2 )δ2 . (3.11)

Lemma 3.4. There exist ρ1, ρ2 > 0 and C1 > 0 such that

|Pm(τ1, τ2)| ≥ C1|R(im)|, (τ1, τ2, m) ∈ D(0, ρ1) × D(0, ρ2) × R.

Proof. In view of the assumptions made in (2.4) and (2.5) on the polynomials Q, R,
we arrive at the existence of rQ,R > 0 such that

∣∣∣∣
Q(im)
R(im)

∣∣∣∣ ≥ rQ,R, m ∈ R.

Let us choose small enough ρ1, ρ2 > 0 such that (k1ρk1
1 )δ1(k2ρk2

2 )δ2 ≤ rQ,R

2 . This
entails that ∣∣∣∣

Q(im)
R(im) − (k1τk1

1 )δ1(k2τk2
2 )δ2

∣∣∣∣ ≥ rQ,R

2 , m ∈ R.
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For all m ∈ R and for all τj ∈ D(0, ρj), j = 1, 2, let us write

Pm(τ1, τ2) = R(im)
[

Q(im)
R(im) − (k1τk1

1 )δ1(k2τk2
2 )δ2

]
, (3.12)

which allow us to conclude the result for C1 = rQ,R

2 .

Proposition 3.5. Let ρ1, ρ2 be prescribed as in Lemma 3.4. For every ϖ > 0
there exists ςF,1 > 0 such that if CΨ ≤ ςF,1, (see (2.13) for the value of CΨ)
then the problem (3.6) admits a unique solution ωρ1,ρ2(τ1, τ2, m, ϵ), continuous on R
with respect to its third variable, and holomorphic with respect to (τ1, τ2, ϵ) on
D(0, ρ1) × D(0, ρ2) × D(0, ϵ0), such that

| ωρ1, ρ2(τ1, τ2, m, ϵ)| ≤ ϖ
1

(1 + |m|)µ
e−β|m| |τ1τ2| , (3.13)

for every (τ1, τ2, m, ϵ) ∈ D(0, ρ1) × D(0, ρ2) × R × D(0, ϵ0).

Proof. Let ϵ ∈ D(0, ϵ0) and consider the Banach space B(β,µ,ρ1,ρ2) studied in Sec-
tion 5.1.1. We fix ϖ > 0.

Let us denote by B(0, ϖ) ⊆ B(β,µ,ρ1,ρ2) the set of elements in B(β,µ,ρ1,ρ2) whose
norm is upper bounded by ϖ. We consider the operator

Hϵ(ω(τ1, τ2, m))

:= 1
Pm(τ1, τ2)

×
[ ∑

ℓ=(ℓ1,ℓ2,ℓ3,ℓ4)∈I

ϵ∆ℓ−ℓ1+ℓ2−ℓ3+ℓ4Cℓ(m, ϵ) ⋆
[
A1(τ1, τ2, m, ϵ) + A2(τ1, τ2, m, ϵ)

+ A3(τ1, τ2, m, ϵ) + A4(τ1, τ2, m, ϵ)
]

+ τk1
1 τk2

2

τ
k1
1∫

0

τ
k2
2∫

0

(P1(ϵ, im)

× ω
(

(τk1
1 − s1)1/k1 , (τk2

2 − s2)1/k2 , m
)

) ⋆ (P2(ϵ, im)ω(s1/k1
1 , s

1/k2
2 , m))

× 1
(τk1

1 − s1)
1
s1

1
(τk2

2 − s2)
1
s2

ds2ds1 + Ψ(τ1, τ2, m, ϵ)
]

,

where Pm is defined in (3.11), and Aj for 1 ≤ j ≤ 4 are defined
in (3.7)–(3.10), where the term ω(s1/k1

1 , s
1/k2
2 , m1, ϵ) needs to be replaced by

ω(s1/k1
1 , s

1/k2
2 , m1). Regarding the assumptions made in (2.5), there exists CR > 0

such that
|R(im)| ≥ CR(1 + |m|)deg R, m ∈ R.
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Let ω(τ1, τ2, m) ∈ B(0, ϖ). From the assumptions made in (2.7) and (2.10) together
with (2.2), one can apply Lemma 3.4, Proposition 5.2, Proposition 5.3, Proposition 5.4,
together with (2.11), one has that

∥Hϵ(ω(τ1, τ2, m))∥(β,µ,ρ1,ρ2) ≤ 1
C1CR

[ ∑

ℓ=(ℓ1,ℓ2,ℓ3,ℓ4)∈I

ϵ
∆ℓ−ℓ1+ℓ2−ℓ3+ℓ4
0

1
(2π)1/2 K

× C̃1 [C1 + C2 + C3 + C4] ϖ + C̃2
1

(2π)1/2 ϖ2 + CΨ

]

with K > 0 being the constant involved in (2.11), C̃1 and C̃2 the positive constants
appearing in Proposition 5.3 and Proposition 5.4, respectively, and with CΨ in (2.13),
together with

C1 = 1
Γ
(

dk1,ℓ1,ℓ2
k1

)
Γ
(

dk2,ℓ3,ℓ4
k2

)kℓ2
1 kℓ4

2 ,

C2 =
∑

1≤h≤ℓ2−1
|Aℓ2,h| 1

Γ
(

k1(ℓ2−h)+dk1,ℓ1,ℓ2
k1

)
Γ
(

dk2,ℓ3,ℓ4
k2

)kh
1 kℓ4

2 ,

C3 =
∑

1≤q≤ℓ4−1
|Aℓ4,q| 1

Γ
(

dk1,ℓ1,ℓ2
k1

)
Γ
(

k2(ℓ4−q)+dk2,ℓ3,ℓ4
k2

)kℓ2
1 kq

2,

C4 =
∑

1≤h≤ℓ2−1,1≤q≤ℓ4−1
|Aℓ2,h||Aℓ4,q| 1

Γ
(

k1(ℓ2−h)+dk1,ℓ1,ℓ2
k1

)
Γ
(

k2(ℓ4−q)+dk2,ℓ3,ℓ4
k2

)kh
1 kq

2.

It is worth remarking that the previous constants are linked to the conditions imposed
on the parameters involved in the problem, (2.3) and (2.1).

Let us choose ςF,1 > 0, ρ1, ρ2 and ϵ0 > 0 small enough such that

1
C1CR

( ∑

ℓ=(ℓ1,ℓ2,ℓ3,ℓ4)∈I

ϵ
∆ℓ−ℓ1+ℓ2−ℓ3+ℓ4
0

K

(2π)1/2 C̃1 [C1 + C2 + C3 + C4]

+ 2C̃2
1

(2π)1/2 ϖ
)

≤ 1
2 ,

(3.14)

and 1
C1CR

ςF,1 ≤ 1
2 ϖ. Recall that C̃2 can be taken close to 0 provided that ρ1, ρ2 are

reduced, in view of Proposition 5.4.
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The previous inequality entails that Hϵ(ω(τ1, τ2, m)) ∈ B(0, ϖ). On the other hand,
given ω1, ω2 ∈ B(0, ϖ) ⊆ B(β,µ,ρ1,ρ2), it holds that

Hϵ(ω1(τ1, τ2, m)) − Hϵ(ω2(τ1, τ2, m))

:= 1
Pm(τ1, τ2)

[ ∑

ℓ=(ℓ1,ℓ2,ℓ3,ℓ4)∈I

ϵ∆ℓ−ℓ1+ℓ2−ℓ3+ℓ4Cℓ(m, ϵ) ⋆
[
A⋆

1(τ1, τ2, m)

+ A⋆
2(τ1, τ2, m) + A⋆

3(τ1, τ2, m) + A⋆
4(τ1, τ2, m)

]
+ τk1

1 τk2
2

τ
k1
1∫

0

τ
k2
2∫

0{
(P1(ϵ, im)ω1((τk1

1 − s1)1/k1 , (τk2
2 − s2)1/k2 , m)) ⋆ (P2(ϵ, im)ω1(s1/k1

1 , s
1/k2
2 , m))

− (P1(ϵ, im)ω2((τk1
1 − s1)1/k1 , (τk2

2 − s2)1/k2 , m)) ⋆ (P2(ϵ, im)ω2(s1/k1
1 , s

1/k2
2 , m))

}

× 1
τk1

1 − s1

1
s1

1
τk2

2 − s2

1
s2

ds2ds1

]
,

with

A⋆
1(τ1, τ2, m1)

= τk1
1

Γ
(

dk1,ℓ1,ℓ2
k1

) τk2
2

Γ
(

dk2,ℓ3,ℓ4
k2

)
τ

k1
1∫

0

τ
k2
2∫

0

(τk1
1 − s1)

dk1,ℓ1,ℓ2
k1

−1(τk2
2 − s2)

dk2,ℓ3,ℓ4
k2

−1

× (k1s1)ℓ2(k2s2)ℓ4Rℓ(im1)(ω1(s1/k1
1 , s

1/k2
2 , m1) − ω2(s1/k1

1 , s
1/k2
2 , m1))ds2

s2

ds1
s1

,

(3.15)

A⋆
2(τ1, τ2, m1)

=
∑

1≤h≤ℓ2−1
Aℓ2,h

τk1
1

Γ
(

k1(ℓ2−h)+dk1,ℓ1,ℓ2
k1

) τk2
2

Γ
(

dk2,ℓ3,ℓ4
k2

)

×
τ

k1
1∫

0

τ
k2
2∫

0

(τk1
1 − s1)

k1(ℓ2−h)+dk1,ℓ1,ℓ2
k1

−1(τk2
2 − s2)

dk2,ℓ3,ℓ4
k2

−1(k1s1)h(k2s2)ℓ4Rℓ(im1)

× (ω1(s1/k1
1 , s

1/k2
2 , m1) − ω2(s1/k1

1 , s
1/k2
2 , m1))ds2

s2

ds1
s1

,

(3.16)
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A⋆
3(τ1, τ2, m1)

=
∑

1≤q≤ℓ4−1
Aℓ4,q

τk1
1

Γ
(

dk1,ℓ1,ℓ2
k1

) τk2
2

Γ
(

k2(ℓ4−q)+dk2,ℓ3,ℓ4
k2

)

×
τ

k1
1∫

0

τ
k2
2∫

0

(τk1
1 − s1)

dk1,ℓ1,ℓ2
k1

−1(τk2
2 − s2)

k2(ℓ4−q)+dk2,ℓ3,ℓ4
k2

−1(k1s1)ℓ2(k2s2)qRℓ(im1)

× (ω1(s1/k1
1 , s

1/k2
2 , m1) − ω2(s1/k1

1 , s
1/k2
2 , m1))ds2

s2

ds1
s1

,

(3.17)

A⋆
4(τ1, τ2, m1)

=
∑

1≤h≤ℓ2−1,1≤q≤ℓ4−1
Aℓ2,hAℓ4,q

τk1
1

Γ
(

k1(ℓ2−h)+dk1,ℓ1,ℓ2
k1

) τk2
2

Γ
(

k2(ℓ4−q)+dk2,ℓ3,ℓ4
k2

)

×
τ

k1
1∫

0

τ
k2
2∫

0

(τk1
1 −s1)

dk1,ℓ1,ℓ2+k1(ℓ2−h)
k1

−1(τk2
2 −s2)

k2(ℓ4−q)+dk2,ℓ3,ℓ4
k2

−1

× (k1s1)h(k2s2)qRℓ(im1)

× (ω1(s1/k1
1 , s

1/k2
2 , m1)−ω2(s1/k1

1 , s
1/k2
2 , m1))ds2

s2

ds1
s1

.

(3.18)

Finally, we check that the expression

P1(ϵ, i(m−m1))ω1
(
(τk1

1 −s1)1/k1 , (τk2
2 −s2)1/k2 , m−m1

)
P2(ϵ, im1)ω1(s1/k1

1 , s
1/k2
2 , m1)

−P1(ϵ, i(m−m1))ω2
(
(τk1

1 −s1)1/k1 , (τk2
2 −s2)1/k2 , m−m1

)
P2(ϵ, im1)ω2(s1/k1

1 , s
1/k2
2 , m1)

equals

P1(ϵ, i(m − m1))
(

ω1
(
(τk1

1 − s1)1/k1 , (τk2
2 − s2)1/k2 , m − m1

)

− ω2
(
(τk1

1 − s1)1/k1 , (τk2
2 − s2)1/k2 , m − m1

))

× P2(ϵ, im1)ω1(s1/k1
1 , s

1/k2
2 , m1)

+ P1(ϵ, i(m − m1))ω2((τk1
1 − s1)1/k1 , (τk2

2 − s2)1/k2 , m − m1)

× P2(ϵ, im1)(ω1(s1/k1
1 , s

1/k2
2 , m1) − ω2(s1/k1

1 , s
1/k2
2 , m1)).
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An analogous reasoning as before and (3.14) allow us to arrive at

∥Hϵ(ω1(τ1, τ2, m)) − Hϵ(ω2(τ1, τ2, m))∥(β,µ,ρ1,ρ2)

≤ 1
C1CR

[ ∑

ℓ=(ℓ1,ℓ2,ℓ3,ℓ4)∈I

ϵ
∆ℓ−ℓ1+ℓ2−ℓ3+ℓ4
0

1
(2π)1/2 KC̃1[C1 + C2 + C3 + C4]

× ∥ ω1(τ1, τ2, m) − ω2(τ1, τ2, m)∥(β,µ,ρ1,ρ2)

+ C̃2
1

(2π)1/2 ∥ ω1(τ1, τ2, m) − ω2(τ1, τ2, m)∥(β,µ,ρ1,ρ2)∥ ω1(τ1, τ2, m)∥(β,µ,ρ1,ρ2)

+ C̃2
1

(2π)1/2 ∥ ω2(τ1, τ2, m)∥(β,µ,ρ1,ρ2)∥ ω1(τ1, τ2, m) − ω2(τ1, τ2, m)∥(β,µ,ρ1,ρ2)

]

≤ 1
C1CR

[ ∑

ℓ=(ℓ1,ℓ2,ℓ3,ℓ4)∈I

ϵ
∆ℓ−ℓ1+ℓ2−ℓ3+ℓ4
0

1
(2π)1/2 KC̃1[C1 + C2 + C3 + C4]

+ 2C̃2
1

(2π)1/2 ϖ

]
∥ ω1(τ1, τ2, m) − ω2(τ1, τ2, m)∥(β,µ,ρ1,ρ2)

≤ 1
2∥ ω1(τ1, τ2, m) − ω2(τ1, τ2, m)∥(β,µ,ρ1,ρ2).

The classical contractive mapping theorem can be applied on

Hϵ : B(0, ϖ) → B(0, ϖ),

to arrive at the existence of a unique fixed point, say ωϵ(τ1, τ2, m). This construction
depends holomorphically on ϵ ∈ D(0, ϵ0). As a conclusion, one arrives at the existence
of a function

(τ1, τ2, m, ϵ) 7→ ωρ1,ρ2(τ1, τ2, m, ϵ) = ωϵ(τ1, τ2, m),

which is, by construction, a solution of (3.6), and satisfies the estimates (3.13).

3.3. SOLUTION TO AN AUXILIARY PROBLEM. II

In this section, we still preserve the assumptions made regarding the main problem
(2.9), in Section 2 and search for solutions to the auxiliary problem (3.6) in the Banach
space of Section 5.1.2.

We start by providing alternative lower bounds on Pm to those attained
in Lemma 3.4.

Lemma 3.6. There exist d1, d2 ∈ R and C2 > 0 such that

|Pm(τ1, τ2)| ≥ C2|R(im)|(1 + |k1τk1
1 |δ1 |k2τk2

2 |δ2),

for every (τ1, τ2, m) ∈ Sd1 × Sd2 × R. Here, Pm is the polynomial defined by (3.11),
and Sdj , for j = 1, 2 stands for some infinite sector centered at the origin, and bisecting
direction dj.
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Proof. We recall from the proof of Lemma 3.4, together with assumption (2.6) the
existence of rQ,R > 0 such that

∇ :=
{

Q(im)
R(im) : m ∈ R

}
⊆ SQ,R \ D(0, rQ,R). (3.19)

Let d1, d2 ∈ R be chosen such that d1,2 := δ1k1d1 + δ2k2d2 ̸∈ arg(∇), where
arg(∇) = {arg(z) : z ∈ ∇}. We define Sd1 (resp. Sd2) an infinite sector with small
opening, centered at the origin, and bisecting direction d1 (resp. d2). The infinite sector
Sd1,2 is defined accordingly. This entails in particular that (k1τk1

1 )δ1(k2τk2
2 )δ2 ̸∈ ∇ for

(τ1, τ2) ∈ Sd1 × Sd2 when the opening of Sd1 , Sd2 are close enough to 0. More precisely,
for every ξ ∈ Sd1,2 one guarantees the existence of a positive constant C2 > 0 with

∣∣∣∣
Q(im)
R(im) − ξ

∣∣∣∣ ≥ C2(1 + |ξ|).

In particular, one has that
∣∣∣∣
Q(im)
R(im) − (k1τk1

1 )δ1(k2τk2
2 )δ2

∣∣∣∣ ≥ C2(1 + |k1τk1
1 |δ1 |k2τk2

2 |δ2).

The result follows from the decomposition (3.12).

The definition of Ψ, together with Lemma 3.6 and (2.5) yields the following result.

Proposition 3.7. Let ν1, ν2 > 0 and choose d1, d2 ∈ R as in Lemma 3.6. Then, there
exists DΨ > 0 such that

sup
(τ1,τ2,m)∈Sd1 ×Sd2 ×R

∣∣∣∣
Ψ(τ1, τ2, m, ϵ)

Pm(τ1, τ2)

∣∣∣∣ (1 + |m|)µeβ|m| 1 + |τ1|2k1

|τ1|
1 + |τ2|2k2

|τ2|
× exp

(
−ν1|τ1|k1 − ν2|τ2|k2

)
≤ DΨ,

valid for all ϵ ∈ D(0, ϵ0).

Remark 3.8. In terms of the Banach space described in Section 5.1.2, the previous
result can be read as follows: there exists DΨ > 0 such that for all ϵ ∈ D(0, ϵ0), the
function Ψ(τ1,τ2,m,ϵ)

Pm(τ1,τ2) belongs to E(β,µ,ν1,ν2,Sd1,Sd2
), and

sup
ϵ∈D(0,ϵ0)

∥∥∥∥
Ψ(τ1, τ2, m, ϵ)

Pm(τ1, τ2)

∥∥∥∥
(β,µ,ν1,ν2,Sd1,Sd2

)
≤ DΨ.

The constant DΨ tends to 0 when K̃ approaches to 0.

Proposition 3.9. For every ϖ > 0 there exists ςF,2 > 0 such that if DΨ ≤ ςF,2, pro-
vided that the constants CP1 , CP2 appearing in (2.8) are small enough, then the problem
(3.6) admits a unique solution ωSd1 ,Sd2

(τ1, τ2, m, ϵ), continuous on R with respect to
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its third variable, and holomorphic with respect to (τ1, τ2, ϵ) on Sd1 × Sd2 × D(0, ϵ0),
such that

| ωSd1 , Sd2(τ1, τ2, m, ϵ)|

≤ ϖ
1

(1 + |m|)µ
e−β|m| |τ1|

1 + |τ1|2k1

|τ2|
1 + |τ2|2k2

exp
(

ν1 |τ1|k1 + ν2 |τ2|k2
)

,
(3.20)

for every (τ1, τ2, m, ϵ) ∈ Sd1 × Sd2 × R × D(0, ϵ0).

Proof. The proof of Proposition 3.9 follows the same line of arguments and similar
notations as the one of Proposition 3.5 owing to the conditions (2.3). Indeed, an in-
equality for ∥Hϵ(ω(τ1, τ2, m))∥(β,µ,ν1,ν2,Sd1 ,Sd2 ) is reached similar to the one obtained,
where CΨ is replaced by DΨ, and the constant C1 is replaced by C2, together with KC̃1
and C̃2 appearing in Proposition 5.8 and Proposition 5.9. Furthermore, similar inequal-
ities to (3.14) and for the difference ∥Hϵ(ω1) − Hϵ(ω2)∥(β,µ,ν1,ν2,Sd1 ,Sd2 ) are achieved,
provided that ϵ0 > 0 is taken close to 0 (bearing in mind the condition (2.2)) and that
Cρ1 , Cρ2 > 0 are small enough, according to the remark after Proposition 5.8.

3.4. SOLUTION TO AN AUXILIARY PROBLEM,
III. ANALYTIC CONTINUATION

We maintain the assumptions made on the elements involved in the main equa-
tion (2.9), now searching for solutions in a third Banach space, and exploring its
analytic continuation by means of the results obtained so far.

Taking into account the lower estimates obtained in Lemma 3.4, and an analogous
line of arguments as those followed in Proposition 3.5, we arrive at the following result.

Proposition 3.10. For every ϖ > 0 there exists ςF,3 > 0 such that if CΨ ≤ ςF,3,
then the auxiliary problem (3.6) admits a unique solution ωρ1,ρ2,Sd1 ,Sd2

(τ1, τ2, m, ϵ),
continuous on R with respect to its third variable, and holomorphic with respect to
(τ1, τ2, ϵ) on (Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)) × D(0, ϵ0), such that

| ωρ1,ρ2,Sd1 ,Sd2
(τ1, τ2, m, ϵ)| ≤ ϖ

1
(1 + |m|)µ

e−β|m| |τ1τ2| , (3.21)

for every (τ1, τ2, m, ϵ) ∈ (Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)) × R × D(0, ϵ0).

The next result proves that the solutions of (3.6) obtained in Proposition 3.5
and Proposition 3.9 are related by analytic continuation, by means of the solution
constructed in Proposition 3.10.

Proposition 3.11. Let ϖ > 0. There exists ςF > 0 such that if CΨ ≤ ςF and DΨ ≤ ςF ,
then the following statements hold:

(i) for every fixed τ1 ∈ Sd1 ∩ D(0, ρ1), m ∈ R and ϵ ∈ D(0, ϵ0), the map
τ2 7→ ωSd1 ,Sd2

(τ1, τ2, m, ϵ) defined on Sd2 (see Proposition 3.9) has an analytic
continuation on D(0, ρ2), which is τ2 7→ ωρ1,ρ2(τ1, τ2, m, ϵ),
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(ii) for every fixed τ2 ∈ Sd2 ∩ D(0, ρ2), m ∈ R and ϵ ∈ D(0, ϵ0), the map
τ1 7→ ωSd1 ,Sd2

(τ1, τ2, m, ϵ) defined on Sd1 (see Proposition 3.9) has an analytic
continuation on D(0, ρ1), which is τ1 7→ ωρ1,ρ2(τ1, τ2, m, ϵ).

Proof. We fix

∆ := max
(τ1,τ2)∈D(0,ρ1)×D(0,ρ2)

1
1 + |τ1|2k1

1
1 + |τ2|2k1

exp(ν1 |τ1|k1 + ν2 |τ2|k2).

We observe that ∆ > 0. Let (τ1, τ2, m, ϵ) 7→ ωSd1 ,Sd2
(τ1, τ2, m, ϵ) be the function

obtained in Proposition 3.9, which solves (3.6) and such that (3.20) holds for some given
ϖ, if DΨ ≤ ςF,2. Then, for (τ1, τ2, m, ϵ) ∈ (Sd1∩D(0, ρ1))×(Sd2∩D(0, ρ2))×R×D(0, ϵ0),
one has that

| ωSd1 ,Sd2
(τ1, τ2, m, ϵ)|

≤ ϖ
1

(1 + |m|)µ
e−β|m| |τ1|

1 + |τ1|2k1

|τ2|
1 + |τ2|2k2

exp
(

ν1 |τ1|k1 + ν2 |τ2|k2
)

≤ ϖ∆ 1
(1 + |m|)µ

e−β|m| |τ1| |τ2| .

This entails that for all ϵ ∈ D(0, ϵ0), the function

(Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)) × R ∋ (τ1, τ2, m) 7→ ωSd1 ,Sd2
(τ1, τ2, m, ϵ)

is the fixed point of the operator Hϵ when defined on the closed ball B(0, ∆ϖ) of
the Banach space F(β,µ,ρ1,ρ2,Sd1 ,Sd2 ) of Section 5.1.3. From unicity of the fixed point
for Hϵ in such ball obtained in Proposition 3.10, ωρ1,ρ2,Sd1 ,Sd2

, we conclude that

ωSd1 ,Sd2
(τ1, τ2, m, ϵ) = ωρ1,ρ2,Sd1 ,Sd2

(τ1, τ2, m, ϵ)

for every (τ1, τ2, m) ∈ (Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)) ×R. An analogous reasoning
leads us to

ωρ1,ρ2(τ1, τ2, m, ϵ) = ωρ1,ρ2,Sd1 ,Sd2
(τ1, τ2, m, ϵ),

for every (τ1, τ2, m) ∈ (Sd1 ∩D(0, ρ1))×(Sd2 ∩D(0, ρ2))×R, with ωρ1,ρ2 being the fixed
point of Hϵ, defined on the ball B(0, ∆ς) of the Banach space B(β,µ,ρ1,ρ2), obtained
in Proposition 3.5.

The result follows from the variation of ϵ ∈ D(0, ϵ0).

At this point, we can state the main result of the present section, summarizing all
the previous results.

Theorem 3.12. Under the assumptions of Section 2, we consider the Cauchy
problem (2.9). Let ρ1, ρ2 > 0 determined in Section 3.2, and d1, d2 ∈ R chosen
in Section 3.3. Let E ⊆ D(0, ϵ0) and T1, T2 ⊆ D(0, rT ) for some small enough rT > 0
be three bounded sectors with vertex at the origin, chosen in such a way that:

(i) there exists ∆1 > 0 with cos(k1(d1 − arg(ϵt1))) > ∆1, for all ϵ ∈ E and t1 ∈ T1,
(ii) there exists ∆2 > 0 with cos(k2(d2 − arg(ϵt2))) > ∆2, for all ϵ ∈ E and t2 ∈ T2.
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Then, provided that ϵ0, the quantity K̃ from (2.12), together with the constants
CP1 , CP2 > 0 from (2.8) are taken small enough, and for every 0 < β′ < β, the
problem (2.9), under null initial data u(0, t2, z, ϵ) = u(t1, 0, z, ϵ) = 0, admits an
analytic solution ud1,d2(t1, t2, z, ϵ) ∈ Ob(T1 × T2 × Hβ′ × E).
Proof. Let ωSd1 ,Sd2

(τ1, τ2, m, ϵ) be the solution of the auxiliary equation (3.6), obtained
in Proposition 3.9. Regarding (3.20), the choice of d1, d2 at the statement of the result
guarantees that the function

ud1,d2(t1, t2, z, ϵ) = k1k2
(2π)1/2

∞∫

−∞

∫

Ld1

∫

Ld2

ωSd1 ,Sd2
(u1, u2, m, ϵ)

× exp
(

−
(

u1
ϵt1

)k1

−
(

u2
ϵt2

)k2
)

eizm du2
u2

du1
u1

dm,

(3.22)

is well-defined, holomorphic and bounded on T1 × T2 × Hβ′ × E , provided that
rT , ϵ0 > 0 are small enough, and 0 < β′ < β. Indeed, observe that for all
(t1, t2, z, ϵ) ∈ T1 × T2 × Hβ′ × E , one has that

|ud1,d2(t1, t2, z, ϵ)| ≤ ϖ
k1k2

(2π)1/2




∞∫

−∞

1
(1 + |m|)µ

e−|m|(β−|Im(z)|)dm




×
2∏

j=1




∞∫

0

rj

1 + r
2kj

j

exp
(

r
kj

j (νj − ∆j

|ϵtj |kj
)
)

drj


 ,

for some ϖ > 0, after the parametrization uj = rjeidj for rj ∈ [0, ∞) and j = 1, 2.
Assuming that ϵ0rT < (∆j/νj)1/kj , for j = 1, 2, the previous integrals converge.

4. PARAMETRIC GEVREY SERIES EXPANSION

In this section, we provide an asymptotic representation of the analytic solution,
obtained in the previous section. We maintain the assumptions made on the elements
in the construction of the main problem (2.9), stated in Section 2.

We split the integral representation of the solution to problem (2.9) obtained in
Theorem 3.12 as the sum

ud1,d2(t1, t2, z, ϵ) = J1(t1, t2, z, ϵ) + J2(t1, t2, z, ϵ) + J3(t1, t2, z, ϵ), (4.1)

with

J1(t1, t2, z, ϵ)

:= k1k2
(2π)1/2

∞∫

−∞

∫

Ld1 ,ρ1/2

∫

Ld2 ,ρ2/2

ωSd1 ,Sd2
(u1, u2, m, ϵ)G(u1, u2, t1, t2, ϵ)eizm du2

u2

du1
u1

dm,
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J2(t1, t2, z, ϵ)

:= k1k2
(2π)1/2

∞∫

−∞

∫

Ld1 ,ρ1/2

∫

Ld2 ,ρ2/2,∞

ωSd1 ,Sd2
(u1, u2, m, ϵ)G(u1, u2, t1, t2, ϵ)eizm du2

u2

du1
u1

dm,

J3(t1, t2, z, ϵ)

:= k1k2
(2π)1/2

∞∫

−∞

∫

Ld1 ,ρ1/2,∞

∫

Ld2

ωSd1 ,Sd2
(u1, u2, m, ϵ)G(u1, u2, t1, t2, ϵ)eizm du2

u2

du1
u1

dm,

for

G(u1, u2, t1, t2, ϵ) = exp
(

−
(

u1
ϵt1

)k1

−
(

u2
ϵt2

)k2
)

,

and where

Ld1,ρ1/2 =
[
0,

ρ1
2

]
e

√−1d1 , Ld2,ρ2/2 =
[
0,

ρ2
2

]
e

√−1d2 , (4.2)

Ld1,ρ1/2,∞ =
[ρ1

2 , ∞
)

e
√−1d1 , Ld2,ρ2/2,∞ =

[ρ2
2 , ∞

)
e

√−1d2 . (4.3)

Our objective is to study the asymptotic Gevrey related to each piece in the
previous decomposition.

4.1. GEVREY EXPANSIONS FOR J1

Let us recall the notion of a good covering, which will be essential in our reasoning.

Definition 4.1. Let ς ≥ 2 be an integer. Let E = (Ep)0≤p≤ς−1 be a set of bounded
sectors with vertex at the origin, Ep ⊆ D(0, ϵ0), for 0 ≤ p ≤ ς−1 such that Ep∩Ep+1 ̸= ∅
for 0 ≤ p ≤ ς − 1 (with the notation Eς := E0), which are three by three disjoint,
i.e. Ep1 ∩ Ep2 ∩ Ep3 = ∅ for all 0 ≤ p1, p2, p3 ≤ ς − 1, with p1 ̸= p2 ̸= p3 and
p1 ̸= p3. In addition to this, there exists a neighborhood of the origin U such that
U\{0} = ∪ς−1

p=0Ep. In this situation, we say the family E determines a good covering in C⋆.

Let us depart from given bounded open sectors T1, T2, E with vertex at the origin,
and ρ1, ρ2 > 0 and d1, d2 ∈ R, under the hypotheses of Theorem 3.12. We choose
a good covering E = (Ep)0≤p≤ς−1 such that E0 := E . In addition to this, we choose the
real numbers dp, d̃p, for 0 ≤ p ≤ ς − 1 with d0 := d1, d̃0 = d2, in such a way that
the following conditions hold:

(i) for all 0 ≤ p ≤ ς − 1 there exists ∇p > 0 with cos(k1(dp − arg(ϵt1))) > ∇p,
for ϵ ∈ Ep, t1 ∈ T1,

(ii) for all 0 ≤ p ≤ ς − 1 there exists ∇̃p > 0 with cos(k2(d̃p − arg(ϵt2))) > ∇̃p,
for ϵ ∈ Ep, t2 ∈ T2.

Observe that one can choose ∇0 = ∆1 and ∇̃0 = ∆2, where ∆1, ∆2 are the constants
in Theorem 3.12.
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For every 0 ≤ p ≤ ς − 1, we construct the function

J1,p(t1, t2, z, ϵ)

:= k1k2
(2π)1/2

∞∫

−∞

∫

Ldp ,ρ1/2

∫

Ld̃p
,ρ2/2

ωρ1,ρ2(u1, u2, m, ϵ)G(u1, u2, t1, t2, ϵ)eizm du2
u2

du1
u1

dm,

(4.4)

with Ldp,ρ1/2 = [0, ρ1/2]eidp , Ld̃p,ρ2/2 = [0, ρ2/2]eid̃p , which turns out to be an analytic
and bounded function on T1 × T2 × Hβ′ × Ep, for every 0 < β′ < β.

Observe that J1,0(t1, t2, z, ϵ) = J1(t1, t2, z, ϵ) for all ϵ ∈ E = E0, t1 ∈ T1,
t2 ∈ T2, z ∈ Hβ′ .

The next Proposition provides bounds for the differences of consecutive maps J1,p.
The proof of the next result is analogous to that of Theorem 1, [15], so we omit it.

Proposition 4.2. Under the previous assumptions, the following statements hold for
every 0 ≤ p ≤ ς − 1:

Case 1. dp = dp+1, and d̃p ̸= d̃p+1. There exist Cp,1, Cp,2 > 0 such that

|J1,p+1(t1, t2, z, ϵ) − J1,p(t1, t2, z, ϵ)| ≤ Cp,1 exp
(

−Cp,2
|ϵ|k2

)
,

for all (t1, t2, z, ϵ) ∈ T1 × T2 × Hβ′ × (Ep ∩ Ep+1).
Case 2. dp ̸= dp+1, and d̃p = d̃p+1. There exist Cp,3, Cp,4 > 0 such that

|J1,p+1(t1, t2, z, ϵ) − J1,p(t1, t2, z, ϵ)| ≤ Cp,3 exp
(

−Cp,4
|ϵ|k1

)
,

for all (t1, t2, z, ϵ) ∈ T1 × T2 × Hβ′ × (Ep ∩ Ep+1).
Case 3. dp ̸= dp+1, and d̃p ̸= d̃p+1. There exist Cp,5, Cp,6 > 0 such that

|J1,p+1(t1, t2, z, ϵ) − J1,p(t1, t2, z, ϵ)| ≤ Cp,5 exp
(

−Cp,6
|ϵ|k2

)
,

for all (t1, t2, z, ϵ) ∈ T1 × T2 × Hβ′ × (Ep ∩ Ep+1).

At this point, we can apply Theorem (RS). The classical Ramis–Sibuya Theorem
can be found in detail in [8, Theorem XI-2-3] whereas the proof of the following
generalization can be found in detail in [11, Theorem XI-2-3, pp. 63–65].

Theorem 4.3 (RS). Let 0 < k2 < k1. We also fix a complex Banach space (E, ∥·∥E),
and a good covering in C⋆, (Ep)0≤p≤ς−1, for some integer ς ≥ 2 (see Definition 4.1
in Section 4). Given 0 ≤ p ≤ ς − 1, we assume Gp ∈ Ob(Ep,E), and define
∆p(ϵ) = Gp+1(ϵ) − Gp(ϵ), for ϵ ∈ Ep ∩ Ep+1, with the convention that Eς := E0 and
Gς := G0. Assume moreover the existence of I1, I2 ⊆ {0, . . . , ς−1}, such that I1, I2 ̸= ∅,
and I1 ∪ I2 = {0, . . . , ς − 1}, with I1 ∩ I2 = ∅, satisfying the following properties:
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(i) for every p ∈ I1, there exists Kp, Mp > 0 such that ∥∆p(ϵ)∥E ≤ Kp exp
(

− Mp

|ϵ|k1

)

for ϵ ∈ Ep ∩ Ep+1,

(ii) for every p ∈ I2, there exists K̃p, M̃p > 0 such that ∥∆p(ϵ)∥E ≤ K̃p exp
(

− M̃p

|ϵ|k2

)

for ϵ ∈ Ep ∩ Ep+1.

Then, there exist a(ϵ) ∈ E{ϵ}, two formal power series Ĝ1, Ĝ2 ∈ E[[ϵ]], and for all
0 ≤ p ≤ ς − 1 two functions G1

p, G2
p ∈ Ob(Ep,E) such that:

(1) for all 0 ≤ p ≤ ς − 1, the function Gp admits the decomposition

Gp(ϵ) = ap(ϵ) + G1
p(ϵ) + G2

p(ϵ), ϵ ∈ Ep,

(2) for j = 1, 2, and all 0 ≤ p ≤ ς − 1, the function Gj
p admits Ĝj as its Gevrey

asymptotic expansion of order 1/kj on Ep.

For 0 < β′ < β, we write E for the Banach space of bounded holomorphic
functions defined on T1 × T2 × Hβ′ equipped with the norm of the supremum,
i.e. E := Ob(T1 × T2 × Hβ′).

Proposition 4.4. Under the previous assumptions, for every 0 ≤ p ≤ ς − 1, the
solution (4.4) of (2.9) admits a splitting of the form

J1,p(t1, t2, z, ϵ) = a(t1, t2, z, ϵ) + J1,1,p(t1, t2, z, ϵ) + J1,2,p(t1, t2, z, ϵ),

where a(t1, t2, z, ϵ) ∈ E{ϵ}, and J1,j,p ∈ Ob(T1 × T2 × Hβ′ × Ep), for all 0 ≤ p ≤ ς − 1
and j = 1, 2. Moreover, there exist two formal power series in ϵ with coefficients in E,
say Ĵ1,j ∈ E[[ϵ]], for j = 1, 2 which satisfy that J1,j,p admits Ĵ1,j as its common Gevrey
asymptotic expansion of order 1/kj with respect to ϵ on Ep, for all 0 ≤ p ≤ ς − 1.

Proof. Let us split the set {0, . . . , ς − 1} into the set I1 of indices such that Case 1 or
Case 3 of Proposition 4.2 hold, and I2 = {0, . . . , ς − 1} \ I1 (i.e. the set of indices for
which Case 2 of Proposition 4.2 holds). Multilevel Ramis–Sibuya Theorem (RS) can
be applied to the functions Gp : Ep → Ob(T1 × T2 × Hβ′) defined by

Gp(ϵ) := J1,p(t1, t2, z, ϵ), ϵ ∈ Ep,

for 0 ≤ p ≤ ς − 1, and where E stands for the Banach space of holomorphic and
bounded functions defined on T1 × T2 × Hβ′ equipped with the norm of the supremum,
for some fixed 0 < β′ < β. This is a consequence of the different exponential decays in
the perturbation parameter, uniform on the rest of variables, showed in Proposition 4.2.

The particularization of the previous result to the first index in the good covering
allows us to conclude.

Corollary 4.5. In the situation of Proposition 4.4, the analytic map J1(t1, t2, z, ϵ),
defined in (4.1), defined in T1 × T2 × Hβ′ × E admits a splitting of the form

J1(t1, t2, z, ϵ) = a(t1, t2, z, ϵ) + J1,1,0(t1, t2, z, ϵ) + J1,2,0(t1, t2, z, ϵ),
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where a(t1, t2, z, ϵ) ∈ E{ϵ}, and J1,j,0 ∈ Ob(T1 × T2 × Hβ′ × E) for j = 1, 2. Moreover,
the formal power series Ĵ1,j ∈ E[[ϵ]], for j = 1, 2 satisfy that J1,j,0 admits Ĵ1,j as its
common Gevrey asymptotic expansion of order 1/kj with respect to ϵ on E.

4.2. GEVREY BOUNDS FOR J2 AND J3

We recall the next lemma from [19], which will be crucial in the next two propositions.

Lemma 4.6 ([19, Lemma 14.1]). Let k′ ≥ 1 be an integer number, and let M > 0
a real number. There exists Ck′ > 0 only depending on k′ such that the next inequality

(
1
r

)N

exp
(

− M

rk′

)
≤ Ck′AN

k′

(
N

k′

)1/2
Γ
(

N

k′

)

holds for all integer N ≥ 1 and any real number r > 0, and where Ak′ = (1/M)1/k′ .

The next result provides bounds for J2.

Proposition 4.7. There exist CJ2 , KJ2 > 0 such that

|J2(t1, t2, z, ϵ)| ≤ CJ2KN
J2

(
N

k2

)1/2
Γ
(

N

k2

)
|ϵ|N , (4.5)

for all positive integer N , all t1 ∈ T1, t2 ∈ T2, z ∈ Hβ′ and ϵ ∈ E.

Proof. In view of the estimates for ωSd1 ,Sd2
determined in (3.20) we deduce that

|J2(t1, t2, z, ϵ)| ≤ k1k2
(2π)1/2




∞∫

−∞

(1 + |m|)−µe−β|m|eβ′|m|dm


ϖSd1 ,Sd2

×
ρ1/2∫

0

exp
(

ν1rk1
1

)
exp

(
− rk1

1
|ϵt1|k1

∆1

)
dr1

×
∞∫

ρ2/2

exp
(

ν2rk2
2

)
exp

(
− rk2

2
|ϵt2|k2

∆2

)
dr2,

(4.6)

where ∆1, ∆2 > 0 are the constants in Theorem 3.12, for all t1 ∈ T1, t2 ∈ T2, z ∈ Hβ′

and ϵ ∈ E .
Observe that

ρ1/2∫

0

exp
(

ν1rk1
1

)
exp

(
− rk1

1
|ϵt1|k1

∆1

)
dr1 ≤ exp

(
ν1

(ρ1
2

)k1
)

. (4.7)
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In addition, one has that
∞∫

ρ2/2

exp
(

ν2rk2
2

)
exp

(
− rk2

2
|ϵt2|k2

∆2

)
dr2

=
∞∫

ρ2/2

exp
(

ν2rk2
2

)
exp

(
− rk2

2
2|ϵt2|k2

∆2

)
exp

(
− rk2

2
2|ϵt2|k2

∆2

)
dr2

≤ exp
(

− (ρ2/2)k2

2|ϵ|k2rk2
T2

∆2

)


∞∫

ρ2/2

exp
(

ν2rk2
2

)
exp

(
− rk2

2
2ϵk2

0 rk2
T2

∆2

)
dr2


 ,

(4.8)

the last integral appearing above being convergent provided that rT2 > 0 is chosen to
be small enough. We apply Lemma 4.6 to conclude that

exp
(

− (ρ2/2)k2

2|ϵ|k2rk2
T2

∆2

)
≤ Ck2AN

k2

(
N

k2

)1/2
Γ
(

N

k2

)
|ϵ|N , (4.9)

for all positive integer N ≥ 1, ϵ ∈ E , where Ck2 is a constant depending on k2, and

Ak2 =
(

2rk2
T2

∆2(ρ2/2)k2

) 1
k2

.

The estimates (4.5) are deduced from the inequalities (4.6), (4.7), (4.8), and (4.9).

Regarding the estimates for J3, and following an analogous reasoning as before,
one arrives at the following result.

Proposition 4.8. There exist CJ3 , KJ3 > 0 such that

|J3(t1, t2, z, ϵ)| ≤ CJ3KN
J3

(
N

k1

)1/2
Γ
(

N

k1

)
|ϵ|N , (4.10)

for all positive integer N , all t1 ∈ T1, t2 ∈ T2, z ∈ Hβ′ and ϵ ∈ E.

4.3. MAIN ASYMPTOTIC RESULT

As before, for 0 < β′ < β, we write E for the Banach space of bounded holomorphic
functions defined on T1 × T2 × Hβ′ equipped with the norm of the supremum, i.e.
E := Ob(T1 × T2 × Hβ′).

Theorem 4.9. Under the previous assumptions, the solution (3.22) of (2.9) admits
a splitting of the form

ud1,d2(t1, t2, z, ϵ) = b(t1, t2, z, ϵ) + ud1,d2,1(t1, t2, z, ϵ) + ud1,d2,2(t1, t2, z, ϵ),
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where b(t1, t2, z, ϵ) ∈ E{ϵ}, and ud1,d2,j ∈ Ob(T1 ×T2 ×Hβ′ ×E), for j = 1, 2. Moreover,
there exist two formal power series in ϵ with coefficients in E, say

ûj(t1, t2, z, ϵ) =
∑

k≥0
Hj

k(t1, t2, z)ϵk ∈ E[[ϵ]],

for j = 1, 2 which satisfy that ud1,d2,j admits ûj as its Gevrey asymptotic expansion
of order 1/kj with respect to ϵ on E, which means that for all W ≺ E, there exist
C, A > 0 with

sup
(t1,t2,z)∈T1×T2×Hβ′

∣∣∣∣∣ud1,d2,j(t1, t2, z, ϵ) −
N−1∑

p=0
Hj

p(t1, t2, z)ϵp

∣∣∣∣∣

≤ CAN Γ
(

1 + N

kj

)
|ϵ|N , ϵ ∈ W,

valid for all N ≥ 1.

Proof. In view of the splitting in (4.1), the Gevrey expansions for J1 determined
in Proposition 4.4, together with the Gevrey bounds attained in Proposition 4.7 and
Proposition 4.8, we set b(t1, t2, z, ϵ) = a(t1, t2, z, ϵ) obtained in Proposition 4.4,

ud1,d2,1(t1, t2, z, ϵ) = J1,1,0(t1, t2, z, ϵ) + J3(t1, t2, z, ϵ),

ud1,d2,2(t1, t2, z, ϵ) = J1,2,0(t1, t2, z, ϵ) + J2(t1, t2, z, ϵ),

and ûj(t1, t2, z, ϵ) = Ĵ1,j , for j = 1, 2. The result of Theorem 4.9 is a straight conse-
quence of Proposition 4.4, Proposition 4.7 and Proposition 4.8.

5. APPENDIX

5.1. AUXILIARY BANACH SPACES OF ANALYTIC FUNCTIONS

In this section, we state the definition of some auxiliary Banach spaces of functions
which allow us to provide some important properties of analytic continuation of the
solution to the auxiliary problem (3.6) in the Borel–Fourier space.

5.1.1. First auxiliary Banach space
Let β > 0 and µ > 1. Let us also fix ρ1, ρ2 > 0. In the whole section, we fix positive
integers k1, k2.

Definition 5.1. Let us consider the set of continuous maps (τ1, τ2, m) 7→ h(τ1, τ2, m)
defined on D(0, ρ1)×D(0, ρ2)×R, holomorphic with respect to its first two variables on
D(0, ρ1)×D(0, ρ2) and such that there exists C > 0 (which depends on β, µ, ρ1, ρ2) with

|h(τ1, τ2, m)| ≤ C
1

(1 + |m|)µ
e−β|m||τ1τ2|,
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for every (τ1, τ2, m) ∈ D(0, ρ1)×D(0, ρ2)×R. Such set is denoted by B(β,µ,ρ1,ρ2). Given
h as before, we denote the minimum of such constant C by ∥h(τ1, τ2, m)∥(β,µ,ρ1,ρ2).
The pair (B(β,µ,ρ1,ρ2), ∥·∥(β,µ,ρ1,ρ2)) is a complex Banach space.

We state some properties associated to the previous Banach space, whose proof
can straightly be adapted from those in the spaces considered in [15].

The first one is a direct consequence of its definition.
Proposition 5.2. Let (τ1, τ2, m) 7→ b(τ1, τ2, m) be a continuous function defined
on D(0, ρ1) × D(0, ρ2) × R, holomorphic with respect to its first two variables on
D(0, ρ1) × D(0, ρ2). Assume that

Cb := sup
(τ1,τ2,m)∈D(0,ρ1)×D(0,ρ2)×R

|b(τ1, τ2, m)|

is finite. Then, for every h ∈ B(β,µ,ρ1,ρ2), the function

(τ1, τ2, m) 7→ b(τ1, τ2, m)h(τ1, τ2, m)

belongs to B(β,µ,ρ1,ρ2), and it holds that

∥b(τ1, τ2, m)h(τ1, τ2, m)∥(β,µ,ρ1,ρ2) ≤ Cb ∥h(τ1, τ2, m)∥(β,µ,ρ1,ρ2) .

Proposition 5.3. Let a(τ1, τ2, m) be a continuous function defined on D(0, ρ1) ×
D(0, ρ2) ×R, holomorphic with respect to its two first variables on D(0, ρ1) × D(0, ρ2).
We assume this function satisfies there exists γ1 ≥ 0 with

|a(τ1, τ2, m)| ≤ C1
(1 + |m|)γ1

, (τ1, τ2, m) ∈ D(0, ρ1) × D(0, ρ2) × R.

We choose a mapping m 7→ h(m, ϵ) such that for every m ∈ R, the function D(0, ϵ0) ∋
ϵ 7→ h(m, ϵ) is holomorphic on D(0, ϵ0) and there exists K > 0 with

sup
ϵ∈D(0,ϵ0)

sup
m∈R

(1 + |m|)µeβ|m||h(m, ϵ)| ≤ K.

We consider a polynomial P (X) ∈ C[X]. We assume that γ1 ≥ deg P , µ > deg P +1. Let
us also fix σj > −1 for j = 1, . . . , 6 with k1σ1+σ3+σ5+ 1

k1
≥ 0, k2σ2+σ4+σ6+ 1

k2
≥ 0.

Then, for every f ∈ B(β,µ,ρ1,ρ2) the function

B1(f) := a(τ1, τ2, m)

×
∞∫

−∞

h(m − m1, ϵ)τσ1k1
1 τσ2k2

2

τ
k1
1∫

0

τ
k2
2∫

0

(τk1
1 − s1)σ3(τk2

2 − s2)σ4sσ5
1 sσ6

2 P (im1)

× f(s1/k1
1 , s

1/k2
2 , m1)ds2ds1dm1

belongs to B(β,µ,ρ1,ρ2). In addition to this, there exists C̃1 > 0 with

∥B1(f)∥(β,µ,ρ1,ρ2) ≤ KC̃1 ∥f∥(β,µ,ρ1,ρ2) .
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Proposition 5.4. Let a(τ1, τ2, m) be a continuous function defined on D(0, ρ1) ×
D(0, ρ2) ×R, holomorphic with respect to its two first variables on D(0, ρ1) × D(0, ρ2).
We assume this function satisfies there exist γ1 ≥ 0 and C1 > 0 with

|a(τ1, τ2, m)| ≤ C1
(1 + |m|)γ1

, (τ1, τ2, m) ∈ D(0, ρ1) × D(0, ρ2) × R.

Let P1(ϵ, X), P2(ϵ, X) ∈ Ob(D(0, ϵ0))[X] be polynomials with coefficients in the
set of holomorphic and bounded functions on D(0, ϵ0). We assume that γ1 ≥
max{deg(P1), deg(P2)}. Let us choose µ such that µ > max{deg(P1), deg(P2)} + 1.
For every f, g ∈ B(β,µ,ρ1,ρ2), the function

B2(f, g) := a(τ1, τ2, m)

× τk1
1 τk2

2

τ
k1
1∫

0

τ
k2
2∫

0

∞∫

−∞

P1(ϵ, i(m−m1))f((τk1
1 −s1)1/k1 , (τk2

2 −s2)1/k2 , m−m1)

× P2(ϵ, im1)g(s1/k1
1 , s

1/k2
2 , m1) 1

τk1
1 −s1

1
s1

1
τk2

2 −s2

1
s2

dm1ds2ds1

belongs to B(β,µ,ρ1,ρ2). In addition to this, there exists C̃2 > 0 such that

∥B2(f, g)∥(β,µ,ρ1,ρ2) ≤ C̃2 ∥f∥(β,µ,ρ1,ρ2) ∥g∥(β,µ,ρ1,ρ2) .

Remark 5.5. C̃2 approaches 0 when the quantities ρ1 or ρ2 are reduced.

5.1.2. Second auxiliary Banach space
Let β > 0 and µ > 1. We fix ν1, ν2 > 0. Let Sdj be an infinite sector of positive
opening, with vertex at the origin and bisecting direction dj ∈ R, for j = 1, 2. k1, k2
are positive integers.

Definition 5.6. Let us denote by E(β,µ,ν1,ν2,Sd1 ,Sd2 ) the set of all continuous maps
(τ1, τ2, m) 7→ h(τ1, τ2, m) on Sd1 × Sd2 × R, which are holomorphic on its two first
variables on Sd1 × Sd2 and such that there exists C > 0 (depending on β, µ, Sd1 , Sd2)
such that

|h(τ1, τ2, m)| ≤ C
1

(1 + |m|)µ
e−β|m| |τ1|

1 + |τ1|2k1

|τ2|
1 + |τ2|2k2

exp
(

ν1 |τ1|k1 + ν2 |τ2|k2
)

,

for every (τ1, τ2, m) ∈ Sd1 × Sd2 × R. Given such h, the minimum of
the constant C above is denoted by ∥h(τ1, τ2, m)∥(β,µ,ν1,ν2,Sd1 ,Sd2 ). The pair
(E(β,µ,ν1,ν2,Sd1 ,Sd2 ), ∥·∥(β,µ,ν1,ν2,Sd1 ,Sd2 )) turns out to be a complex Banach space.

As in the previous section, one can state some properties associated to the applica-
tion of certain operators on the previous Banach space. We omit their proofs, directly
adapted from those in [15].



Parametric formal Gevrey asymptotic expansions. . . 35

Proposition 5.7. Let (τ1, τ2, m) 7→ b(τ1, τ2, m) be a continuous function defined
on Sd1 × Sd2 × R, holomorphic with respect to its first two variables on Sd1 × Sd2 .
Assume that

Cb := sup
(τ1,τ2,m)∈Sd1 ×Sd2 ×R

|b(τ1, τ2, m)|

is finite. Then, for every h ∈ E(β,µ,ν1,ν2,Sd1 ,Sd2 ), the function

(τ1, τ2, m) 7→ b(τ1, τ2, m)h(τ1, τ2, m)

belongs to E(β,µ,ν1,ν2,Sd1 ,Sd2 ), and it holds that

∥b(τ1, τ2, m)h(τ1, τ2, m)∥(β,µ,ν1,ν2,Sd1 ,Sd2 ) ≤ Cb ∥h(τ1, τ2, m)∥(β,µ,ν1,ν2,Sd1 ,Sd2 ) .

Proposition 5.8. Let a(τ1, τ2, m) be a continuous function defined on Sd1 × Sd2 × R,
holomorphic with respect to its two first variables on Sd1 × Sd2 . Assume there exist
γ1, δ1, δ2 ≥ 0 and C1 > 0 such that

|a(τ1, τ2, m)| ≤ C1
(1 + |m|)γ1(1 + |τ1|δ1k1 |τ2|δ2k2) , (τ1, τ2, m) ∈ Sd1 × Sd2 × R.

Let m 7→ h(m, ϵ) be a function such that for every m ∈ R, the function D(0, ϵ0) ∋ ϵ 7→
h(m, ϵ) is holomorphic on D(0, ϵ0) and there exists K > 0 with

sup
ϵ∈D(0,ϵ0)

sup
m∈R

(1 + |m|)µeβ|m||h(m, ϵ)| ≤ K.

We consider a polynomial P (X) ∈ C[X]. We assume that γ1 ≥ deg P , µ > deg P + 1.
Let us also fix σj > −1 for j = 1, . . . , 6.We assume that

k1(σ1+σ3+σ5+1) = k2(σ2+σ4+σ6+1), δ1k1 = δ2k2, σ1+σ3+σ5+1 ≤ δ1. (5.1)

Then, for every f ∈ E(β,µ,ν1,ν2,Sd1 ,Sd2 ) the function

B1(f) := a(τ1, τ2, m)

×
∞∫

−∞

h(m − m1, ϵ)τσ1k1
1 τσ2k2

2

τ
k1
1∫

0

τ
k2
2∫

0

(τk1
1 − s1)σ3(τk2

2 − s2)σ4sσ5
1 sσ6

2 P (im1)

× f(s1/k1
1 , s

1/k2
2 , m1)ds2ds1dm1

belongs to E(β,µ,ν1,ν2,Sd1 ,Sd2 ). Moreover, there exists C̃1 > 0 with

∥B1(f)∥(β,µ,ν1,ν2,Sd1 ,Sd2 ) ≤ KC̃1 ∥f∥(β,µ,ν1,ν2,Sd1 ,Sd2 ) .

The proof of the following result follows analogous lines as that of Proposition 5.4.
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Proposition 5.9. Let a(τ1, τ2, m) be a continuous function defined on Sd1 × Sd2 × R,
holomorphic with respect to its two first variables on Sd1 × Sd2 . We assume such
function satisfies there exist γ1, δ1, δ2 ≥ 0 and C1 > 0 with

|a(τ1, τ2, m)| ≤ C1
(1 + |m|)γ1(1 + |τ1|δ1k1 |τ2|δ2k2) , (τ1, τ2, m) ∈ Sd1 × Sd2 × R.

We also assume that δ1k1 = δ2k2 ≥ 1. Let P1(ϵ, X), P2(ϵ, X) ∈ Ob(D(0, ϵ0))[X] be
polynomials with coefficients being holomorphic and bounded functions on D(0, ϵ0).
We assume that γ1 ≥ max{deg(P1), deg(P2)}, and choose µ such that µ >
max{deg(P1), deg(P2)} + 1. For every f, g ∈ E(β,µ,ν1,ν2,Sd1 ,Sd2 ), the function

B2(f, g) := a(τ1, τ2, m)τk1
1 τk2

2

×
τ

k1
1∫

0

τ
k2
2∫

0

∞∫

−∞

P1(ϵ, i(m − m1))f((τk1
1 − s1)1/k1 , (τk2

2 − s2)1/k2 , m − m1)

× P2(ϵ, im1)g(s1/k1
1 , s

1/k2
2 , m1) 1

τk1
1 − s1

1
s1

1
τk2

2 − s2

1
s2

dm1ds2ds1

belongs to E(β,µ,ν1,ν2,Sd1 ,Sd2 ). In addition to this, there exists C̃2 > 0 such that

∥B2(f, g)∥(β,µ,ν1,ν2,Sd1 ,Sd2 ) ≤ C̃2 ∥f∥(β,µ,ν1,ν2,Sd1 ,Sd2 ) ∥g∥(β,µ,ν1,ν2,Sd1 ,Sd2 ) .

Remark 5.10. The constant C̃2 approaches to 0 provided that the quantities
CP1 , CP2 > 0 are small.

5.1.3. Third auxiliary Banach space
Let β > 0 and µ > 1. We fix ρ1, ρ2 > 0, and ν1, ν2 > 0. Let Sdj

be an infinite sector of
some positive opening, with vertex at the origin, and bisecting direction dj ∈ R, for
j = 1, 2. As in the previous sections, we fix positive integers k1, k2.
Definition 5.11. Let us denote by F(β,µ,ρ1,ρ2,Sd1 ,Sd2 ) the set of all continuous maps
(τ1, τ2, m) 7→ h(τ1, τ2, m) on (Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)) × R, which are holo-
morphic on its two first variables on (Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)) and such that
there exists C > 0 (depending on β, µ, ρ1, ρ2, Sd1 , Sd2) such that

|h(τ1, τ2, m)| ≤ C
1

(1 + |m|)µ
e−β|m| |τ1τ2| ,

for every (τ1, τ2, m) ∈ (Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)) × R. For such h, the
minimum of such constant C is denoted by ∥h(τ1, τ2, m)∥(β,µ,ρ1,ρ2,Sd1 ,Sd2 ). The pair
(F(β,µ,ρ1,ρ2,Sd1 ,Sd2 ), ∥·∥(β,µ,ρ1,ρ2,Sd1 ,Sd2 )) is a complex Banach space.

Analogous results as those in the two previous sections regarding the action of
certain operators acting on functions belonging to this Banach space can be stated.
We omit their proof which follow analogous arguments as before.
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Proposition 5.12. Let (τ1, τ2, m) 7→ b(τ1, τ2, m) be a continuous function defined
on (Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)) × R, holomorphic with respect to its first two
variables on (Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)). Assume that

Cb := sup
(τ1,τ2,m)∈(Sd1 ∩D(0,ρ1))×(Sd2 ∩D(0,ρ2))×R

|b(τ1, τ2, m)|

is finite. Then, for every h ∈ F(β,µ,ρ1,ρ2,Sd1 ,Sd2 ), the function

(τ1, τ2, m) 7→ b(τ1, τ2, m)h(τ1, τ2, m)

belongs to F(β,µ,ρ1,ρ2,Sd1 ,Sd2 ), and it holds that

∥b(τ1, τ2, m)h(τ1, τ2, m)∥(β,µ,ρ1,ρ2,Sd1 ,Sd2 ) ≤ Cb ∥h(τ1, τ2, m)∥(β,µ,ρ1,ρ2,Sd1 ,Sd2 ) .

Proposition 5.13. Let a(τ1, τ2, m) be a continuous function defined on
(Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)) × R, holomorphic with respect to its two first
variables on (Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)). Assume there exist γ1 ≥ 0 and C1 > 0
such that

|a(τ1, τ2, m)| ≤ C1
(1 + |m|)γ1

, (τ1, τ2, m) ∈ (Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)) × R.

Let m 7→ h(m, ϵ) be a function such that for every m ∈ R, the function D(0, ϵ0) ∋ ϵ 7→
h(m, ϵ) is holomorphic on D(0, ϵ0) and there exists K > 0 with

sup
ϵ∈D(0,ϵ0)

sup
m∈R

(1 + |m|)µeβ|m||h(m, ϵ)| ≤ K.

We consider a polynomial P (X) ∈ C[X]. We assume that γ1 ≥ deg P , µ > deg P + 1.
Let us also fix σj > −1 for j = 1, . . . , 6, such that k1σ1 + σ3 + σ5 + 1

k1
≥ 0 and

k2σ2 + σ4 + σ6 + 1
k2

≥ 0. Then, for every f ∈ F(β,µ,ρ1,ρ2,Sd1 ,Sd2 ) the function

B1(f) := a(τ1, τ2, m)

×
∞∫

−∞

h(m − m1, ϵ)τσ1k1
1 τσ2k2

2

τ
k1
1∫

0

τ
k2
2∫

0

(τk1
1 − s1)σ3(τk2

2 − s2)σ4sσ5
1 sσ6

2 P (im1)

× f(s1/k1
1 , s

1/k2
2 , m1)ds2ds1dm1

belongs to F(β,µ,ρ1,ρ2,Sd1 ,Sd2 ). Moreover, there exists C̃1 > 0 with

∥B1(f)∥(β,µ,ρ1,ρ2,Sd1 ,Sd2 ) ≤ KC̃1 ∥f∥(β,µ,ρ1,ρ2,Sd1 ,Sd2 ) .
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Proposition 5.14. Let a(τ1, τ2, m) be a continuous function defined on (Sd1 ∩
D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)) × R, holomorphic with respect to its two first variables
on (Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)). We assume such function satisfies there exists
γ1 ≥ 0 and C1 > 0 with

|a(τ1, τ2, m)| ≤ C1
(1 + |m|)γ1

, (τ1, τ2, m) ∈ (Sd1 ∩ D(0, ρ1)) × (Sd2 ∩ D(0, ρ2)) × R.

Let P1(ϵ, X), P2(ϵ, X) ∈ Ob(D(0, ϵ0))[X] be polynomials with coefficients being holomor-
phic and bounded functions on D(0, ϵ0). We assume that γ1 ≥ max{deg(P1), deg(P2)},
and choose µ such that µ > max{deg(P1), deg(P2)} + 1. For every f, g ∈
F(β,µ,ρ1,ρ2,Sd1 ,Sd2 ), the function

B2(f, g) := a(τ1, τ2, m)τk1
1 τk2

2

×
τ

k1
1∫

0

τ
k2
2∫

0

∞∫

−∞

P1(ϵ, i(m − m1))f((τk1
1 − s1)1/k1 , (τk2

2 − s2)1/k2 , m − m1)

× P2(ϵ, im1)g(s1/k1
1 , s

1/k2
2 , m1) 1

τk1
1 − s1

1
s1

1
τk2

2 − s2

1
s2

× dm1ds2ds1

belongs to F(β,µ,ρ1,ρ2,Sd1 ,Sd2 ). In addition to this, there exists C̃2 > 0 such that

∥B2(f, g)∥(β,µ,ν1,ν2,Sd1 ,Sd2 ) ≤ C̃2 ∥f∥(β,µ,ν1,ν2,Sd1 ,Sd2 ) ∥g∥(β,µ,ν1,ν2,Sd1 ,Sd2 ) .

Remark 5.15. The constant C̃2 approaches 0 when the quantities ρ1 or ρ2 are
reduced.
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