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Abstract. Existence and bound of a solution is established for a general elliptic
equation with intrinsic operator subject to Dirichlet boundary condition. This provides
a sufficient condition to the fundamental question if there is a solution belonging
to a prescribed ball in the function space. An application deals with an equation
involving a convolution product.
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1. INTRODUCTION AND MAIN RESULT

In this paper we focus on the following quasilinear Dirichlet problem

(P)

—Apu = f(z,Bu,V(Bu)) inQ,
u=0 on 052

on a bounded domain 2 in RY with Lipschitz boundary 0€). For a later use we denote
by |2| the Lebesgue measure of 2. The driving operator in the equation of (P) is
the negative p-Laplacian —A, : WP (Q) — W12 (Q), with p € (1,+00), which
is given by

(—Apu,v) = / |Vu(av)|p_2 Vu(z) - Vo(z)dz for all u,v € Wol’p(ﬂ).
Q

In the expression above we have the gradient

ou ou
Vu= <8$1”(‘3x1\,>
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and the notation |Vu(z)| stands for the Euclidean norm of Vu(x) € RY. In the sequel,
the usual norm on any space L"({) is denoted || - ||. We recall that the first eigenvalue
of —A, on Wy"*() is given by

VulllZ

g wewgrnoy ullp
Any other p-Laplacian type operator can be used in our arguments. We refer to [7] for
the study of such operators.

The reaction term in (P) is described by a composition involving a Carathéodory
function f : Q@ x R x RY — R (i.e., f(:,5,&) is measurable for all (s,&) € R x RV
and f(x,-,-) is continuous for a.e. z € ) and a continuous map (linear or nonlinear)
B : WyP(Q) — WP(Q) that we call intrinsic operator. This special structure of
the convection term makes the problem nonstandard and challenging. The study
of nonlinear elliptic equations exhibiting intrinsic operator was initiated in [8] and
continued in [4, 6, 10, 11].

We understand a solution to problem (P) in the weak sense, that is, any u € VVO1 P ()
satisfying f(x, Bu, V(Bu))v € L'(Q) and

/|Vu\p72Vqudx:/f(:zr,Bu,V(Bu))vdx
Q Q

for all v € W, P(Q). We seek the solutions to problem (P) in the space Wy () due
to the homogeneous boundary condition.
1
The space W, () is endowed with the norm ||U||W01p = ([, |VulPdz)?, while the
norm on the space W1P(Q) is

N
Pl = llullp + 3| 2%
v ! i=1 Oz

The dual space of Wy*(€2) is W' (). In order to simplify the notation, correspond-
ing to any real number r we denote ' = r/(r — 1) (the Holder conjugate of r). In
order to avoid repetitive arguments, for the rest of the paper we suppose that N > p.
The case N < p is simpler and can be handled analogously. Therefore, the Sobolev
critical exponent is p* = NN—f;.

Our assumptions on the Carathéodory function f : © x R x RN — R and the
operator B : Wy (Q) — WP(Q) are as follows:

(H1) There exist a function o € L (Q) with r € [1,p*), constants ¢ > 0, d > 0,
a € [0,p* — 1), and S € [0, ﬁ) such that

|f(x,5,)| < o(x) +c|s|* + dl¢)’

for a.e. x € Q and all (s,£) € R x RV,
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(H2) The map B : W, *(Q) — WhP(Q) is continuous and there are nonnegative
constants K7 and K5 such that

[1Bullp + [[[V(Bu)lllp < Killullyr + K2

for all u € W, ?(Q).
(H3) There exist a function ¢ € L(Q) and constants a > 0, b > 0 with

1>27"Ya+b)KY (1.1)
such that
f(z,s5,8)s < C(x) + als|” + ¢
for a.e. x € Q and all (s,£) € R x RV,
An example of a nonlinear term satisfying these assumptions is supplied in Section 5

(see the proof of Theorem 5.1).
We state our main abstract result.

Theorem 1.1. Assume that conditions (H1)—-(H3) are verified. Then problem (P)
admits at least one weak solution. In addition, if u € Wol’p(Q) is a weak solution to
problem (P), there is the bound

¢l + 20" (a + b>K§>i 12)

lellwgr < ( 1—2r-1(a+b)K}

The proof of Theorem 1.1 is given in Section 4

Estimate (1.2) enables us to get an answer to the fundamental question when
a prescribed open ball in the space WO1 P(Q) contains a solution to problem (P).
The following sufficient condition is available.

Corollary 1.2. Assume that conditions (H1)—(H3) hold. Given R > 0 there ex-
ists a weak solution u € Wol’p(Q) to problem (P) satisfying the a priori estimate
||u||W01,p < R provided

1
r> (Mt ashic)’
1—2r-Ya+b)KY

The proof follows readily from Theorem 1.1.

The abstract result formulated in Theorem 1.1 is applied to a quasilinear elliptic
problem exhibiting a convolution product. The study of problems of this type involving
convolution started with [9]. For related results we refer to [5, 8, 11, 12]. Our application
of Theorem 1.1 is presented in Theorem 5.1 which is stated and proven in Section 5.

2. PRELIMINARIES

According to the Sobolev embedding theorem, the space VVO1 P(Q) is continuously
embedded in L7 (Q) whenever 7 € [1, p*], so there exists a constant 6, > 0 such that

lull- < 0 Julyr,  Vue W3P(Q). (2.1)
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Moreover, the Rellich-Kondrachov theorem ensures that the embedding of W, ()
into L™(2) is compact for 7 € [1, p*).
The proof of the following basic result can be found in [2].

Proposition 2.1. The negative p-Laplacian —A, : WP () = W12 (Q) is contin-
uous, bounded (in the sense that it maps bounded sets into bounded sets), mazimal
monotone, strictly monotone (so, pseudomonotone) and satisfies the (Sy)-property,
that is, any sequence {u,} C WyP(Q) for which u, — u in Wy*(Q) and
lim sup(—Aptn, un — u) < 0 fulfills u, — u in Wy P(Q).

n—-+4oo
We will also need the following theorem.
Theorem 2.2 ([2, Theorem 2.99]). Let X be a real reflexive Banach space and let

A: X = X* be a bounded, coercive and pseudomonotone operator. Then for every
b € X* the equation Au = b has at least one solution u € X.

A comprehensive presentation of monotonicity methods can be found in [3].

Our application concerns the convolution product, a notion that we now recall
within our setting. The convolution of p € L*(RY) and u € Wol’p(Q), 1 <p<+oo,is
defined as

(p*w)(z) = / p(y)ulz —y)dy forz e,
RN

where u € W P(2) € WHP(RV) is extended by 0 on RN \ Q.
By Young’s theorem for convolution we have

lp* ullo@yy < llpller @y lulle@yy = ol @y lully (2.2)
(see [1, Theorem 4.15]). It is known that

ou
axi ’

ax‘(p*u):p* i=1,...,N (2.3)

(see [1, Lemma 9.1]). From (2.2) and (2.3) we obtain
1
ol + 190l < lollssy (3% + ) (2.0

3. THE OPERATOR EQUATION

Let us introduce the operator A : W, ?(Q) — W17 (Q) by
(A(u),v) = /f(:):7 Bu, V(Bu))vdx (3.1)
)

for all u,v € WyP(Q).
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It is apparent from (3.1) that problem (P) can be equivalently expressed as the
operator equation

—Apu — A(u) =0. (3.2)
The equality in (3.2) is required in the dual space W~1%'(2), and we seek the solution
u in W, P(Q).
The next propositions point out useful properties of the operator A.

Proposition 3.1. Assume that conditions (H1)—(H2) hold. Then for the operator A
defined in (3.1) there is the following bound

[A w100 < llollr0r +c0_p-_|Bu

p*
p*—a

o T d9#|||V(Bu)|||§ (3.3)

for allu € Wol’p(Q). In particular, the operator A from Wol’p(Q) to WP (Q) is well
defined and bounded.

Proof. By hypothesis (H1) and using (2.1) in conjunction with Holder’s inequality
we find that

/ f(z, Bu, V(Bu))vda| < / (Io(@)] + | Bul® + |V (Bu)|®)v|dz
Q Q
< ol [loll, + cl| Bu

vll g +dl[V(Bu)l[7]v]

@ P
P
p 7 —a p—pB

< (lollebr +ct_p-_[|Bullg. +do_o_ |||V (Bu)l[|]) 0]y -

o p—B

We are thus led to the bound in (3.3).

Hypothesis (H2) ensures that the operator A from W, () to W~ (Q) is
bounded. As the boundary 02 is Lipschitz continuous there is the continuous embedding
of WLP(Q) into LP*(9). Consequently, estimate (3.3) implies that the operator A from
Wol’p(Q) to W=1%'(Q) is well defined and bounded, which completes the proof.  [J

Proposition 3.2. Assume conditions (H1)~(H2). If u, — u in W3 (), then there
holds

lim (A(up), u, —u) = 0. (3.4)

n— oo

Moreover, the operator —A, — A : Wy P(Q) — W~1P(Q) which drives the equation
in (3.2) satisfies the (Sy)-property.

Proof. By hypothesis (H1) we see that

/f(a:,Bu, V(Bu))(uy — u)dz| < /(|a\ el Bun|® + dIV(Bun)|?)un — uldz.
Q Q
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Since B is a bounded operator, the sequence {Bu,} is bounded in WP (2) and
thus in LP (Q). Then through the Rellich-Kondrachov embedding theorem (note

from (H1) that r < p*, pf_a < p*, ﬁ < p*), we get

/|0(m)\|un —uldx < ||o||p||un — ullr = 0 as n = +o0,
Q

/|Bun|a\un — u|dx < ||Buy,
Q

pellun —ull = —0asn— +oo,
p*—a

and
/|VBun\ﬁ|un —uldx < HBunH’ngpHun - qu%ﬁ — 0 asn — +oo.
Q

In view of the definition of the operator A in (3.1), we arrive at (3.4).
The second part of Proposition 3.2 follows from (3.4) and Proposition 2.1. This
completes the proof. O

4. EXISTENCE AND BOUND OF SOLUTIONS

As seen from equation (3.2), in order to resolve problem (P) we have to study the
operator —A, — A : WyP(Q) — W17 (Q), where A is given by (3.1). The next
lemmas establish essential properties of this operator.

Lemma 4.1. Assume that conditions (H1)—(H2) are satisfied. Then the operator
—A, — A is bounded and pseudomonotone.

Proof. First we prove that the operator —A, — A is bounded. Indeed, the definition of
the negative p-Laplacian —A,,, shows that the operator —A,, is bounded. Proposition 3.1
entails that the operator A is bounded. Consequently, —A, — A is bounded.

We now pass to prove that the operator —A, — A is pseudomonotone. Specifically,
we have to check that if u,, — u in WOI’I’(Q) and

lim sup(—Apu, — A(uy), up —u) <0, (4.1)
n—roo
then
lim inf(—Apu, — A(uy), un —v) > (=Apu — A(u),u — v) (4.2)

n—oo

for all v € Wy P(Q).
Using (3.4), we note that (4.1) reduces to

lim sup(—Apup, u, —u) <O0.

n——+00

Hence, Proposition 2.1 yields the strong convergence u,, — u in WO1 P(Q). Then the
validity of (4.2) readily follows, thus completing the proof. O



A general elliptic equation with intrinsic operator 653

Lemma 4.2. Assume that conditions (H1)-(H3) hold. Then the operator —A, — A,
with A defined by (3.1), is coercive, that is

(ZApu — A(u), u)

1,p—>00 Hu||W01’p

— —+00. (4.3)

Proof. Hypotheses (H2) and (H3), in conjunction with a well-known convexity inequal-
ity, imply

/f(x, Bu, V(Bu))udz < ||C[ly + al| Bullj + +b[|[V(Bu)[[I}
Q

< I¢lh + a(Ea[[[Vulllp + K2)? + b(EL [|[Vulll, + K2)”
< ISl + 27 (a + D) (KT (| Vulll} + K3).
This results in
(=Apu— A(u),u) > (1= 2" a+b)KT) [[Vur ||l — [I¢]l — 277" (a + ) K3.
We conclude that (4.3) holds true because of (1.1). O
We are going to prove Theorem 1.1.

Proof of Theorem 1.1. For the first part of Theorem 1.1, since problem (P) is equiv-
alent to equation (3.2) it is sufficient to check that Theorem 2.2 can be applied to
the operator —A, — A : Wy P(Q) — W12 (Q), with A defined in (3.1). Lemma 4.1
ensures that the operator —A, — A is bounded and pseudomonotone, while Lemma 4.2
provides that the operator —A, — A is coercive. Therefore, Theorem 2.2 can be applied
to the operator —A, — A, which guarantees that there exists a solution u € Wol’p(Q)
of equation (3.2). Accordingly, u € W,?(Q) is a weak solution to problem (P).

For the second part of Theorem 1.1, let u € Wol’p(Q) be a weak solution to prob-
lem (P). Testing the equation with the solution u, through hypotheses (H2) and (H3)
we find that

I1Vullly = /f(x,Bu,V(BU))udx < ISl + 277 (a + D)KL + 27~ (a + b) KT || Vullp.
Q

From here, on the basis of (1.1), it is straightforward to obtain estimate (1.2), which
completes the proof of Theorem 1.1. O

5. AN EQUATION WITH CONVOLUTION

In this section we discuss the application of Theorem 1.1 to the following problem
with convolution

1 o
_Apuzm(l—i—\V(p*uﬂ) in Q, ©)

u=20 on 01,
where p € (1,+00), p € LY(Q2) and v > 0.
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We state our result on problem (C).

Theorem 5.1. Assume that v € [0, (p{f),) and

1 —1
llollpr@yy < 277 </\1 ? 4+ N) . (5.1)

Then problem (C) admits at least one weak solution. Moreover, each weak solution
u e WyP(Q) of problem (C) satisfies the estimate

=

29|

_1 p
1-— 2p_1||P||[£1(RN) <)\1 Py N)

Il < (52)

Proof. Let us show that we can fit in the framework of Theorem 1.1 for problem (P)
provided || p[| 1 (g} is sufficiently small as indicated in (5.1). In this respect we introduce
f:OxRxRYN 5 Rby

f(z,s,8) = (1+€]), V(z,s,6) € QxR xRY

1+ s2
and B : WP (Q) — W2(Q) by
Bu=pxv, Yve WP (Q).

The assumption on v ensures that hypothesis (H1) is satisfied. It is seen from (2.4)

that hypothesis (H2) is fulfilled by taking K; = ||PHL1(RN)(>‘1_5 + N) and K, = 0.
We also note that

Jw,5.0)s = 1=

so hypothesis (H3) holds with { =2, a =0, and b = 1 because (5.1) was supposed to
be true.

As a consequence, Theorem 1.1 can be applied. It turns out that there exists
a weak solution u € W, () of problem (C). The bound in (5.2) follows from (1.2).
The proof is complete. O

A+ <2+,
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