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Abstract. The main purpose of this paper is to present new oscillation results for
nonlinear semi-canonical third-order differential equations with an advanced neutral
term. The main idea is first by reducing the studied semi-canonical equation into
standard canonical type equation without assuming any extra conditions. Then, by
using the comparison method and integral averaging technique, sufficient conditions
are established to ensure the oscillation of the reduced canonical equation, which in
turn leads to the oscillation of the original equation. Therefore, the technique used
here is very useful since the results already known for the canonical equations can be
applied to obtain the oscillation of the semi-canonical equations. Two examples are
provided to illustrate the importance of the main results.
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1. INTRODUCTION

The aim of this paper is to investigate the oscillation property of the semi-canonical
nonlinear third-order differential equation with an advanced neutral term

(
a2(t) (a1(t)z′(t))′

)′
+ f(t)g(x(σ(t))) = 0, t ≥ t0 > 0, (1.1)

where z(t) = x(t) + p(t)x(τ(t)) and the following conditions are assumed to hold
without further mention:
(H1) ai ∈ C(3−i)([t0, ∞),R), i = 1, 2, such that a1(t) > 0, a2(t) > 0, and

A1(t0) :=
∞∫

t0

1
a1(t)dt = ∞ and A2(t0) :=

∞∫

t0

1
a2(t)dt < ∞, (1.2)

where condition (1.2) means that equation (1.1) is in semi-canonical form;
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(H2) τ, σ ∈ C1([t0, ∞),R) such that τ(t) > t, σ(t) < t, τ ′(t) > 0, σ′(t) > 0, and
limt→∞ σ(t) = ∞;

(H3) f, p ∈ C([t0, ∞), [0, ∞)) such that p(t) ≤ p0 < 1, and f(t) > 0 for large t;
(H4) g ∈ C([t0, ∞),R) such that xg(x) > 0 for x ≠ 0 and g(x)/xα ≥ k > 0, where α

is a ratio of positive odd integers.

Through the operators below

L0z = z, L1z = a1z′, L2z = a2 (a1z′)′
, L3z =

(
a2 (a1z′)′

)′
, (1.3)

for t ∈ [t0, ∞) and L3z ∈ C([t0, ∞),R); equation (1.1) can be rewritten as

L3z(t) + f(t)g(x(σ(t))) = 0, t ≥ t0 > 0. (1.4)

By a solution of (1.1) (or (1.4)), we mean a function x ∈ C([tx, ∞),R) for some tx ≥ t0
such that L0z ∈ C1([tx, ∞),R), L1z ∈ C1([tx, ∞),R), L2z ∈ C1([tx, ∞),R) and x
satisfies (1.1) (or (1.4)) on [tx, ∞). We exclude from our consideration those solutions
of (1.1) (or (1.4)) which vanish identically in some neighborhood of infinity; and we
tacitly assume that (1.1) (or (1.4)) possesses such solutions. Such a solution x(t) of
(1.1) (or (1.4)) is said to be oscillatory if it has arbitrarily large zeros on [tx, ∞), i.e.,
for any t1 ∈ [tx, ∞) there exists t2 ≥ t1 such that x(t2) = 0; otherwise it is called
nonoscillatory, i.e., if it is eventually positive or eventually negative. Equation (1.1)
(or (1.4)) is said to be oscillatory if all its solutions are oscillatory.

In recent years, there has been increasing interest in studying the oscillation
properties of third-order neutral functional differential equations of type (1.1) or its
particular cases or its generalizations. From the review of literature, depending on
various ranges p(t), there are many results reported on the oscillatory behavior of
equations of type (1.1) when it is in canonical form and semi-canonical form, that is,

A2(t0) = ∞ and A1(t0) = ∞, (1.5)

or
A2(t0) < ∞ and A1(t0) = ∞, (1.6)

or
A2(t0) = ∞ and A1(t0) < ∞, (1.7)

see, for example, [2–14, 18–22, 24–33, 35, 36] and the references cited therein. On the
other hand in [6, 20, 24, 25], the authors studied the oscillation properties of (1.1) for
the noncanonical case, that is,

A2(t0) < ∞ and A1(t0) < ∞. (1.8)

Recently in [31], the authors studied the existence of oscillatory solutions of (1.1) when
p(t) > 1 for t ≥ t0; and in [10] the authors obtained oscillation criteria for (1.1) using
the following conditions:

σ ◦ τ = τ ◦ σ, (1.9)



Novel oscillation criteria for third-order semi-canonical differential equations. . . 545

and
p(t) ≤ p0 < 1, (1.10)

and condition (1.6). The following theorem was provided in [10].

Theorem 1.1 ([10, Theorem 2.1]). If there exists a positive real-valued differentiable
function m(t) such that, for any real number d,

d

a1(t) + m′(t)
m(t) < 0, inf

t≥t0

{
1 − p(τ(t))m(τ(t))

m(σ(τ(t)))

}
> 0,

and
∞∫

t0

1
a2(t)

t∫

t0

f(s)dsdt = ∞, (1.11)

then every solution of (1.1) is either oscillatory or limt→∞ x(t) = 0.

Note that, if we closely look at the proof of [10, Theorem 2.1], there is a mis-
take in the proof for eliminating the case (2) of [10, Lemma 1.1]. In the proof of
[10, Theorem 2.1], they used x(t) ≥ z(t) to eliminate the case (2), which is not correct.

The objective of this paper is to obtain sufficient conditions for the oscillation
of (1.1) without assumption (1.9). Moreover, the oscillation results are obtained by
transforming the semi-canonical equation (1.1) into canonical form, which reduces the
number of classes of positive solutions from 3 to 2. This is done without assuming
extra conditions, and greatly simplifies the process of obtaining conditions for the
oscillation of solutions. Therefore, the results presented here are new and improve
some results appearing in the literature. Examples are given to show the importance
and novelty over the known results.

2. MAIN RESULTS

We start with a theorem that transforms the semi-canonical equation (1.1) (or (1.4))
into a canonical equation. In order to make our notation more concise, we define the
following expressions:

A2(t) =
∞∫

t

1
a2(s)ds and A12(t) =

∞∫

t

A2(s)
a1(s) ds.

Theorem 2.1. The semi-canonical operator L3z can be written in the canonical form

∆3z =





1
A2

(
a2A2

2

(
a1
A2

z′
)′)′

, if A12(t0) = ∞,

1
A2

(
a2A2

2
A12

(
a1
A2

A2
12

(
z

A12

)′)′)′

, if A12(t0) < ∞.

(2.1)
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Proof. The proof of the theorem can be found in [13, Theorem 2] and also
in [28, Theorem 2.1], hence the details are omitted.

Based on Theorem 2.1, we can rewrite equation (1.1) (or (1.4)) in the equivalent
canonical form as follows:

∆3y(t) + F (t)g(x(σ(t))) = 0 (2.2)

with
∞∫

t0

1
b1(t)dt =

∞∫

t0

1
b2(t)dt = ∞, (2.3)

where

y(t) =
{

z(t), if A12(t0) = ∞,
z(t)

A12(t) , if A12(t0) < ∞,
(2.4)

∆0y = y, ∆1y = b1y′, ∆2y = b2(b1y′)′, ∆3y = (∆2y)′,

b1(t) =
{

a1(t)
A2(t) , if A12(t0) = ∞,

a1(t) A2
12(t)

A2(t) , if A12(t0) < ∞,

b2(t) =
{

a2(t)A2
2(t), if A12(t0) = ∞,

a2(t) A2
2(t)

A12(t) , if A12(t0) < ∞,

and
F (t) = f(t)A2(t), if A12(t0) = ∞ or A12(t0) < ∞.

Corollary 2.2. The semi-canonical nonlinear neutral differential equation (1.1)
(or (1.4)) possesses a solution x(t) if and only if the canonical equation (2.2) has the
same solution.

Corollary 2.3. The semi-canonical nonlinear neutral differential equation (1.1)
(or (1.4)) has an eventually positive solution if and only if the canonical equation (2.2)
has an eventually positive solution.

It is well-known from a generalization of lemma of Kiguradze [16, Lemma 1.1]
(see also [10, 15]) that the set of positive solutions of (1.1) (or (1.4)) has the follow-
ing structure.

If x(t) is an eventually positive solution of (1.1) (or (1.4)), then there exists t1 ≥ t0
such that for all t ≥ t1, the corresponding function z(t) = x(t) + p(t)x(τ(t)) belongs
to one of the following three classes:

S0 = {z : z > 0, L1z < 0, L2z > 0, L3z < 0},

S1 = {z : z > 0, L1z > 0, L2z < 0, L3z < 0},

S2 = {z : z > 0, L1z > 0, L2z > 0, L3z < 0},



Novel oscillation criteria for third-order semi-canonical differential equations. . . 547

where Liz (i = 1, 2, 3) are defined as in (1.3). Hence, the set S of all positive solutions
of (1.1) (or (1.4)) has the decomposition S = S0 ∪ S1 ∪ S2.

From the above classification, we see that (1.1) (or (1.4)) has two types of mono-
tonically increasing solutions and one type of monotonically decreasing solution.
Corollary 2.3 simplifies the study of (1.1) (or (1.4)), since the canonical equation (2.2)
has only of two types of solutions: one eventually decreasing and the other eventually
increasing, as stated in the following lemma. This lemma follows from a generalization
of the well-known Kiguradze lemma [16, Lemma 1.1] (also see [15]) applied to (2.2)
under condition (2.3).
Lemma 2.4. If x(t) is an eventually positive solution of (2.2), then there exists
t1 ≥ t0 such that for all t ≥ t1, the corresponding function y(t) (see (2.4)) belongs to
one of the following two classes:

N0 = {y : y > 0, ∆1y < 0, ∆2y > 0, ∆3y < 0},

N2 = {y : y > 0, ∆1y > 0, ∆2y > 0, ∆3y < 0}.

Therefore, the set N of positive nonoscillatory solutions of (2.2) can be expressed
in the form:

N = N0 ∪ N2.

First, we find the relation between x(t) and y(t) in the case when y ∈ N0.
Lemma 2.5. Let x be an eventually positive solution of (2.2) and the corresponding
function y ∈ N0. Then

x(t) ≥ E(t)y(t), (2.5)
for all t ≥ t1 ≥ t0, where

E(t) =
{

1 − p0, if A12(t0) = ∞,

(1 − p0) A12(t), if A12(t0) < ∞.

Proof. Let x(t) be an eventually positive solution of (2.2), say x(t) > 0, x(τ(t)) > 0
and x(σ(t)) > 0 for t ≥ t1 and for some t1 ≥ t0. Then, the corresponding function
y(t) satisfies (2.4). At first, we consider the case when A12(t0) = ∞. Since y ∈ N0,
we observe from the definition of y(t) (see (2.4)) that

x(t) = y(t) − p(t)x(τ(t)) ≥ y(t) − p0y(τ(t)) ≥ (1 − p0)y(t). (2.6)

Next, we consider the case when A12(t0) < ∞. Using again the definition of y(t) and
taking into account that A12(t) is decreasing and τ(t) > t, we obtain

x(t) = A12(t)y(t) − p(t)x(τ(t)) ≥ A12(t)y(t) − p0A12(τ(t))y(τ(t))

≥ A12(t)
(

1 − p0A12(τ(t))
A12(t)

)
y(t)

≥ A12(t) (1 − p0) y(t).

(2.7)

Combining (2.6) and (2.7) yields (2.5) and completes the proof.
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Lemma 2.6. Let x be an eventually positive solution of (2.2) and the corresponding
function y ∈ N0. Then y(t) satisfies the inequality

∆3y(t) + kEα(σ(t))F (t)yα(σ(t)) ≤ 0, t ≥ t1 ≥ t0. (2.8)

Proof. The proof follows from (H4), (2.5), and (2.2); so we omit the details.

Before starting the next results, let us define the following notation:

Bi(t) =
t∫

t∗

1
bi(s)ds for i = 1, 2, and B12(t) =

t∫

t∗

1
b1(s)

s∫

t∗

1
b2(s1)ds1ds

for t ≥ t∗ ≥ t0.

Lemma 2.7. Let y ∈ N2. Then

(i) ∆1y(t) ≥ B2(t)∆2y(t) and ∆1y(t)
B2(t) is decreasing,

(ii) y(t)
B12(t) is decreasing,

(iii) y(t) ≥ B12(t)∆2y(t).

Proof. Since y ∈ N2, ∆2y(t) is decreasing for t ≥ t1. Therefore,

∆1y(t) ≥ ∆2y(t)
t∫

t1

1
b2(s)ds = B2(t)∆2y(t), (2.9)

and so (
∆1y(t)
B2(t)

)′
= B2(t)∆2y(t) − ∆1y(t)

B2
2(t)b2(t) ≤ 0,

that is, ∆1y(t)/B2(t) is decreasing. This proves (i).
Next, from (i), we have

y(t) = y(t1) +
t∫

t1

B2(s)∆1y(s)
B2(s)b1(s) ds ≥ B12(t)∆1y(t)

B2(t) , (2.10)

and so (
y(t)

B12(t)

)′
= B12(t)∆1y(t) − B2(t)y(t)

b1(t)B2
12(t) ≤ 0,

that is, y(t)/B12(t) is decreasing. This proves (ii).
On the other hand, inequalities (2.9) and (2.10) leads to

y(t) ≥ B12(t)∆2y(t),

which proves (iii). This ends the proof.



Novel oscillation criteria for third-order semi-canonical differential equations. . . 549

Next, we find the relation between x(t) and y(t) in the case where y ∈ N2. To prove
our next results, we use the additional hypothesis:

B12(τ(t))
B12(t) <

1
p0

for t ≥ t0. (2.11)

Lemma 2.8. Let (2.11) hold. Suppose that x is an eventually positive solution of (2.2)
and the corresponding function y ∈ N2. Then y(t) satisfies the inequality

∆3y(t) + kEα
1 (σ(t))F (t)yα(σ(t)) ≤ 0, t ≥ t1, (2.12)

where

E1(t) =
{

1 − p0B12(τ(t))
B12(t) , if A12(t0) = ∞,

A12(t)
(

1 − p0B12(τ(t))
B12(t)

)
, if A12(t0) < ∞.

Proof. Since y ∈ N2, we see that Lemma 2.7(ii) holds. Now, in the case when
A12(t0) = ∞, we observe from the definition of y(t) (see (2.4)) and Lemma 2.7(ii) that

x(t) ≥ y(t) − p0B12(τ(t))
B12(τ(t)) y(τ(t)) ≥

(
1 − p0B12(τ(t))

B12(t)

)
y(t), (2.13)

and also, by (2.11),

E1(t) =
(

1 − p0B12(τ(t))
B12(t)

)
> 0, if A12(t0) = ∞.

Next, we consider the case when A12(t0) < ∞. From the definition of y(t) and
Lemma 2.7(ii), we obtain

x(t) ≥ A12(t)y(t) − p0A12(τ(t))B12(τ(t))
B12(τ(t))y(τ(t))

≥ A12(t)
(

1 − p0A12(τ(t))B12(τ(t))
A12(t)B12(t)

)
y(t)

≥ A12(t)
(

1 − p0B12(τ(t))
B12(t)

)
y(t),

(2.14)

and also, by (2.11),

E1(t) = A12(t)
(

1 − p0B12(τ(t))
B12(t)

)
> 0, if A12(t0) < ∞.

Combining (2.13) and (2.14) and taking (2.2) into account, we see that (2.12) holds.
This completes the proof of the lemma.
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Theorem 2.9. In addition to condition (2.11), assume that there exists a function
ρ ∈ C1([t0, ∞),R) such that

ρ′(t) ≥ 0, ρ(t) > t, η(t) = σ(ρ(ρ(t))) < t. (2.15)
If the first-order delay differential equations

H ′(t) + kQ1(t)Hα(η(t)) = 0, (2.16)
and

V ′(t) + kQ2(t)V α(σ(t)) = 0, (2.17)
where

Q1(t) = 1
b1(t)

ρ(t)∫

t

1
b2(s)

ρ(s)∫

s

Eα(σ(s1))F (s1)ds1ds,

Q2(t) = Eα
1 (σ(t))F (t)Bα

12(σ(t)),
are oscillatory, then every solution of (1.1) oscillates.
Proof. Suppose that x(t) is a nonoscillatory solution of equation (1.1) such that
x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1 and for some t1 ≥ t0. Then,
by Corollary 2.3, the function x(t) is a positive nonoscillatory solution of (2.2). Hence,
Lemma 2.4 leads to the following: either

y(t) ∈ N0 or y(t) ∈ N2 for t ≥ t1.

At first, we consider the case when y ∈ N0. Then, y(t) satisfies inequality (2.8).
Integrating (2.8) from t to ρ(t) gives

∆2y(t) ≥ k

ρ(t)∫

t

Eα(σ(s))F (s)yα(σ(s))ds

≥ kyα(σ(ρ(t)))
ρ(t)∫

t

Eα(σ(s))F (s)ds.

Then,

(∆1y(t))′ ≥ kyα(σ(ρ(t)))
b2(t)

ρ(t)∫

t

Eα(σ(s))F (s)ds.

Again integrating the last inequality from t to ρ(t), we get

−y′(t) ≥ 1
b1(t)

ρ(t)∫

t

kyα(σ(ρ(s)))
b2(s)

ρ(s)∫

s

Eα(σ(s1))F (s1)ds1ds

≥ kyα(η(t))
b1(t)

ρ(t)∫

t

1
b2(s)

ρ(s)∫

s

Eα(σ(s1))F (s1)ds1ds.



Novel oscillation criteria for third-order semi-canonical differential equations. . . 551

Thus,

y(t) ≥ k

∞∫

t

yα(η(s))
b1(s)

ρ(s)∫

s

1
b2(s1)

ρ(s1)∫

s1

Eα(σ(s2))F (s2)ds2ds1ds := H(t).

Since y(t) ≥ H(t) > 0, we conclude that H is a positive solution of the inequality

H ′(t) + kQ1(t)Hα(η(t)) ≤ 0. (2.18)

Hence, by [23, Theorem 1], we conclude that (2.16) has a positive solution, which
contradicts the fact that (2.16) oscillates.

Next, we consider the case y(t) ∈ N2. Then, we again see that (2.12) and
Lemma 2.7(iii) hold. By Lemma 2.7(iii), we arrive at the following inequality

y(σ(t)) ≥ B12(σ(t))∆2y(σ(t)). (2.19)

Letting V (t) = ∆2y(t), we observe from (2.12) and (2.19) that V is a positive solution
of the inequality

V ′(t) + kEα
1 (σ(t))F (t)Bα

12(σ(t))V α(σ(t)) ≤ 0. (2.20)

The rest of the proof is similar to that of the case y(t) ∈ N0 and hence is omitted.
This ends the proof.

Corollary 2.10. Let α = 1 and let (2.11) and (2.15) hold. If

lim inf
t→∞

t∫

η(t)

Q1(s)ds >
1
ke

, (2.21)

and

lim inf
t→∞

t∫

σ(t)

Q2(s)ds >
1
ke

, (2.22)

then equation (1.1) is oscillatory.

Proof. Application of [17, Theorem 1] (also see [1, Lemma 2.2.9]) with (2.21) and
(2.22) implies that equations (2.16) and (2.17) are oscillatory. Now the conclusion
follows from Theorem 2.9. This ends the proof.

Corollary 2.11. Let α < 1, (2.11) and (2.15) hold. If
∞∫

t0

Q1(s)ds =
∞∫

t0

Q2(s)ds = ∞, (2.23)

then equation (1.1) is oscillatory.
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Proof. It is not difficult to see that the proof follows from η(t) < t and (2.18), and
σ(t) < t and (2.20), respectively.

Corollary 2.12. Let α > 1 and (2.11) hold. Suppose that σ(t) = θ1t, η(t) = θ2t
with θ1, θ2 ∈ (0, 1) and suppose also that there exists ρ(t) = θ3t with θ3 > 1 such that
θ2 = θ1θ2

3. If there exists λ1 > − ln α
ln θ2

such that

lim inf
t→∞

[
Q1(t) exp

(
−tλ1

)]
> 0, (2.24)

and there exists λ2 > − ln α
ln θ1

such that

lim inf
t→∞

[
Q2(t) exp

(
−tλ2

)]
> 0, (2.25)

then every solution of (1.1) oscillates.
Proof. Application of [34, Theorem 4] with (2.24) and (2.25) implies that equations
(2.16) and (2.17) are oscillatory. Now the conclusion follows from Theorem 2.9. This
ends the proof.

Corollary 2.13. Let α > 1 and (2.11) hold. Assume σ(t) = t − θ1, η(t) = t − θ2 with
θ1, θ2 ∈ (0, ∞) and there exists ρ(t) = t + θ3 with θ3 ∈ (0, ∞) such that 2θ3 < θ1. If
there exists λ1 > 1

θ2
ln α such that

lim inf
t→∞

[
Q1(t) exp

(
−eλ1t

)]
> 0, (2.26)

and there exists λ2 > 1
θ1

ln α such that

lim inf
t→∞

[
Q2(t) exp

(
−eλ2t

)]
> 0, (2.27)

then every solution of (1.1) oscillates.
Proof. Application of [34, Theorem 3(i)] with (2.26) and (2.27) yields that equations
(2.16) and (2.17) are oscillatory. Now the conclusion follows from Theorem 2.9. This
ends the proof.

Theorem 2.14. Let (2.11) holds. If

lim sup
t→∞

t∫

σ(t)

F (s)Eα(σ(s))Nα(σ(t), σ(s))ds

{
> 1

k , if α = 1,

= ∞, if α < 1,
(2.28)

where

N(σ(t), σ(s)) =
σ(t)∫

σ(s)

1
b1(s1)

σ(t)∫

s1

1
b2(s2)ds2ds1,

and

lim sup
t→∞

Bα
12(σ(t))

∞∫

t

F (s)Eα
1 (σ(s))ds

{
> 1

k , if α = 1,

= ∞, if α < 1,
(2.29)

then equation (1.1) is oscillatory.
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Proof. Suppose that x(t) is a nonoscillatory solution of equation (1.1) such that
x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for t ≥ t1 and for some t1 ≥ t0. Then, by
Corollary 2.3, the function x(t) is a positive nonoscillatory solution of (2.2). Hence,
Lemma 2.4 leads to the following: Either

y(t) ∈ N0 or y(t) ∈ N2 for t ≥ t1.

First, we assume that y ∈ N0. Then y(t) satisfies (2.8). Using the monotonicity
of ∆2y(t) together with j ≥ u leads to

−∆1y(u) ≥
j∫

u

b2(s)(∆1y(s))′

b2(s) ds ≥ ∆2y(j)
j∫

u

1
b2(s)ds.

An integration of the latter inequality from u to j ≥ u in u yields

y(u) ≥ ∆2y(j)
j∫

u

1
b1(s)

j∫

s

1
b2(s1)ds1ds

= N(j, u)∆2y(j). (2.30)

Putting u = σ(s) and j = σ(t) into (2.30), we get

y(σ(s)) ≥ N(σ(t), σ(s))∆2y(σ(t)). (2.31)

Integrating (2.8) from σ(t) to t and using (2.31), we obtain

∆2y(σ(t)) ≥ k




t∫

σ(t)

F (s)Eα(σ(s))Nα(σ(t), σ(s))ds


 (∆2y(σ(t)))α

,

which can be written as

(∆2y(σ(t)))1−α ≥ k

t∫

σ(t)

F (s)Eα(σ(s))Nα(σ(t), σ(s))ds. (2.32)

Taking lim sup as t → ∞ in (2.32), we obtain a contradiction with (2.28).
Next assume that y ∈ N2. Then y satisfies (2.12) for t ≥ t1. Integrating (2.12)

from t to ∞ and using Lemma 2.7(iii), we obtain

∆2y(t) ≥ k

∞∫

t

F (s)Eα
1 (σ(s))yα(σ(s))ds

≥ kBα
12(σ(t))(∆2y(σ(t)))α

∞∫

t

F (s)Eα
1 (σ(s))ds

≥ kBα
12(σ(t))(∆2y(t))α

∞∫

t

F (s)Eα
1 (σ(s))ds,
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which can be written as

(∆2y(t))1−α ≥ kBα
12(σ(t))

∞∫

t

F (s)Eα
1 (σ(s))ds. (2.33)

Taking lim sup as t → ∞ in (2.33), we obtain a contradiction to (2.29). This completes
the proof.

3. EXAMPLES

In this section, we provide two examples to illustrate the importance of the main
results.

Example 3.1. Consider the linear functional differential equation with an advanced
argument (

t3
(

1
t2 z′(t)

)′)′

+ 4t3x

(√
t

2

)
= 0, t ≥ 1, (3.1)

where z(t) = x(t) + 1
16 x(2t). By a simple computation, we have

A2(t) = 1
2t2 , A12(1) = ∞,

and semi-canonical equation (3.1) reduces to
(

1
t
y′′
)′

+ 4tx

(√
t

2

)
= 0, t ≥ 1,

which is in canonical form. With a further calculation, we see that B1(t) ≈ t,
B2(t) ≈ t2/2, B12(t) ≈ t3/6, k = 1, E(t) = 15/16, and E1(t) = 1/2. Choose ρ(t) = 2t,
we see that η(t) =

√
t and so (2.15) holds. Also,

Q1(t) = 675
32 t4 and Q2(t) = 1

24 t5/2.

The conditions (2.21) and (2.22) are clearly satisfied, and therefore by Corollary 2.10,
equation (3.1) is oscillatory.

Note that σ ◦ τ =
√

t
2 and τ ◦ σ =

√
t, hence the condition σ ◦ τ = τ ◦ σ used

in [10, 14, 27, 35] is not satisfied and the results in these papers cannot be used
for this example. Hence, the results of this paper are more general then the above
mentioned results.

Example 3.2. Consider the third-order sublinear neutral functional differential
equation

(
t3z′′(t)

)′ + atx1/3
(

t

6

)
= 0, t ≥ 1, (3.2)
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where z(t) = x(t) + 1
8 x(2t) and a > 0. By a simple calculation, we have A2(t) = 1/2t2

and A12(t) = 1/2t. The transformed equation is

y′′′(t) + 2a

t
x1/3

(
t

6

)
= 0, t ≥ 1,

which is in canonical form. With further calculation, we see that B1(t) ≈ t, B2(t) ≈ t,
B12(t) = t2/2, k = 1, E(t) = 7/16t, and E1(t) = 1/4t. Choose ρ(t) = 2t, we see that
η(t) = 2t/3 and so (2.15) holds. Also,

Q1(t) = dt2/3,

where
d = 9a(21)1/3(21/3 − 1)(22/3 − 1)

24/3 t2/3,

and
Q2(t) = a

61/3
1

t2/3 .

The conditions (2.23) is clearly satisfied. Therefore, by Corollary 2.11, equation (3.2)
is oscillatory.

4. CONCLUSION

In this paper, first we transform the semi-canonical equation (1.1) into a canonical form
without assuming any extra conditions. Then we apply the comparison method and
integral averaging technique to obtain oscillation criteria for the canonical equation,
which gives the oscillation criteria for the considered semi-canonical equation. Therefore,
one can get many oscillation criteria for equation (1.1) since there are several oscillation
results available in the literature for canonical type equations. Also, the criteria obtained
here rectified the mistake in the proof of [10, Theorem 2.1].
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