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Abstract. The analytic and formal solutions to a family of singularly perturbed
partial differential equations in the complex domain involving two complex time
variables are considered. The analytic continuation properties of the solution of an
auxiliary problem in the Borel plane overcomes the absence of adequate domains which
would guarantee summability of the formal solution. Moreover, several exponential
decay rates of the difference of analytic solutions with respect to the perturbation
parameter at the origin are observed, leading to several asymptotic levels relating the
analytic and the formal solution.
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1. INTRODUCTION

The main aim of the present work is to describe the asymptotic relation existing
between the analytic and the formal solutions of a family of singularly perturbed
nonlinear partial differential equations in two complex time variables of the form

Q0 )u(ty, ta, z,€)
= Bo(thrtlg, Yo (ke 1o, V2 R(D, )u(ty, te, 2, €)
+ P(t1,t2, 04,0y, 2,0,, €)u(ty, ta, 2, €)
+ (Pi(e, 02 )u(ty, ta, z,€)) (Pa(e, 02 )ulte, ta, 2,€)) + f(t1,1t2, 2, €),

(1.1)

under initial data u(¢1,0, z,€) = u(0,tq, z,¢) = 0. In the previous equation € acts as
a small complex perturbation parameter. In addition to this, Q(X), R(X) € C[X]
and P;, P, are polynomials in their second variable, with coeflicients in the space
of holomorphic functions on some neighborhood of the origin. Ag, k1, k2, 1,02 are
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nonnegative integers. The function P (T, T, S1, 52, Z, S3,€) turns out to be a polyno-
mial in 73,75, 571,52, 53 with coefficients being holomorphic and bounded functions
on a horizontal strip, say H, w.r.t. the space variable Z, and some neighborhood of
the origin in the perturbation parameter, say D. The forcing term f is a polynomial
in its two first variables, with coefficients being holomorphic and bounded functions
on H x D. The precise shape and assumptions on the elements involved in the equation
is described in detail in Section 2.

This work puts a step forward in the theory of analytic and asymptotic solutions
to singularly perturbed partial differential equations in the complex domain, in several
complex time variables. Different advances in this direction have been achieved in
the last years. In [15], the two last authors observed a multilevel Gevrey asymptotic
phenomenon with respect to the perturbation parameter relating the formal and the
analytic solutions to a family of the form (1.1) where the leading operator

Q(8:) — 20 (1" 10,,)™ (1571 1, R(D:) (1.2)

is replaced by a product of operators in the form Q;(9,) — €*i (t?ﬁlatj)‘sf R;(0.),
j =1,2. This leads to symmetric asymptotic properties of the solutions. Afterwards,
the situation in which the role of the Borel time variables is asymmetric was initially
considered in [12], observing a small division phenomena. In the present work, the
configuration of the main problem does not allow us to follow the previous procedures
developed in [12, 15] due to the shape of the operator (1.2).

It is worth mentioning the phenomena observed in the previous works from a geo-
metric point of view. Indeed, the analytic solution of the main problem is constructed
as a Laplace-like transform of a function defined in the Borel space. In the work [15],
this function can be defined with respect to the Borel time variables on sets of the form
(D1US1) x (D2USy). Here, S; denotes an infinite sector with vertex at the origin, and
D; stands for a disc centered at the origin, j = 1,2. In [12], the asymmetric behavior
of the time variables causes that the function in the Borel space is only defined on
sets of the form (D; U S7) x Sa, but not on sets of the form S; x (D3 U S3). In the
present work, the auxiliary function in the Borel domain can not be defined on sets
of the previous form: (D; U Sy) X (D2 U Ss), nor S1 x (D2 U Ss), nor (D1 USy) X Sa,
but only on sets of the form S7 x S3. As a result, the deformation of the integration
path defining the solution as a double Laplace-like operator is not available. This is
essential in order to estimate the difference of two solutions which share a common
domain in the perturbation parameter. Therefore, a strategy of a direct application of
a Ramis—Sibuya theorem is no longer valid in the present situation. Alternatively, the
analytic continuation of the auxiliary functions in the Borel space and an adequate
splitting of the integration paths involved in the definition of the solutions will play
the key point to achieve an asymptotic meaning of the solution. In the end, a fine
structure related to the analytic solution is observed, involving two Gevrey orders,
k1 and ko which remain linked to the singular operators involved in the leading
term of equation (1.1). This fine structure appears in the form of a decomposition of
the formal and the analytic solution as the sum of terms involving different Gevrey
asymptotic orders, appearing in Balser’s decomposition approach to multisummability
(see [18, Section 7.5]).
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The appearance of a scheme involving several levels relating the analytic and the
formal solutions to ordinary differential equations in the complex domain (under
the action of a small perturbation complex parameter or not) has been a field of
interest in the scientific community during the last three decades. See the classical
references [1, 4, 5, 17, 21, 25, 28]. Regarding partial differential equations in the
complex domain, the advances on multilevel solutions are much more limited. We
refer to the works [3, 22-24, 26, 27] and the references therein, among many others.
Multilevel results have also been recently extended to other more general functional
equations in the last years, such as [9, 16, 23], in the context of moment partial
differential equations.

The study of solutions to singularly perturbed partial differential equations in-
volving several complex time variables has also been considered regarding boundary
layer expansions, distinguishing outer and inner solutions, together with their asymp-
totic representation. This is the case of [13] in which a failure of the application of
a Borel-Laplace procedure is also observed.

The main motivation for the present study consists on considering the nonlinear
situation related to two previous research, namely [14] and [6]. In [14], the two last
authors consider a linearized problem with respect to (1.1). In both works, the leading
term coincides with that in (1.1), that we are about to study. However, in our new
setting there is more freedom in the choice of the other terms in the linear part
which not only allow powers of irregular operators in the time variables of the same
nature as those in the distinguished term, i.e. of the form (t¥1719, )00 (k2 19, )oe |
but a wider variety of irregular operators tflﬁfftgg’@f;, regarding the hypothesis (2.3)
of the present work.

In that previous work, a small divisor phenomenon occurs so that the Borel-Laplace
classical procedure in two time variables does not apply, and one has to search for
solutions in the form

1 T u \ ™ u \*\ du izm g
7(271_)1/2 w(u,m,e)exp | — s — o ;e m,
— 00 Ld

where Ly is an infinite ray with direction d € R, for some function w. This approach
leads to the construction of analytic solutions which adopt inner and outer asymptotic
solutions as asymptotic representations.

On the other hand, in the work [6] one searches for analytic solutions of a linearized
version of the equation under study in the form of a Fourier, truncated Laplace and
Laplace transform of certain function

—_—7 wl(uy, Uz, m, €)ex — | — — | — — e m
(27’1’)1/2 . g L2 T P Etl Etg U2 U1 ’
—O0 Lgy,e Lidy

for some dy,ds € R and where Lg, is an infinite ray with direction da, with Lg, . is
the segment [0, hy(€)e!¥1], for some holomorphic function € +— hy(€). In that previous

work, all the terms except from the leading term are of the form (£5* 719, )% tg“ 8;5:‘2,
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in contrast to the freedom acquired in the present work. One can additionally observe
that the freedom acquired on the possible values of the parameters involved in the
second time variable coincide in both works (see the second condition in (2.2).

The strategy of the present work is as follows. First, we search for solutions to
the main problem in the form of a double Laplace and inverse Fourier transform
of some auxiliary function. This allows us to substitute the main equation (1.1) by
an auxiliary convolution problem in the Borel domain (see (3.6)). The solution to
this auxiliary equation, say (71,72, m,€) — w(71,72,m,€) is in principle defined on
S1 X Sy x R x D, where S; x Sy stands for a product of unbounded sectors, and D is
a punctured disc at the origin. However, it is proved (see Proposition 3.11) that such
function can be analytically extended as follows:

— for all 74 € Sy near the origin, m € R and ¢ € D, the map 7o — w(71, 72, m,€),
defined on S3, can be analytically continued to some neighborhood of the origin.
— for all 75 € Sy near the origin, m € R and € € D, the map 71 — w(m, 72, m,€),
defined on S, can be analytically continued to some neighborhood of the origin.

The construction of the analytic solution u(t1,ta, 2, €) is achieved by means of a dou-
ble Laplace transform with respect to (71, 72) (see Theorem 3.12) following a classical
procedure. It turns out to be holomorphic and bounded on 71 x T3 x Hg x £, with
7;,€ being bounded sectors with vertex at the origin, and Hg/ a horizontal strip.
Although the mentioned construction of the analytic solution u(t1,ts,2,€) needs
no analytic continuation of the auxiliary function w(ry, 72, m,€) to be defined, such
analytic continuation is indeed needed for setting the existence of an asymptotic
expansion.

In order to attain such asymptotic expansion, we split the solution as the sum of
three terms, Jp (see Section 4.1), Jo and J3 (see Section 4.2). The term Jo (resp. J3) has
null Gevrey asymptotic expansion of order 1/ks (resp. 1/k1), see Proposition 4.7 and
Proposition 4.8. On the other hand, a parametric Gevrey series expansion associated
to Jp is attained by completing J; into a set (J1,)o<p<c—1, each of them holomorphic
on a finite sector &,, where (&,)o<p<¢ describes a good covering (see Definition 4.1)
and by describing the exponential decay of the difference of two consecutive maps
(i.e. with nonempty intersection of their domains of definition) in the perturbation
parameter (see Proposition 4.2).

The application of a multilevel Ramis—Sibuya Theorem (RS) to J; allows to
conclude the main result of the present work (Theorem 4.9). More precisely, this result
states the existence of a decomposition of the analytic solution of the main problem in
the form

u(ty, ta, z,€) = a(ty, ta, 2,€) +u1(ty, ta, 2, €) + ua(ty, ta, 2, €),

where a(ty, o, 2z, €) turns out to be a holomorphic function on some neighborhood of
the origin with respect to the perturbation parameter €, and with coefficients belonging
to the Banach space of holomorphic and bounded functions on 77 x Tz x Hg:. Moreover,
u; are holomorphic and bounded functions on 71 x To X Hg x &, for j = 1,2. On
the other hand, there exist formal power series in € with coefficients in the Banach
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space of holomorphic and bounded functions on 77 x T3 X Hg, say @1(t1,t2, 2, €) and
Qo (1,12, 2, €), which satisfy that w; admits 4; as its common Gevrey asymptotic
expansion of order 1/k; with respect toeon &, j =1, 2.

Throughout the paper, we use the following notation.

We write N for the set of positive integers, and Ny = N U {0}.

For all zp € C and r > 0, we denote the open disc centered at zy and radius r
by D(zp, 7).

Given two open and bounded sectors in the complex domain £ and 7, with vertex
at the origin, we say that T is a proper subsector of £, and denote it by T" < &£
whenever T\ {0} C €.

Given a complex Banach space E and a nonempty open set U C C, we write
Oy(U,E) for the set of holomorphic functions defined on U with values in E. We simply
write Op(U) in the case that E = C. We write E{e} for the set of holomorphic
functions with values on E, defined on ¢, which are convergent on some neighborhood
of the origin.

2. STATEMENT OF THE MAIN PROBLEM

In this section, we establish the main Cauchy problem under study, providing the
details on the elements involved in the problem.

Let k1, ko be positive integer numbers. Let us assume that k1 > ko > 1 and fix
€g > 0. We also consider positive integers d;,d, and a finite set I C N*. We assume
O1k1 = d2ko, and define Ag := k161 + kodo.

We assume that for every £ = ({1, 02,03,¢4) € I, one has ¢5 and ¢4 are positive
integers such that

Oy =Llo(kr+ 1) +diy 0,0, and €3 = Ly(ka + 1) + diy 4504, (2.1)

for some positive integers di, ¢, ¢,, dky 05,0, - Moreover, for every £ = (¢1,02,03,04) € I
we fix an integer number A, such that

Ap >0 —ly+ 03—y + 1. (2.2)
We also assume that
ki <l —lo =105 — L0y < iky, (l1,02,03,04) € 1. (2.3)
Let us fix polynomials Q(X), R(X), R¢(X) € C[X], for £ € I. We assume that
deg @ > deg R > deg(Ry), (L€, (2.4)
and
R(im) #0, Q(im)#0, Ry(im)#0 (2.5)

for every m € R and all £ € I. In addition to this, we assume the existence of an infinite
sector Sg g, centered at the origin such that

{ggm ‘m € R} C So.x. (2.6)
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Remark 2.1. An example of a situation in which the previous assumption holds
is that in which one considers polynomials @@ and R with positive coefficients with
only powers which are divisible by 4, and where Sg r is a sector containing the set of
positive real numbers.

We also fix polynomials P (e, X), Pa(e, X) € Op(D(0, €9))[X]. We assume that
deg R > max{deg(Py), deg(Pz)}. (2.7)
In view of the assumptions made on P; and Ps, there exist C'p,, Cp, > 0 such that
|Pr(e,im)| < Cp, (1+ [m])*#™), | Py(e,im)| < Cpy (14 |m|)*#), (2.8)

for every m € R and € € D(0, ¢g). We also assume that Cp, and Cp, are small enough
(see Proposition 3.9).
We consider the following nonlinear initial value problem

Q(az)u(tla t27 Z, 6)
= €017 10, ) (521101, ) 2 R(D:Julte, 2, 2, €)

+ > Aey(z, )t Ot 0L Ry(9.)ulty, b, 2, €) (2.9)
£=(L1,02,03,04)€]

+ (Pl (67 az)u(tla t2a Z, 6)) (P2(€7 az)u(th t27 Z, 6)) + f(tla t27 Z, 6)7

under vanishing initial data w(0, t2, 2, €) = u(t1,0, 2z, €) = 0.
Remark 2.2. Observe all the previous assumptions made on the parameters in-
volved in the problem are compatible. An example of equation satisfying the previous
assumptions is the following:

(aj + ]‘)u(tlv t27 z, E)

= 612(754%6151 )Q(tgatz)g + 6118(6}1’7)2) (Z, e)t?@tltgafz (—83 + 2)U(t1, tg, Z, 6)

+ (Pi(e, 02 )ulty, ta, z,€)) (Pa(€, 02 )u(ty, ta, 2, €)) + f(t1,t2, 2, €),

with max{deg(P;),deg(P2)} < 2. The functions f and c(,1,7,2) are attained to the
construction described below.

We choose 8 > 0 and fix g > 0 such that

w > max{deg(P1), deg(Ps), Iélg}({deg(Rg)}} +1. (2.10)

Let 0 < 8 < 8 be fixed. We denote Hg: the horizontal strip
Hg ={2€C:|Im(z)| < B'}.

For every £ € I, the function ¢, belongs to Oy(Hg x D(0,¢€p)). The function f turns
out to be a polynomial in its two first variables, and a holomorphic and bounded
function on Hp x D(0,€p) with respect to (z,€). These functions are constructed
as follows.
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Given £ € I, we choose a function R x D(0,€¢) > (m,€) — Cy(m,€) under the
following assumptions.
— For every € € D(0, €p), the function R 3 m + Cy¢(m, €) is continuous on R, and it
satisfies there exists Ky(e) > 0 with |Co(m, €)| < Ky(e) e AIml for m € R.
Moreover, there exists K > 0 such that

1
(A+[m)#

sup sup Ky(e) < K.

Lel eeD(0,¢e0)

— For all m € R, the mapping D(0,¢y) 2 € — Cy(m,e€) is a holomorphic function
on D(0, €p).

In view of the previous assumptions, and the properties of inverse Fourier transform,
one defines
ce(z,€) = Fi (m — Cy(m, e)) (2)

which represents a holomorphic and bounded function on Hg: x D(0, €p).

Remark 2.3. Observe that

sup sup  sup (1 + |m|)*e’I™|Co(m, )| < K. (2.11)
L€l eeD(0,e9) mER -

For the construction of the forcing term, we make use of the following well-known
property of Laplace transform.

Lemma 2.4. Let k,n be positive integers. We also fiz d € R. For every T € C* with
cos((d — arg(T))k) > 0, it holds that

e (_ (;)’“) au=1r (7).

Lg

with Lg being the integration path [0,00) 3 r + re'd. Here, T'(-) stands for Gamma
function.

The forcing term f is constructed as follows. Let N1, No C N be two nonempty
finite subsets of positive integers. For every (n1,n2) € Ny x Na, let

R x D(0,€9) 2 (m, €) > Fy, ny(m,e€)
be a function under the following assumptions.
— For every € € D(0,¢), the function m — F,,, ,,,(m,€) is continuous on R, and

it satisfies there exists K, »,(€) > 0 such that

1 — m
\Fnl,m(m,e” SKm,ng(ﬁ)We Al |, m € R.

— For all m € R, the mapping D(0, €0) 3 € = Fj,, n,(m, €) is a holomorphic function.
Moreover, there exists K > 0 such that

?

sup sup Km no (5) < .
(n1,m2)EN1X N2 €e€D(0,€0)
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Let us define the function ¥ on C2 x R x D(0, ¢) by

7.1711 7'2n2
W(ri,m2,m €) = Z Foy iy (my€) n )
(n1,m2)EN1 X N> T <ITI) T (E)

and consider its inverse Fourier and double Laplace transform, giving rise to the function

f(t1,t2, 2, €)

k1ko ' 72 k2 izm drp dmy
— (= 2y
(2m) (2m)1/2 / / / (71, 72, €) exp( (eh) ety € TS Ty m

—00 Lgy La,
Here, d1,ds € R are arbitrary numbers, and Ly, denotes the integration path [0, oo)eidj,
for j = 1,2. Observe that, due to Cauchy Theorem and the fact that ¥ is a polynomial
in its two first variables, the directions d; and ds can be arbitrarily chosen. In addition
to that, in view of Lemma 2.4, it is straight to check that f determines a bounded
holomorphic function with respect to (z,€) on Hg x D(0, ¢), and a polynomial with
respect to its first two variables. In addition to this,

[ty ta, 2, €)
1 izm ni no
= Z @i Foy ny(m,€)e™dm | (et1)™ (eta)
(nl,nQ)EleNg — 0o

= > Bama(z O (et)™ (e2)",  (t1,t2,2,€) € C7 x Hy x D(0, ).
(nl,nz)ENl X No

Remark 2.5. Observe that

sup sup (1 + [m|)*e®I™|F,, . (m,e)| < K. (2.12)
e€D(0,€0),(n1,n2)ENL X Ny meER

It is straightforward to check that for every € € D(0,¢g) and p1, p2 > 0, one has that
U € B(3,1,p1.p5) (see Definition 5.1 from Subsection 5.1.1). Indeed,

ni—1 ng—1
(1, 20 m, Ol gy S K Y APy <o (213)
(n1,n2)EN1 X N2 r (ﬁ) r (ﬁ)

Observe this quantity can be diminish as desired as long as K is small enough.

3. ANALYTIC SOLUTIONS TO THE MAIN PROBLEM

This section is devoted to the construction of analytic solutions to the main problem
under study (2.9). First, we sketch the strategy to follow, and later we describe the
solution by means of auxiliary problems solved by means of fixed point arguments
involving certain operators defined on appropriate Banach spaces.
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3.1. STRATEGY FOR THE CONSTRUCTION OF
THE ANALYTIC SOLUTIONS TO (2.9)

We consider that the assumptions and constructions associated to the main prob-
lem (2.9), made in Section 2 hold, and we search for solutions of (2.9) in the form of an
inverse Fourier and double Laplace transform, for every fixed value of the perturbation
parameter e. More precisely, we will search for solutions of (2.9) in the form

u(tl,tg, z 6)

Ky ko /// me)e k2 uy \ 2 emduz duy
U, W € X — —_— _—
27T 1/2 b P th 6t2 U2 Uy

—0o0 Ldl Ld2

(3.1)

for some dy,d> € R to be determined, and where Lg; is the integration path [0, o0)edi,
for j =1,2.

We proceed by following several steps in the search of a solucion of (2.9) in the
form (3.1). First, let us search for a function wu(ty,t2, 2, €) showing a monomial behavior
with respect to its first two variables, i.e. assume that wu(t1,te, z,€) = U(etq, €ta, 2, €),
for some function U defined on appropriate domains, to be specified. A direct inspection

of the previous elements yields the next result.

Lemma 3.1. From the formal point of view, u(t1,ta,z,€) solves (2.9) whenever
U(T1, T3, 2, €) provides a formal solution of

Q(az)U(Tb T2a Z, 6)
= (T 100, (T3 0r,) 2 R(0.)U (T4, T, 2, €)

+ Z 6A£*51+52*€3+f40£(2’g)Tflagfszésa%Rg(az)U(ThT27Z,E) (32)
£=(L1,L2,03,04)ET

+ (P1(€, 8Z)U(T1,T2, 2, 6)) (Pg(E,az)U(Tl,TQ, z, 6)) + F(Tl,TQ, 2, 6),

where F(T1, T, z,€) is given by

kilkg k T2 k2 dTQdTl
Y U (11, T2, M, €) €Xp T1 T e’ ;T—ld (3.3)

—00 Lgy La,

As a second step, we rewrite the terms involved in the equation (3.2) by means of
the next result.

Lemma 3.2 ([27, Formula (8.7)]). Let m,k be positive integers. Then, for all
1 <l <m—1, there exists a constant A, ¢ € R such that

m—1
Tm(k+1)a§@ _ (Tk+18T)m + Z Am,eTk(m_Z) (TkH@T)Z.
=1



14 Guoting Chen, Alberto Lastra, and Stéphane Malek

Taking into account the previous Lemma, together with the assumption (2.1) made
on the elements involved in the equation, one can write (3.2) in the form

Q(az)U(Th T27 Z, 6)
- (T1k1+16T1 )61 (T2]€2+18T2)62R(02)U(T17 T3, 2, 6)

+ Z 6A£*f1+52*fs+446[(z’ 6)
£=(1,62,63,04) €T -
lo—1
% Tdk1 22 (Tk:1+1a 12 + Z AEQ k:1(€2 )(lelJrlaTl)h
h=1
Lyi—1 ] -
% T2dk2,£3,£4 (T27€2+18T2)24 + Z Aé47jT2k2(€4_])(T2]€2+18T2)J Rg(az)U(Tl, Ty, 2,¢)
j=1
+ (Pi(e,0,)U(Ty, To, 2, €)) (Pa(e, 0,)U(Ty, To, 2, €)) + F(T1, Ta, 2, €),
(3.4)
for Ag, p, Ag, j for 1 <h</f;—1and 1< j</{4— 1 determined in Lemma 3.2.

Our strategy of finding solutions of (2.9) in the form (3.1) lead us to search for
solutions of (3.4) in the form

U(Ty,T5, 2, €)
= k1k2 /// Uy, u2, MM, )e 1— E " e @%d
27T 1/2 b2 € exp Tl T2 Ug U
—()()Ld1 Ld2

(3.5)

defined on certain domains to be clarified.
The following result describes the action of some operators on an expression of the
form (3.5).

Lemma 3.3. Assume the expression of U(T1,Ts, z,€) is formally defined by (3.5).
The following statements hold:

(i) For j = 1,2, the expression TkﬁlaT,.U(Tl,TQ,z,e) equals

Fikz ///ku w(uy,uz, m,€)e ( ( )kl (%yg)e @%dm
(2m)1/2 b2 1 € EXP Ty T uz U1

—00 Ldl Ld2
(ii) For every positive integer my, the expression T 'U(T1,Ts, z,€) equals
1

kle k ! e dsy
1/2 / / / m1 /( 11 _81) M w(sllaUQ,m,e)?l

—00 Ly, La, 0

xXexp | — ﬂ kl_ @ - 6 dUQ dU1dm
T1 TQ U2 U7 ’
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(iii) For every positive integer ma, the expression Ty 2U(T1, T, z,€) equals

k1ko
271' (9)1/2
— 00 Ldl Ld2
cosp [~ (1) - (1)) i dusy,
P T T Uz Uy ’
(iv) The expression (Pi(e, 0,)U(Th, Tz, 2,€)) (Pa(e, 0,)U(Th, T2, 2, €)) equals

it T [ [ oo ] ] e ] -

—00 Lg, La,

2
1 d
u@zf@>é‘1@uw2’me>§2
2

<o (0t = 52) 5 (0l — 5252 m — )

. ks 1/ks
X Py(e,imy)w (81 , S5 ,ml,e)

1 1 1 1
X — % —dmldSstl
— 51) 51 (uy? — s2) 52

Y e U1 k1 u k2 6 dU2 duld
X _ (2L _ 2= ekttt
P T Ty uz U

Proof. The expressions (i) is a direct consequence of the derivation under the integral
symbol. (ii) and (iii) are derived from Fubini theorem. The formula (iv) is derived
from Fubini’s theorem and an application of the identities in Lemma 1 of [12]. O

For the sake of clarity, we simplify the expressions involving a convolution product,
as in (iv) above, as follows. We write

1 oo
fxglm):= W / h(m —mq)g(mi)dmy, meR.

The actions of the operators described in Lemma 3.3 and the expression of the
auxiliary equation (3.4) allow us to reduce the problem of finding U (T}, T, z, €) to that
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of searching a function w(ry, 72, m, €), defined in appropriate domains, which solves
the following convolution equation in the Borel-Fourier plane:

Q(im)w (71, T2, M, €)
= (k1) (komo2)02 R(im)w (71, 72, M, €)

= Z Attt Cy(m, €)% [Ar (11, T2, m, €) + A (T1, T2, m, €)
0=(01,62,03,04)ET

k1 k2
Ti T2

ki _k
—|—A3(7'1,7'2,m,€)+A4(7'1,T2,m6 117'22//P1 €,im)

xw (e = s0)1/0 (72 = s2) /%2, m, ) = <P2<e,z'm>w<s}/’“,s§/’“2, m,e))

1 1 1 1
X = R % deQdSl +\Il(7'1’7'2,m,6)7
(1t = s1) S1 (157 — 82) S2

(3.6)

where the expressions A; for 1 < j < 4 are determined by

k1 kg
T P
kg 0,09 iy b3,04
P (B ) T (22

_,_

d kg 23, 3.7

» / / B 51 k1k’-’11 13- (TQkQ B 52) k2k523 fa _q ( )
0

A (11,72, m1,€) =

¢ ¢ . 1/ky  1/k dss dsy
X (k151)"2 (kos2) 4R£(zm1)w(sl/ by P my, e)— —,
S2 851
kl k'2
T T.
_ 1 2
A2(7-177'27m17€) - Z AZ27 i (b2—h)+diq,eq,0 r diog, 05,04
1<h<ty—1 k1 ko

ki(la—h)+dy, 0,09 Ao, l3,04
-1, _k = ]
/ / —s)” @ (ry* =s2)” 1 (38)

x (k1s1)"(k2s2)" Ry(imy)

ks 1/k dsy dsy
Xw(sl/ 1752/ 2omy,e)— —,
S22 S1
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Tkl k2
As (71, T2, m1,€) = E A 1 T2
3( 15725 7550 ) £4’qr diy 1,00 T ko(La—q)+diy 05,04
1<q<ts—1 i s
T k2

/ / klkell 0o _1( 2]€2 B 82) 1«2(@4—q):2dk2,23,24 1 (3'9)

x (k151)%2 (kas2) R (im,)

ki 1/ko dssz dsy

xw(sy ™, s’ my, €) — —,

S22 S1

Ay(T1, 12, m1,€)
kl k2
= E Agy n Ay at !
2, 4,q1_‘ ki(€2—h)+dp, e; .00 T k2 (La—q)+diy 05,04

1<h<b-11<q<ti—1 i s

k1 k2
T To

k1(ﬁ2 Billa=mtdiy o0y ka4 by gy 0y (3.10)
_ k 2 __ k
51) 1 Hrp? = 52) 2

X (klsl) (k252)

dss d
X Rg(iml)w(si/kl7sé/k2, my, e)ﬂi

52 81.

3.2. SOLUTION TO AN AUXILIARY PROBLEM. I

In this section, we preserve the assumptions made considering the main problem (2.9),
in Section 2. We seek for a solution to the auxiliary problem (3.6) belonging to certain
Banach spaces of functions, described in Section 5.1.1. This goal is attained by means
of the estimation obtained in the next result.

For every m € R, we consider the polynomial

P (11, 72) = Q(im) — R(im) (k1 7)0 (kary2)%2. (3.11)
Lemma 3.4. There exist p1,p2 > 0 and Cy; > 0 such that
| P (11, 72)| > C1|R(im)|, (71, 72,m) € D(0,p1) x D(0, p2) x R.

Proof. In view of the assumptions made in (2.4) and (2.5) on the polynomials Q, R,
we arrive at the existence of rg r > 0 such that

Q

TQ,R» m € R.

Let us choose small enough p1,pa > 0 such that (kipf")% (keph?)% < L This
entails that

— (k7)™ (kprh=)®| > L

, meéeR.
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For all m € R and for all 7; € D(0, p;), 7 = 1,2, let us write

Pm(Tl7T2) = R(lm) R(zm) - (lelk )51 (k27_2kz)52 ’ (312>
which allow us to conclude the result for C7 = TQQ’R. O

Proposition 3.5. Let p1,p2 be prescribed as in Lemma 3.4. For every w > 0
there exists sp1 > 0 such that if Co < <pa1, (see (2.13) for the wvalue of Cy)
then the problem (3.6) admits a unique solution w,, ,,(T1,T2,m,€), continuous on R
with respect to its third variable, and holomorphic with respect to (11,72,€) on
D(0, p1) x D(0, p2) x D(0,€), such that

1 —B|lm
|wp1, p2(T1, T2, M, €)] Swme Alml |7y 1) (3.13)

for every (r1,72,m, ) € D(0, p1) x D(0, p3) x B x D(0, eo).

Proof. Let € € D(0,¢) and consider the Banach space Bz, ,, p,) studied in Sec-
tion 5.1.1. We fix w > 0.

Let us denote by B(0,w@) C B(g,u,p1,ps) the set of elements in Bg .y, p,) Whose
norm is upper bounded by w. We consider the operator

HG(W(Tla T2, m))
1
P (11,72)

Z €A£*Z1+627€3+£4C£(m, €) * [-A1(7'1,7'2,m, €) + Ay (11,72, m, €)
£=(L1,l2,03,04)ET

k1 k2
T1i Ta

—I—Ag(Tl,Tg,m,e)—I—.A4(7'1,7'2,m,e)]—|—Tf17'2k2//(Pl(aim)
0 0

o (e =)' 0 (7 = ) R m ) x (Pafeim)a(s)/" 53/, m)

1 1 1 1
X s );1 s )gdSstl + U(7y, 12, m, e)] ,
1 — °1 9 T 92

where P, is defined in (3.11), and A; for 1 < j < 4 are defined
in (3.7)—(3.10), where the term w(si/kl,sé/kz,ml,e) needs to be replaced by
1kt 1/ks
w(sy™ 8y
such that

,m1). Regarding the assumptions made in (2.5), there exists Cr > 0

[R(im)| > Cr(1+ |m|)* ", meR.



Parametric formal Gevrey asymptotic expansions. . . 19

Let w(7i, 79, m) € B(0,w). From the assumptions made in (2.7) and (2.10) together
with (2.2), one can apply Lemma 3.4, Proposition 5.2, Proposition 5.3, Proposition 5.4,
together with (2.11), one has that

K

1 Z Ag—ly1 4o —Ll3+0y 1
oL

0 912
ClCR £=(£1,L2,L3,04)ET (271—) /

[He(w(ry, 72, m) )<

||(ﬁ7M7P1,P2

- ~ 1
><C’1[¢1+€2+¢3+@4]W+02Ww2+0\p

with K > 0 being the constant involved in (2.11), C, and C, the positive constants
appearing in Proposition 5.3 and Proposition 5.4, respectively, and with C'y in (2.13),
together with

1

23R4
¢ = 7 7 k1P kst
T k1,01,¢2 T ko,£3,64
k1 ko
&= S Al ! bl
2,1 T ki(La—h)+dky ey 0o T diy 05,04 1725
1<h<tly—1 k1 ko
R 1 KLk
3 44 T diq 09,60 r ko (La—q)+dig 05,04 172
1<q<ts—1 i s
Q= Y Analldel ! Kok
2 4,qr k1(L2—h)4diy eq 05 T ko (ba—q)+diy 05,04 1iv2-
1<h<fs—11<q<ls-1 k1 o

It is worth remarking that the previous constants are linked to the conditions imposed
on the parameters involved in the problem, (2.3) and (2.1).
Let us choose ¢p1 > 0, p1, p2 and €y > 0 small enough such that

1 Ap—bi+b—ts+0, K =
ol X et Tyt et G
1 R g:(él,lz,lg,&;)ef T (314)
2y ) < &
+ 2(271')1/2w) S5

and ﬁCF@ < %w. Recall that ég can be taken close to 0 provided that py, p2 are
reduced, in view of Proposition 5.4.
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The previous inequality entails that H.(w(7(, 72, m)) € B(0, ). On the other hand,

given wy,ws € B(0,w) C B(,1,p1,p5)» it holds that

He(wl(T177—27m)) - HE(WQ(T17T27m))
— # [ Z €A£—€1+€2—€3+54C£(m’ 6) * {A’{(Tl, T2, m)

P, (1,
m (71, 72) £=(t1,02,65,L4)E]
i k2
* * * ki __k
+ A5 (71, 12, m) + A5(11, T2, m) + A} (11, T2, M 117'22//

{(Palesimen (e = s0)/™, (747 = 52) /% m)) « (Pa(e, z‘m)m(s}/ s m)
— (Paleyimwa((rf = s0)%, (157 = 52) /52 m)) s (Pl im)n(sy™ 53/, m)) }

1 1 1 1
T *d82d81 5
— 51517y — 59 52

k1
T

with

A (71, 72,m1)

k1 k2
’I'k1 ’7']c2 o Ay ,0y,6 dko,b3,04 1
= 70 ™ / /(T{ﬁ —s)" (T —sg)T
T ( klvelveQ) T ( kzvfsym)
kl k2 0 0
; ks 1/k ks 1/k dsy dsy
X (kys1)" (kas2)" Ry(ima) (w1 (57", 55/ ma) — wa(sy™ 5/ 27m1))§;a
(3.15)
Ag(TlaTQ)ml)
7_1’61 2192
= A
1<};2 . b2:h (h(fz h)ktdk1,€1,€2> 1—\<dk2],:23,€4)
k1(142 h)t+dg, g6 Ao 03,0
/ / Ces) T )T T T ()" (ko) Ro(imn)
k k ki 1/k dss dsq
x (@i (sy/" sy ) — (1 sy mo ) =2 =

So  S1 ’
(3.16)
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A§(7—17 T2, ml)
k1 7_2762

R S
4’qF (dkl,zl,eQ) T (k2(54*Q)+dk2,e3,z4>

1<q<ts—1 1 %o

k1 k2
T T2

iy ,0q,0 ko(La—a)+dy, 050
/ / _51 lkll 2 - (72]“2 _52) ko e 471(k151)z2(k252)qR§(im1)
1/k1 1/k 1/k1 1/k dss ds
% w1y ma) — (™ s ma)) 2 T

(3.17)

AZ(Tl,TZﬂTLl)
=Y A a
= L2,h 547‘11_‘ (k1(£2_h)+dk1121=22) T (k2(24—q)+dk2,z3,e4)

1<h<ls1,1<q< 01 o %o

d k1 (Lo—h ko (£
/ / k.01, /il 1(£2—h) 1(7-]“2_3 ) 2 (L4~ LIT;JQ Ly.a g (3.18)
2 2

X (klsl) (k2s2)?Ry(ima)

1//{}1 1/k2 l/kll 1/]{)2

dso ds
X (wi(sy"™, 85", my) —wa(s) Jmy))— —+

Sy 81

Finally, we check that the expression

Pl(e,i(m—ml))wl((ﬁkl—51)1/1“,(752—52)1/k2 m— ml)Pg(e zml)wl(sl/ ! l/kQ,ml)

—Pl(e,i(m—ml))wg((Tfl—sl)l/kl,(7'2’“2—52)1/’“2 m— ml)Pg(e zml)wg(sl/ ! ;/kz,ml)

equals

Pi(e,i(m —mq)) (wl((rlkl — 31)1/’“17 (7'2]@2 - 82)1/k2,m — ml)

— OJQ((lel — 81)1/’“7 (7'2162 — 32)1/k2, m — ml))

. k k
X PQ(E,ZWLl)Wl(S}/ 1?5§/ 27m1)

+ Pi(e,i(m — ma))wa ({7 — s1)YF (157 — s52)M*2 m —my)

x Py(e,imy)(wi (517, 55/ my) — wa(s1/", 55" my)).
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An analogous reasoning as before and (3.14) allow us to arrive at

”7'[6(0‘}1 (T17 T2, m)) - HE(WQ(TM T2, m))”(ﬁ#,m,m)

1 N N
< Z 605 et [€1+€2—|—€3+€4]
CiOr |, 2 >
L=(l1,l2,03,04)ET
X lwl(r1, 72, m) = wa (71, 72, M) (8.41,01.2)
1
+C2 (27_‘_)1/2”(«01(7—177—2;/”7/)_w2(7_1;7_2, )H(ﬁuphpz)HW].(Tl,TQ’ )||(67H7l)1792)

.1
+ CQW” W2(71, T2, M) (8,11,01.2) | W1 (715 T2, M) = wa (71, T2y M) |8, 41,01.,2)

(2m
1 Ag—ty+l—lotty 1 .
< Y. KCy[€1 + € + € + €]
1/2
CiCr £=(L1,02,03,04)E] (27T)
1
T2 i (2 )1/2 @ | || w71, 72, m) = Wa (71, 725 )| (8.11,p1.2)

1
§|| wWl(71, 72, m) — wWa (71, To, M) (8,4, p1.p0) -

The classical contractive mapping theorem can be applied on
H.: B(0,w) — B(0,w),

to arrive at the existence of a unique fixed point, say we(71, 72, m). This construction
depends holomorphically on € € D(0, ¢p). As a conclusion, one arrives at the existence
of a function

(T1, T2, M, €) = Wy, p, (T1, T2, M, €) = We(T1, T2, M),

which is, by construction, a solution of (3.6), and satisfies the estimates (3.13). O

3.3. SOLUTION TO AN AUXILIARY PROBLEM. II

In this section, we still preserve the assumptions made regarding the main problem
(2.9), in Section 2 and search for solutions to the auxiliary problem (3.6) in the Banach
space of Section 5.1.2.

We start by providing alternative lower bounds on P, to those attained
in Lemma 3.4.

Lemma 3.6. There exist di,ds € R and Cy > 0 such that
| P (71, 72)| = Ca|R(im)|(1 + [k |* ka2 [%2),

for every (11, 72,m) € Sq, X Sa, X R. Here, P,, is the polynomial defined by (3.11),
and Sq;, for j = 1,2 stands for some infinite sector centered at the origin, and bisecting
direction d;.
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Proof. We recall from the proof of Lemma 3.4, together with assumption (2.6) the
existence of rg g > 0 such that

V= {gg:ﬁ; m e ]R} C So.r \ D(0,70.1). (3.19)

Let di,d2 € R be chosen such that dy o = d1kid; + d2kade & arg(V), where
arg(V) = {arg(z) : z € V}. We define Sy, (resp. Sg,) an infinite sector with small
opening, centered at the origin, and bisecting direction d; (resp. dz2). The infinite sector
Sa, , is defined accordingly. This entails in particular that (k171)% (kam5?)% ¢ V for
(11, 72) € Sq4, X S4, when the opening of Sy, , S4, are close enough to 0. More precisely,
for every § € Sy, , one guarantees the existence of a positive constant Cy > 0 with

’gm _ ,5‘ > Cy(1+ €.

In particular, one has that

m
B () )| 2 a1+ a2 o),
The result follows from the decomposition (3.12). O

The definition of ¥, together with Lemma 3.6 and (2.5) yields the following result.

Proposition 3.7. Let vy,v5 > 0 and choose dy,ds € R as in Lemma 3.6. Then, there
exists Dy > 0 such that

\I](Th T2, M, 6)
Pm(TlaTQ)

X exp (—1/1|71|k1 - V2|Tz|k2) < Dy,

gpmy L 71 P01 14 [ra "

|71] |72

sup (1 + [m)"e

(Tl,Tz,m)ESdl XSd2 xR

valid for all e € D(0,¢€p).

Remark 3.8. In terms of the Banach space described in Section 5.1.2, the previous
result can be read as follows: there exists Dy > 0 such that for all € € D(0, €g), the

W(T1,72,m,€)

Py (71,72) and

function belongs to E

Bopv1,v2,5ay 5,4, )

< Dy.

sup
e€D(0,e0)

‘\11(7_177—27’”7‘76)

P, (11,72)

’(@Ihul,vz,sdl,sdz)

The constant Dy tends to 0 when K approaches to 0.

Proposition 3.9. For every w > 0 there exists sp2 > 0 such that if Dy < g2, pro-
vided that the constants Cp,,Cp, appearing in (2.8) are small enough, then the problem
(3.6) admits a unique solution ws, s,, (71,72, m,¢€), continuous on R with respect to
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its third variable, and holomorphic with respect to (11,7T2,€) on Sq, X Sa, X D(0, €),
such that
‘ C«)Sdl ) Sd2 (7—1; T2, M, €)|
L —gim__I7il [72]
1-|—|m|)ﬂ 1+|T1‘2k1 1—|—|T2

(3.20)

= 2k P (i Iml™ + v maf).

for every (11,72, m,€) € Sg; X Sg, X R x D(0, ).

Proof. The proof of Proposition 3.9 follows the same line of arguments and similar
notations as the one of Proposition 3.5 owing to the conditions (2.3). Indeed, an in-
equality for |[He(w(Te, 72, M) (5 .01 1, SuySay) 19 reached similar to the one obtained,

where C'y is replaced by Dy, and the constant C is replaced by C2, together with K C,
and Cy appearing in Proposition 5.8 and Proposition 5.9. Furthermore, similar inequal-
ities to (3.14) and for the difference ||H(w1) — Hﬁ(w2)”(6,u,u1,uz,sdl,SdQ) are achieved,
provided that ey > 0 is taken close to 0 (bearing in mind the condition (2.2)) and that
Cp,,Cp, > 0 are small enough, according to the remark after Proposition 5.8. O

3.4. SOLUTION TO AN AUXILIARY PROBLEM,
ITI. ANALYTIC CONTINUATION

We maintain the assumptions made on the elements involved in the main equa-
tion (2.9), now searching for solutions in a third Banach space, and exploring its
analytic continuation by means of the results obtained so far.

Taking into account the lower estimates obtained in Lemma 3.4, and an analogous
line of arguments as those followed in Proposition 3.5, we arrive at the following result.

Proposition 3.10. For every w > 0 there exists sp3 > 0 such that if Cy < Sp3,
then the auziliary problem (3.6) admits a unique solution wy, p, s, .54, (T1, T2, M, €),
continuous on R with respect to its third variable, and holomorphic with respect to
(11, 72,€) on (Sq, N D(0,p1)) % (Sa, N D(0, p2)) x D(0,¢€p), such that

1
= —BIm]
|wp17/)2754175d2 (11, 72,m, €)] < w(1+ |m|)ue IT172|, (3.21)

for every (11,72, m,€) € (Sq, N D(0,p1)) X (Sa, N D(0,p2)) x R x D(0,€p).

The next result proves that the solutions of (3.6) obtained in Proposition 3.5
and Proposition 3.9 are related by analytic continuation, by means of the solution
constructed in Proposition 3.10.

Proposition 3.11. Let w > 0. There exists s > 0 such that if Cy < s and Dy < ¢p,
then the following statements hold:

(i) for every fixed 71 € Sq, N D(0,p1), m € R and ¢ € D(0,¢), the map
Ty P Ws,, 84, (T1, T2, M, €) defined on Sa, (see Proposition 3.9) has an analytic
continuation on D(0, p2), which is To — wp, p, (T1, T2, M, €),
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(i) for every fixed 72 € Sg, N D(0,p2), m € R and € € D(0,e), the map
Ti > Ws, 8, (T1, T2, m, €) defined on Sa, (see Proposition 3.9) has an analytic
continuation on D(0, p1), which is Ty = wp, p,(T1, T2, M, €).

Proof. We fix

= max 1 T ! o exp(11 ‘7'1|k1 + v |7'2|k2)-
(m1,72)€D(0,p1)xD(0,p2) 1 + |T1| 1+ |7'2| !

We observe that A > 0. Let (71,72, m,€) = ws, s, (T1,72,m,€) be the function
obtained in Proposition 3.9, which solves (3.6) and such that (3.20) holds for some given
w, if Dy < pa. Then, for (11,72, m, €) € (Sq,ND(0, p1))x(Sa,ND(0, p2))xRxD(0, €o),
one has that

| WS, .5u, (T1, T2, M, €)]

<w 1 o—Blm| |71 - |72
(1 + |m])m L+ |m™™ 1+ |
1

< wA—"—e PI™l 7] |7 .
SEA e Ml

k k
|2k2 exp (1/1 |71 + vo | 7o 2)

This entails that for all e € D(0, €p), the function
(Sa, N D(0, p1)) x (Sa, N D(0, p2)) x R D (11,72, m) = W, ,5,, (T1, T2, m, €)

is the fixed point of the operator H, when defined on the closed ball B(0, Aw) of
the Banach space F6.1.p1.02.54,,54,) of Section 5.1.3. From unicity of the fixed point
for H. in such ball obtained in Proposition 3.10, wp, p,,s,,,54,, We conclude that

WSq,,Sa, (7—17 T2, MM, 6) = Wp1,p2,54, 54, (7'1, T2, M, 6)

for every (71,72, m) € (Sq, N D(0, p1)) X (Sa, N D(0, p2)) x R. An analogous reasoning
leads us to

Wpo1,p2 (7—17 T2, M, 6) = Wpy,p2,54,,5a, (Tlv T2, M, 6)’

for every (71, 12, m) € (Sq, ND(0, p1)) X (Sa, ND(0, p2)) xR, with w,, ,, being the fixed
point of H,, defined on the ball B(0, Ag) of the Banach space B(,1,p1,ps)> Obtained
in Proposition 3.5.

The result follows from the variation of € € D(0, €o). O

At this point, we can state the main result of the present section, summarizing all
the previous results.

Theorem 3.12. Under the assumptions of Section 2, we consider the Cauchy
problem (2.9). Let p1,p2 > 0 determined in Section 3.2, and dy,ds € R chosen
in Section 3.3. Let £ C D(0,¢y) and Ty, T2 C D(0,77) for some small enough r7 > 0
be three bounded sectors with vertex at the origin, chosen in such a way that:

(i) there exists Ay > 0 with cos(k1(dy — arg(etq))) > Ay, for alle € € and t; € Ty,
(ii) there exists Ay > 0 with cos(ka(dy — arg(eta))) > Aq, for all e € £ and t5 € Ts.
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Then, provided that ey, the quantity K from (2.12), together with the constants
Cp,,Cp, > 0 from (2.8) are taken small enough, and for every 0 < 8 < [, the
problem (2.9), under null initial data u(0,t2,2z,€) = u(t1,0,2,¢) = 0, admits an
analytic solution ug, 4,(t1,t2,2,€) € Op(Ty X Ta X Hgr X E).

Proof. Let ws, s, (71,72, m, €) be the solution of the auxiliary equation (3.6), obtained
in Proposition 3.9. Regarding (3.20), the choice of dy, ds at the statement of the result
guarantees that the function

kiko
Udy ,dy (t1;t27z € 27T 1/2 Wsdl,sd2 Ui, Uz, M, 6)
700 Lay Lay (3.22)

( (u1 )kl (UQ >k2> dUQ du1
xexp|—|(— - —= e*m—=——=dm

th Etg U2 U7
is well-defined, holomorphic and bounded on 7; X 72 x Hg x &, provided that

r7,6g > 0 are small enough, and 0 < S’ < 3. Indeed, observe that for all
(t1,t2,2,€) € T1 X Ta x Hg: x €, one has that

k1ka Ji 1 —|m|(8—Im(z)|)
Iudl,dg(t17t27’z7€)| SZE(Q,].(.)1/2 / (1+‘m‘)#e dm

2 o0
ko A )
exp (1 — 2V ar, |
<11 /Hr- ( i ey )

j=1

for some w > 0, after the parametrization u; = r;e'd for r; € [0,00) and j = 1,2.
Assuming that egry < (Aj/uj)l/kf, for j = 1,2, the previous integrals converge. [

4. PARAMETRIC GEVREY SERIES EXPANSION

In this section, we provide an asymptotic representation of the analytic solution,
obtained in the previous section. We maintain the assumptions made on the elements
in the construction of the main problem (2.9), stated in Section 2.

We split the integral representation of the solution to problem (2.9) obtained in
Theorem 3.12 as the sum

Ud17d2 (tl,tg, zZ, E) = Jl(tl,tg, zZ, 6) —+ Jg(tl,tg,z, 6) —+ Jg(tl,tg, Z, 6), (41)
with
Jl(tl,tg,z 6)

k1ko ;
= (2r 1/2/ / / WSy, ,Sa, (W15 u2, M, €)G (U1, us, 1, b2, €)™

—o0 Ld1 7/’1/2 Ld27p2/2

@duld

Uz U1
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Jo(t1,t2, 2, €)
k1ko dus duq
= 271' 1/2 / / / del Sd2 u17u27m G)G(ulauﬁatlatQa ) lzma Uy dm

=00 Lay,p1/2 Lay,p2/2,00

JS(t17t27 2, 6)
oo

k‘1]€2 izm d’LLQ d’LL1
:(2’7T)1/2/ / /del,SdQ(uhuQamvE)G(ulau27t1at27€)e Euild

=0 Ly, ,p1/2,00 La,

for
N s ko
G(u1,ug,t1,t2,€) =exp | — <1> - <) )
Etl 6t2
and where
Lay pjo = [07 %}eﬁdl’ Lay.paj2 = [0 ?} V=Tdz (4.2)
Ld1,91/2,oo = [%700)6\/—71%7 Ld2,p2/2,oo = [% OO) \/7d2 (4'3)

Our objective is to study the asymptotic Gevrey related to each piece in the
previous decomposition.

4.1. GEVREY EXPANSIONS FOR J;
Let us recall the notion of a good covering, which will be essential in our reasoning.

Definition 4.1. Let ¢ > 2 be an integer. Let £ = (&p)o<p<c—1 be a set of bounded
sectors with vertex at the origin, £, C D(0, €), for 0 < p < ¢—1 such that £,NEp 1 # 0
for 0 < p < ¢ —1 (with the notation & := &), which are three by three disjoint,
ie. &, NERNE,, = 0 for all 0 < p1,pa,p3 < ¢ — 1, with p1 # p2 # ps3 and
p1 # ps3. In addition to this, there exists a neighborhood of the origin ¢/ such that
U\{0} = U, —o&p- In this situation, we say the family £ determines a good covering in C*.

Let us depart from given bounded open sectors 71, 72, € with vertex at the origin,
and p1,p2 > 0 and di,ds € R, under the hypotheses of Theorem 3.12. We choose
a good covering € = (&, )o<p<c—1 such that & := £. In addition to this, we choose the
real numbers Dp,bp, for 0 < p < ¢ —1 with g := dy, 99 = da, in such a way that
the following conditions hold:

(i) for all 0 < p < ¢ — 1 there exists V,, > 0 with cos(k1(d, — arg(et1))) > V,,
foreec &, t1 € Th, ~ y
(ii) for all 0 < p < ¢ — 1 there exists V,, > 0 with cos(k2(d, — arg(et2))) > V,,

for e € &, ta € Ta.

Observe that one can choose Vo = A; and Vg = Ay, where Aq, A, are the constants
in Theorem 3.12.
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For every 0 < p < ¢ — 1, we construct the function

Jl p(t17t2az €

= o / / / Wy, po (U1, U2, m, €)G (U1, u2,t1,t2,€)e wm@duld

(2m) (2m)1/2 U UL
—00 Lay,,p1/2 Ly, ,p2/2

(4.4)

with Ly, /2 = [0, p1/2]e™r, L3, pay2 =0, p2/2]e?® , which turns out to be an analytic
and bounded function on 71 X T x Hg: x &, for every 0 < 8’ < .

Observe that Jyo(t1,t2,2,€) = Ji(t1,t2,2,¢) for all e € € = &, t1 € T,
to € ’Tg, z € HB"

The next Proposition provides bounds for the differences of consecutive maps Ji .
The proof of the next result is analogous to that of Theorem 1, [15], so we omit it.

Proposition 4.2. Under the previous assumptions, the following statements hold for
every 0 <p<¢—1:

Case 1. 0y = 0p41, and 5p =+ 6p+1. There exist Cp1,Cp2 > 0 such that

C
|J17p+1(t1;t27za6) - Jl,p(t17t27zae)| S Cp,l exp ( | |ij> )

for all (t1,ta, z, e) €Ti xTax Hg X (ENEpt1).
Case 2. 0, # 0py1, and d, = 0p11. There exist Cp3,Cp 4 > 0 such that

C
| J1pt1(t1s ta, 2,€) = Jip(ta, b2, 2, €)] < Cpzexp ( |€T]:11> ;

fOT all (tl,tg,z,g) €T x Tz X Hﬁ/ X (5p05p+1).
Case 3. 0, # 0py1, and 0, # 0pt1. There exist Cp 5, Cp e > 0 such that

C
| J1pt1(t1s ta, 2,€) = Jip(ta, b2, 2, €)] < Cp 5 exp (— |ef’£> ;

for all (thtg,z,e) €T x Ta X Hg x (gpﬂgp+1).

At this point, we can apply Theorem (RS). The classical Ramis—Sibuya Theorem
can be found in detail in [8, Theorem XI-2-3] whereas the proof of the following
generalization can be found in detail in [11, Theorem XI-2-3, pp. 63-65].

Theorem 4.3 (RS). Let 0 < ky < k1. We also fiz a complex Banach space (E, ||-[|g),
and a good covering in C*, (£,)o<p<c—1, for some integer ¢ > 2 (see Definition 4.1
in Section 4). Given 0 < p < ¢ — 1, we assume G, € Oy(Ey,E), and define
Ap(e) = Gpri(e) — Gple), for e € &, N Epyr, with the convention that & = & and
G. := Gq. Assume moreover the existence of Iy, Iy C {0,...,¢c—1}, such that Iy, Iy # 0,
and I1 U Iy = {0,...,¢ — 1}, with I N Iz = 0, satisfying the following properties:
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(i) for every p € Ir, there exists K, M, > 0 such that ||Ap(€)|z < Kpexp <_ \%@i)
foree ENEpta,

(ii) for every p € I, there exists Ky, M, > 0 such that [|Ap(e)| < Kpexp (_\fl%)
foree E,NEp.

Then, there exist a(e) € E{e}, two formal power series G',G* € E[[¢]], and for all
0 <p<c¢—1 two functions G}D, Gf, € Op(&p, E) such that:

(1) for all0 <p <g—1, the function G, admits the decomposition
Gp(e) = ap(e) + Gzl,(e) + Gf,(e), ec &y,

(2) for j =1,2, and all 0 < p < ¢ — 1, the function GJ, admits G7 as its Gevrey
asymptotic expansion of order 1/k; on &,.

For 0 < B’ < (3, we write E for the Banach space of bounded holomorphic
functions defined on 71 x T2 x Hg equipped with the norm of the supremum,
ie E:= Ob(,]-l X 7-2 X Hﬁ’)

Proposition 4.4. Under the previous assumptions, for every 0 < p < ¢ —1, the
solution (4.4) of (2.9) admits a splitting of the form

Jl,p(t17t27 276) = a(t17t27 Z,E) + Jl,l,p(tht%za 6) + J1,2,p(tlat23 Z, E)a

where a(t1,t2, z,€) € E{e}, and J1 jp € Op(T1 X To x Hgr x &), for all0 <p<¢—1
and j = 1,2. Moreover, there exist two formal power series in € with coefficients in E,
say Jy j € E[€]], for j = 1,2 which satisfy that Jy j,, admits J, ; as its common Gevrey
asymptotic expansion of order 1/k; with respect to € on &, for all0 < p < ¢—1.

Proof. Let us split the set {0,...,¢ — 1} into the set I; of indices such that Case 1 or
Case 3 of Proposition 4.2 hold, and Iy = {0,...,¢ — 1} \ I (i.e. the set of indices for
which Case 2 of Proposition 4.2 holds). Multilevel Ramis—-Sibuya Theorem (RS) can
be applied to the functions G, : £, = Op(T1 x T2 X Hp/) defined by

Gple) := J1p(t1,t2,2,€), €€ &p,

for 0 < p < ¢ —1, and where E stands for the Banach space of holomorphic and
bounded functions defined on 7; x T3 x Hg: equipped with the norm of the supremum,
for some fixed 0 < 8/ < 8. This is a consequence of the different exponential decays in
the perturbation parameter, uniform on the rest of variables, showed in Proposition 4.2.

O

The particularization of the previous result to the first index in the good covering
allows us to conclude.

Corollary 4.5. In the situation of Proposition 4.4, the analytic map Jy(t1,t2, 2, €),
defined in (4.1), defined in Ty x Ta X Hg x € admits a splitting of the form

Ji(t1,ta, 2,€) = a(ti, ta, z,€) + Ji1,0(t1, t2, z,€) + J12,0(t1, t2, 2, €),
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where a(t1,t2,2,€) € E{e}, and J1 ;0 € Op(T1 X T2 x Hg x &) for j =1,2. Moreover,
the formal power series J1 ; € E[[¢]], for j = 1,2 satisfy that J1 ;0 admits J1 ; as its
common Geuvrey asymptotic expansion of order 1/k; with respect to € on £.

4.2. GEVREY BOUNDS FOR J; AND J;
We recall the next lemma from [19], which will be crucial in the next two propositions.

Lemma 4.6 ([19, Lemma 14.1]). Let k' > 1 be an integer number, and let M > 0
a real number. There exists Cxs > 0 only depending on k' such that the next inequality

Ny M N (N\'Y2 (N
(7) oo () <aval () (%)

holds for all integer N > 1 and any real number r > 0, and where Ay = (1/M)Y¥
The next result provides bounds for .Js.

Proposition 4.7. There exist Cy,, Ky, > 0 such that

N\ (N
|J2(t1,t2,2,6)|§CJ2K§\£ - i — |6|N, (45)
ko ko

for all positive integer N, allt; € T, to € To, 2 € Hg and e € €.

Proof. In view of the estimates for wg, s, determined in (3.20) we deduce that

kike [T e
|Ja(ty, te, 2, €)| < (2;)12/2 /(1+\m\) re= Al mldm | ws, s,
p1/2 ks
k T
X /exp <V1T11>6Xp <_|eti|klA1> dry (4.6)
0
[e’e) ks
k T2
X 2 ——=—Ay | d
/2exp <V2r2 )exp( |et2|’“2 2) T2,
P2

where A, Ay > 0 are the constants in Theorem 3.12, for all t; € Ty, to € Ta, 2 € Hp
and € € £.
Observe that

p1/2
k1 &
r 1
/ exp <V1T]f1) exp <_|eti|k1 A1> dry < exp (Vl (%) > . (4.7)

0
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In addition, one has that

[es) rk2
/exp <V2r§2)exp —@Ag dro

p2/2

o0 k‘2 k2
r r
= / exp (1/27“52) exp <—2;2,QA2> €xp <_2|et22|k2A2> drs (4.8)

p2/2
(p2/2)" [ ‘
< exp —7kA2 /eXp (y2r22) exp —ﬂAg dro s
2le|k2r? g 2¢5° 17
2 /2

the last integral appearing above being convergent provided that r7, > 0 is chosen to
be small enough. We apply Lemma 4.6 to conclude that

(p2/2)" N (NN NN N
Ay | <C} A — I — 4.9
eXP( 2e[k2rh2 1) =R ko el (4.9)

for all positive integer N > 1, € € &£, where C}, is a constant depending on ko, and

ok 5
Ak-2 == 7’7’2]‘: .
Az (p2/2)*=

The estimates (4.5) are deduced from the inequalities (4.6), (4.7), (4.8), and (4.9). O

Regarding the estimates for J3, and following an analogous reasoning as before,
one arrives at the following result.

Proposition 4.8. There exist Cy,, K5, > 0 such that
N\ (N
|J5(t1,t2, 2,€)| < CJ3Kx (k) r <k> le|, (4.10)
1 1

for all positive integer N, allt; € T, to € To, 2 € Hg and e € £.

4.3. MAIN ASYMPTOTIC RESULT

As before, for 0 < 8/ < 8, we write E for the Banach space of bounded holomorphic
functions defined on 77 x T x Hp: equipped with the norm of the supremum, i.e.

E:.= Ob(7—1 X 7—2 X Hﬁ/).

Theorem 4.9. Under the previous assumptions, the solution (3.22) of (2.9) admits
a splitting of the form

Udy dy (t1, 2, 2,€) = b(t1,t2, 2, €) + Uay dy,1(t1, t2, 2, €) + Uy dy 2(t1, E2, 2, €),
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where b(t1,t2, z,€) € E{e}, and ug, 4,,; € Op(Ti x To x Hgr X E), for j = 1,2. Moreover,
there exist two formal power series in € with coefficients in E, say

ij(tr,t2, 2,€) = > Hi(t1,t2, 2)e" € E[[e]],
k>0

for 7 = 1,2 which satisfy that uq, a,; admils @; as its Gevrey asymptotic expansion
of order 1/k; with respect to € on &, which means that for all W < &, there exist
C, A >0 with

sup
(t1,t2,2)ETA X T2 X H gy

N-1
ud17d2,j(t17t27z7€) - Z Hg(tlat2,z)€p
p=0

< CANT <1+g

)i, cew,
J
valid for all N > 1.

Proof. In view of the splitting in (4.1), the Gevrey expansions for J; determined
in Proposition 4.4, together with the Gevrey bounds attained in Proposition 4.7 and
Proposition 4.8, we set b(t1,to, z,€) = a(t1, 2, 2, €) obtained in Proposition 4.4,

Udy dy1(t1, T2, 2,€) = J110(t1, b, 2, €) + J3(ta, t2, 2, €),

Udy dy 2(t1,t2, 2,€) = J12.0(t1, 12, 2,€) + Ja(t1, t2, 2, €),

and @;(t1,t2, z,€) = ij, for j = 1,2. The result of Theorem 4.9 is a straight conse-
quence of Proposition 4.4, Proposition 4.7 and Proposition 4.8. O

5. APPENDIX

5.1. AUXILIARY BANACH SPACES OF ANALYTIC FUNCTIONS

In this section, we state the definition of some auxiliary Banach spaces of functions
which allow us to provide some important properties of analytic continuation of the
solution to the auxiliary problem (3.6) in the Borel-Fourier space.

5.1.1. First auxiliary Banach space
Let 8> 0 and p > 1. Let us also fix p1, p2 > 0. In the whole section, we fix positive
integers k1, ko.

Definition 5.1. Let us consider the set of continuous maps (71, 72, m) — h(7y, T2, m)
defined on D(0, p1) x D(0, p2) x R, holomorphic with respect to its first two variables on
D(0, p1)x D(0, p2) and such that there exists C' > 0 (which depends on 3, y1, p1, p2) with

1 —
|h(Tl7T27m)| S Cme Blm‘|7_17.2|,
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for every (71,72, m) € D(0, p1) x D(0, p2) xR. Such set is denoted by B(g, 4. p, ,p,)- Given
h as before, we denote the minimum of such constant C' by [[h(71,72,m)| (5 1. p1 po)-

The pair (B(g,4,01,00) I'll(5,11,1,p0)) 1S @ complex Banach space.

We state some properties associated to the previous Banach space, whose proof
can straightly be adapted from those in the spaces considered in [15].
The first one is a direct consequence of its definition.

Proposition 5.2. Let (11,72,m) — b(71,72,m) be a continuous function defined
on D(0,p1) x D(0,p2) x R, holomorphic with respect to its first two variables on
D(0,p1) x D(0, p2). Assume that

Cp = sup |b(T1, T2, m)|
(11,72,m)€D(0,p1) X D(0,p2) xR

is finite. Then, for every h € Bg i p, po), the function
(11,72, m) = b(71, T2, m)h(71, 72, M)
belongs to B(g . p1,p0), and it holds that

16T, 72, m)R(T1, T2 )| (54 oy < O l1ACTL T2 M) 51012

Proposition 5.3. Let a(71,72,m) be a continuous function defined on D(0,p1) X
D(0, p2) x R, holomorphic with respect to its two first variables on D(0, p1) x D(0, p2).
We assume this function satisfies there exists 1 > 0 with

&

W? (11, 72,m) € D(0,p1) x D(0, p2) x R.

| (717727 )| =

We choose a mapping m — h(m,¢€) such that for every m € R, the function D(0,¢p) 2
€ — h(m,e€) is holomorphic on D(0,¢€) and there exists K > 0 with

sup  sup (1 + |m|)*eI™|n(m,€)| < K.
e€D(0,e9) mER

We consider a polynomial P(X) € C[X]. We assume that ’yl > deg P, pp > deg P+1. Let
us also fivo; > —1 forj=1,...,6 with k101+05+o5+k >0, k202+a4+06+— > 0.
Then, for every f € B(ﬁ%pl,m) the function

k1 k2
T T2

oo
x / h(m — my, e)reikirgake / / 1) (72 — 5y)7057035 Pimy)
—0o0
X f( 1/k 1/k2,m1)d52d81dm1
belongs to B(g 1. p,,p.)- In addition to this, there exists Cy > 0 with

HBl(f)”(ﬁ’val,m) < Kél ”fH(BvH,Pl,m) )
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Proposition 5.4. Let a(11,72,m) be a continuous function defined on D(0,p1) x
D(0, p2) x R, holomorphic with respect to its two first variables on D(0, p1) x D(0, p2).
We assume this function satisfies there exist v1 > 0 and C7 > 0 with

Gy

W7 (11, 72,m) € D(0,p1) x D(0, p2) x R.

|Cl(7'177-2,m)| S

Let Pi(e,X),Py(e,X) € Ou(D(0,¢€0))[X] be polynomials with coefficients in the
set of holomorphic and bounded functions on D(0,¢y). We assume that 3 >
max{deg(P1),deg(Ps)}. Let us choose p such that p > max{deg(P1),deg(Ps)} + 1.
For every f,9 € B, u,p1,p5), the function

Ba(f,g) := a(r1, 2, m)

k1 k2
Tio Te” oo

X Ty / / / Pi(e i(m—m) f((rf* —s1)%, (742 = 52) /%2 m—my)
0 0 —o0

1/ky 1/ka 1 1

1
X P2(€7 iml)g(sl sy 9 aml) —dmdsadsy

k1 o1 k2
Ty —81 51Ty —82 52

belongs to Bg ;i p, . ps)- In addition to this, there exists Cy > 0 such that

HBQ(f’ g)ll(ﬁ,#qplypz) <G ”fH(ﬁuu,Pl,Pz) HgH(ByHyPl,m) :
Remark 5.5. C, approaches 0 when the quantities p1 or pg are reduced.

5.1.2. Second auxiliary Banach space

Let 8 > 0 and p > 1. We fix v1,v5 > 0. Let de be an infinite sector of positive
opening, with vertex at the origin and bisecting direction d; € R, for j =1,2. kq, k>
are positive integers.

Definition 5.6. Let us denote by E8,11,01,v2,54, ,54,) the set of all continuous maps
(11,72, m) = h(71,72,m) on Sy, X Sg, X R, which are holomorphic on its two first
variables on Sy, x Sg, and such that there exists C' > 0 (depending on 53, u, Sq, , Sa,)
such that

1 _ \T1| |7'2|
|h(11, 72, m)| < C—-=—eFlml
’ (1+ [ml)* L+ [ 1+ ||

iz e (" 4 v ),

for every (71,72,m) € S4 X Sa, x R. Given such h, the minimum of
the constant C above is denoted by ||h(7'1,7'2,m)||(ﬁyﬂyul,y2’sdl’sd2). The pair

(E(ﬁ,#,ul,ug,sdl ,Say) ||'||(57H)l,17,,2’5d1 ’S@)) turns out to be a complex Banach space.
As in the previous section, one can state some properties associated to the applica-

tion of certain operators on the previous Banach space. We omit their proofs, directly
adapted from those in [15].
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Proposition 5.7. Let (11,72, m) — b(71,72,m) be a continuous function defined
on Sq, X Sq, X R, holomorphic with respect to its first two variables on Sq, X Sq,.
Assume that

Cp = sup |b(T1, T2, m)|
(71,72,m)€8Sd; X Sda, xR

is finite. Then, for every h € E8,11,01,02,54, ,84,)» the function
(Tl,Tg,m) — b(Tl,TQ,m)h(Tl,TQ,m)

belongs to Eg ,u..,, Suy,Say) and it holds that

va,
16(71, 72, m)A(T1, 72, m) | (B,15v1,v2,84; ,5dy ) < Cb |11, 72, m)| (B:m,v1,v2,84, ,545)

Proposition 5.8. Let a(11, 72, m) be a continuous function defined on Sq, X Sq, x R,
holomorphic with respect to its two first variables on Sq, X Sa,. Assume there exist
Y1,01,02 > 0 and Cy > 0 such that

Gy
(L Tl (1 + [P ol

|a(7'1,7'2,m)\ < (Tl,TQ,m) c Sdl X Sd2 x R.

Let m — h(m,€) be a function such that for every m € R, the function D(0,€y) 3 € —
h(m, €) is holomorphic on D(0,€p) and there exists K > 0 with

sup  sup (1 + |m|)*e’I™l|n(m,€)| < K.
eeD(0,e9) meR

We consider a polynomial P(X) € C[X]. We assume that 3 > deg P, > deg P + 1.
Let us also fix o5 > =1 for j =1,...,6. We assume that

k1(01+03+05+1) = k2(02+0'4+06+1), 0k = 52]€2, o1+o3+tos+1 < 6. (5.1)

Then, for every f € E8,1,01,v2,54,,84,) the function

Bi(f) = a(m1,72,m)

k1 _ko
00 Ty Ty
X / h(m — my, e)ry k1 g2k / / (75 — 51)73 (762 — 53)7457°53° P(imy)
—00 0 0

X f(si/k1 , sé/h ,mq)dsadsidm

belongs to Eg V12,54, ,Sdy) Moreover, there exists Cy > 0 with

M

”Bl(f)||(57#7V171/273d173d2) < K ||f||(f3>#,l’1,l/2,sd175d2) ’

The proof of the following result follows analogous lines as that of Proposition 5.4.
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Proposition 5.9. Let a(t1, 72, m) be a continuous function defined on Sq, X Sq, X R,
holomorphic with respect to its two first variables on Sq, X Sq,. We assume such
function satisfies there exist v1,61,d2 > 0 and C1 > 0 with

Gy
(+ Tl (1 [P [Pk

|a(7'1,7'2,m)\ < (Tl,TQ,m) €Sd1 XSd2 x R.

We also assume that 61k1 = daka > 1. Let Pi(e,X), Pa(e, X) € Op(D(0,¢€0))[X] be
polynomials with coefficients being holomorphic and bounded functions on D(0,¢€p).
We assume that 1 > max{deg(P1),deg(P2)}, and choose p such that p >
maX{deg(P1)7 deg(PQ)} + 1 FOT’ every f} g € E(ﬁ,/L,Ul,VQ,Sdl ,Sd2)7 th@ funCtion

BQ(fa g) = a‘(Th T2, m)lelTka

k1 k2
Tl T2 o0

<[] Puteitm = ma) (it = s 0 = s m )
0 0 —oo

1 1 1
si/kl,sé/b

1
7m1) —dmydsads,

x Pa(€,im1)g( s, S17F 5y 52
2

k1
1

belongs to E8,11,01,02,54, ,8a,)- In addition to this, there exists Cy > 0 such that

”BQ(f’ g)||(ﬂ7NaV1;V27Sd17'sd2) <Gy ||f||(57u,u1,l/2,5(1175d2) HgH(ﬁv%Vth,Sdl75'd2) ’

Remark 5.10. The constant C, approaches to 0 provided that the quantities
Cp,,Cp, > 0 are small.

5.1.3. Third auxiliary Banach space

Let 8> 0 and p > 1. We fix p1, p2 > 0, and v1,v5 > 0. Let Sy, be an infinite sector of
some positive opening, with vertex at the origin, and bisecting direction d; € R, for
j =1,2. As in the previous sections, we fix positive integers k1, ks.

Definition 5.11. Let us denote by F(6.1.p1,p2,54,,54,) the set of all continuous maps
(11, 72, m) = h(71,72,m) on (Sg, N D(0,p1)) x (Sq, N D(0, p2)) x R, which are holo-
morphic on its two first variables on (Sq, N D(0, p1)) X (S4, N D(0, p2)) and such that
there exists C > 0 (depending on 8, u, p1, p2, S4,,S4,) such that

|h(7-177—27m)| S C e_ﬁlm‘ |7-17.2|’

b
(1 + [ml[)»
for every (11,72,m) € (Sq, N D(0,p1)) x (Sq, N D(0,p2)) x R. For such h, the

minimum of such constant C'is denoted by [|A(71,72,m)ll(5 , p1 ps.50 Say)- Lhe pair
H5P15p2,Say

(F(ﬁvpﬂpl’pmsdus(b), ||-||(ﬁ7#7p1’p2ﬁsdl’S@)) is a complex Banach space.

Analogous results as those in the two previous sections regarding the action of
certain operators acting on functions belonging to this Banach space can be stated.
We omit their proof which follow analogous arguments as before.
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Proposition 5.12. Let (11,72, m) — b(11, 72, m) be a continuous function defined
on (Sq, N D(0,p1)) X (Sa, N D(0, p2)) x R, holomorphic with respect to its first two
variables on (Sq, N D(0, p1)) X (Sq, N D(0, p2)). Assume that

Cp = sup |b(71, T2, m)|
(T1,72,m)€(Sa; ND(0,p1)) X (Sa, ND(0,p2)) xR

is finite. Then, for every h € F8,11,p1,02,54,,54,)+ the function
(71,7'27m) — b(Tl,TQ,m)h(Tl,Tg,m)
belongs to F(p u.p1.ps,54,,54,), aNd it holds that

Hb(TlvT?’m)h(TlvT%m) <y ||h(7—177-27m)

” (Bs1501,02,5d, ,Sdy) ” (Bs15P1,02,5d, ,Sdy)

Proposition 5.13. Let a(r,72,m) be a continuous function defined on
(Sq, N D(0,p1)) x (Sa, N D(0,p2)) x R, holomorphic with respect to its two first
variables on (Sq, N D(0, p1)) X (Sa, ND(0, p2)). Assume there exist vy1 > 0 and C; > 0
such that

Cy

A () € (50,0 D(0,p1)) X (S0, 01 D0, p2)) x .

la(r1, 72, m)| <

Let m +— h(m,€) be a function such that for every m € R, the function D(0,¢€p) > € —
h(m,€) is holomorphic on D(0,¢ey) and there exists K > 0 with

sup  sup (1 + |m|)*eI™|n(m,€)| < K.
e€D(0,e9) mER

We consider a polynomial P(X) € C[X]. We assume that 3 > deg P, > deg P + 1.

Let us also fix 05 > —1 for j = 1,...,6, such that kio1 + 03 + 05 + % > 0 and
kooy 4+ 04 + 06 + 1712 > 0. Then, for every [ € Fg 1 py ps.54,.54,) the function

Bi(f) := a(r1,m2,m)

k1 _ko
00 T T2

x / h(m —my, e)r g2k / / (i = 51)73 (752 — $2)7*s7° 530 P(imy)
—o00 0 0

X f(si/k1 s;/kz,ml)dSstldml

belongs to F(&u,pl,pzysdl,sdz)' Moreover, there exists C1 > 0 with

”Bl (f)H(ﬁ,H,Pl,Pz’Sdl’SdQ) < KC ||f||(57H7P1,P2’Sd1,5'42) :
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Proposition 5.14. Let a(7,72,m) be a continuous function defined on (Sq, N
D(0,p1)) x (Sa, N D(0, p2)) x R, holomorphic with respect to its two first variables
on (Sq, N D(0,p1)) X (Sa, N D(0, p2)). We assume such function satisfies there exists
v1 >0 and Cy > 0 with

Ch

(1 T ‘m|)71’ (Tl,Tg,m) € (Sch mD(O,Pl)) X (Sd2 ﬂD(O,pz)) x R.

la(ry, 72,m)| <
Let Py (e, X), Pa(e, X) € Op(D(0, €0))[X] be polynomials with coefficients being holomor-
phic and bounded functions on D(0,ey). We assume that y1 > max{deg(P;), deg(P2)},
and choose p such that p > max{deg(P)),deg(P)} + 1. For every f,g €
F(ﬁ,u,p17pz,5d175d2); the function
82(f7 g) = a’(Tla T2, m)T{ClTka
1
1

k
-
X/
0

k2

T5° oo
/ / Py(eyi(m —ma)) f((rf — 1) /%1 (k2 — s3)Y/% m — my)
0 —o0

1 1 1 1
s}/kl ’ s;/kz’

X Pg(e,iml)g( ml)

1

k 51 K 5o
Tt — 8151757 — 89 82

X dm1d82d81

belongs to F(g,u,p1,p2,54,,54,) - I addition to this, there exists Cy > 0 such that

||82(f7 g)||(ﬁ,#,ljl,l}2,sd1,sd2) S 02 ||f||(B7M7U1,I/2,Sd1,Sd2) HgH(IB’u,Ul,Ug,Sdl,Sd2) .
Remark 5.15. The constant Cy approaches 0 when the quantities p1 Or po are

reduced.
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