
Opuscula Math. 45, no. 4 (2025), 509–521
https://doi.org/10.7494/OpMath.2025.45.4.509 Opuscula Mathematica

ASYMPTOTIC BEHAVIOR OF
THE SOLUTIONS OF OPERATORS

THAT ARE SUM OF PSEUDO p-LAPLACE TYPE

Purbita Jana

Communicated by J.I. Díaz

Abstract. The article investigates a Poisson-type problem for operators that are finite
sum of pseudo p-Laplace-type operators within long cylindrical domains. It establishes
that the rate of convergence is exponential, which is considered optimal. In addition,
the study analyzes the asymptotic behavior of the related energy functional. This
research contributes to a deeper understanding of the mathematical properties and
asymptotic analysis of solutions in this context.
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1. INTRODUCTION

Let Ωℓ := ℓω1 ×ω2 be a cylindrical domain of length ℓ > 0, where ω1 ⊂ Rn−r is convex,
bounded and ω2 ⊂ Rr is a bounded open set. It is also assumed that 0 ∈ ω1. Let us
denote a generic point in Rn by x = (X1, X2) with X1 = (x1, . . . , xn−r) ∈ Rn−r and
X2 = (xn−r+1, . . . , xn) ∈ Rm respectively. ∇, ∇X1 and ∇X2 will denote the gradient
in Rn, Rn−r and Rr, respectively. uxi will denote the partial derivative of u along
xi-th direction. The set ω2 will be referred to as the cross-section of the cylindrical
domains Ωℓ. We consider now qj ∈ R, j = 1, . . . ,m, such that

2 ≤ qm ≤ qm−1 ≤ . . . ≤ q1.

For Ω a bounded subset of Rd, using Hölder’s inequality it is easy to see

Lq1(Ω) ⊆ Lq2(Ω) ⊆ . . . ⊆ Lqm(Ω) ⊆ L2(Ω),

W 1,q1
0 (Ω) ⊆ W 1,q2

0 (Ω) ⊆ . . . ⊆ W 1,qm

0 (Ω) ⊆ W 1,2
0 (Ω).

For a real number p > 1, we define p′ as its conjugate, which satisfies

1
p

+ 1
p′ = 1.
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Recall the definition of the pseudo p-Laplace operator:

Lp(u) := −
n∑

i=1

(
|uxi

|p−2uxi

)
xi
.

In this article, we are interested in studying the Poisson problem for the operator

L(u) :=
m∑

i=1
Lqi

(u).

More precisely, for f ∈ L2(ω2), consider the following problem




−
n∑

i=1







m∑

j=1
|(uℓ)xi

|qj−2


 (uℓ)xi




xi

= f(X2) in Ωℓ,

uℓ = 0 on ∂Ωℓ.

(1.1)

The solution of the above equation is understood in the weak sense and will be defined
explicitly in the next section. The typical functional space for considering solutions to
(1.1) is the Sobolev space W 1,q1

0 (Ωℓ). Existence and uniqueness of the weak solution to
the previous equation are standard; however, for the sake of completeness, we provide
a proof in the appendix. The existence of solutions for the problem above (and for
more general cases) can be found in [19]. The operator under consideration can be seen
as the “finite sums” of pseudo Laplace operators. Pseudo Laplace operators are special
case of anisotropic Laplace operator. For a detailed study of anisotropic Laplacian
operators, we refer to [15, 17].

This article focuses on studying the asymptotic behavior of uℓ as ℓ (the length of
the cylinder) tends to infinity. Recently, a similar analysis was conducted in [5] for
operators that are finite sums of p-Laplace operators, which serves as the primary
motivation for this work. For studies involving a single anisotropic p-Laplace operator,
we refer to [6] and [18].

Consider an analogous equation on the cross-section ω2, which will be useful for
our analysis: follows





−
n∑

i=n−r+1







m∑

j=1
|Wxi

|qj−2


Wxi




xi

= f(X2), in ω2,

W = 0 on ∂ω2.

(1.2)

It is well known that uℓ uniquely satisfies

Jℓ(uℓ) = inf
u∈W

1,q1
0 (Ωℓ)

Jℓ(u),

where Jℓ is the energy functional associated to the problem (1.1) and is defined as

Jℓ(u) =
m∑

j=1

n∑

i=1

1
qj

∫

Ωℓ

|uxi |qjdx−
∫

Ωℓ

fudx.
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Moreover, uℓ is also the unique solution of (1.1) (see Section 4 for proof of this fact).
That is, uℓ satisfies

m∑

j=1

n∑

i=1

∫

Ωℓ

|(uℓ)xi
|qj−2 (uℓ)xi

vxi
dx =

∫

Ωℓ

fvdx, ∀v ∈ W 1,q1
0 (Ωℓ) (1.3)

Similarly, let W be the unique function that satisfies

Jω2(W ) = inf
u∈W

1,q1
0 (ω2)

Jω2(u), (1.4)

where

Jω2(u) =
m∑

j=1

n∑

i=n−r+1

1
qj

∫

ω2

|uxi
|qjdX2 −

∫

ω2

fudX2.

As before, W is the weak solution of(1.2).

Theorem 1.1. For some α ∈ (0, 1) and for some constant C > 0 independent of ℓ,

m∑

j=1

∫

Ωαℓ

|∇(uℓ −W )|qjdx ≤ Ce−αℓ,

where W is extended as a function of X2 in the whole Ωαℓ.

In [18], the proof of Theorem 1.1 is provided for the particular case where
q1 = q2 = . . . = qm = p.

Our next theorem in this direction is the following.

Theorem 1.2 (Convergence of the energy). For some constant C > 0, independent
of ℓ, we have

Jω2(W ) ≤ Jℓ(uℓ)
µn−r(ℓω1) ≤ Jω2(W ) + C

ℓ
.

For related work on semilinear equations, polynomial rate of convergence are
established in [2, 12, 13]. We also refer to [1, 3, 4, 7, 9–11, 14, 20] and the references
therein for a comprehensive survey in this direction and related areas. In particular,
the paper [13] (see also [2]) examines semilinear elliptic problems on infinite cylindrical
domains.

From an application perspective, the above two theorems have significant implica-
tions from a numerical standpoint. They help to reduce computational costs that arise
from the curse of dimensionality, by enabling the study of lower-dimensional problems.
For direct applications, interested readers may refer to [8].

The structure of this article is as follows. In the next section, we introduce the
necessary function spaces, preliminaries, and some key estimates in the form of lemmas.
In the third section, we provide detailed proofs of the main theorems. The final
section is the Appendix, where we provide the proof of existence and uniqueness of uℓ.
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2. PRELIMINARIES

Throughout this article, x = (x1, . . . , xn) ∈ Rn will denote a generic point.
|x| =

(∑n
i=1 x

2
i

) 1
2 will denote its Euclidean norm. |x|p = (

∑n
i=1 |xi|p)

1
p will denote

the ℓp norm of the point x. The following inequality (the equivalence of all finite
dimensional norms) will be used in several places, without making any references:

c1|x| ≤ |x|p ≤ c2|x|, x ∈ Rn, for some constant c1, c2 > 0.

For p ≥ 1, W 1,p(Ω),W 1,p
0 (Ω) will denote usual Sobolev spaces (see [16]). The space

Vp(Ωℓ) :=
{
ϕ ∈ W 1,p(Ωℓ) | ϕ = 0 on ℓω1 × ∂ω2

}

is a subspace of W 1,p(Ω). The Lebesgue measure of a measurable set E ⊂ Rk will be
denoted by µk(E). Throughout this article, the value of the constants will be denoted
by a generic number C > 0 and may change from line to line. We say uℓ ∈ W 1,q1

0 (Ωℓ)
is a weak solution of the problem (1.1) if (1.3) is satisfied.

Now we present some lemmas that will be used in the proofs of the main theorems.

Lemma 2.1 (Uniform Poincaré inequality). Let p > 1. Then there exist a constant
C > 0 (independent of ℓ, ℓ′ and ℓ′′) such that for ℓ′

< ℓ
′′ ≤ ℓ,

∫

Ω
ℓ

′′ \Ωℓ′

|ϕ|pdx ≤
∫

Ω
ℓ

′′ \Ωℓ′

n∑

i=n−r+1
|ϕxi

|pdx ≤ C

∫

Ω
ℓ

′′ \Ωℓ′

n∑

i=1
|ϕxi

|pdx

for all ϕ ∈ Vp(Ωℓ).

Proof. The first inequality is trivial. Let us define

Dp(u) :=
n∑

i=n−r+1
|uxi

|p.

It is sufficient to prove the inequality for ϕ ∈ C∞(Ωℓ) such that ϕ = 0 on ℓω1 × ∂ω2,
as it is a dense subspace of Vp(Ωℓ). Since ω2 is a bounded subset of Rn−r, we can use
the usual Poincaré inequality to obtain

C

∫

ω2

|ϕ|pdX2 ≤
∫

ω2

|∇X2ϕ|pdX2.

Then using the inequality Dp(ϕ) ≥ |∇X2ϕ|p together with the previous inequality,
we get

C

∫

ω2

|ϕ|pdX2 ≤
∫

ω2

Dp(ϕ)dX2.

Integrating both sides over the set ℓ′′
ω1 \ ℓ′ω1 finishes the proof of the lemma.
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Lemma 2.2. There exist a constant C > 0, independent of ℓ,
∫

Ωℓ

|∇(uℓ −W )|qidx ≤ Cℓn−r for i = 1, . . . ,m.

Proof. Taking v = uℓ in (1.3), we obtain
n∑

i=1

m∑

j=1

∫

Ωℓ

|(uℓ)xi
|qjdx =

∫

Ωℓ

fuℓdx.

For a fixed j ∈ {1, . . . ,m}, using Hölder’s inequality, we have

n∑

i=1

∫

Ωℓ

|(uℓ)xi
|qjdx ≤

∫

Ωℓ

fuℓdx ≤




∫

Ωℓ

fq′
jdx




1/q′
j




∫

Ωℓ

u
qj

ℓ dx




1/qj

,

where 1/qj +1/q′
j = 1. In the last inequality, we dropped m−1 terms of the summation,

keeping only the j-th term. Now, using the uniform Poincaré inequality in Lemma 2.1
with p = qj , ℓ

′′ = ℓ and ℓ′ = 0 we have
∫

Ωℓ

n∑

i=1
| (uℓ)xi |qjdx ≤ C|f |qj

Lqj (ω2)|ω1|ℓn−r,

for some C independent of ℓ. Finally,
∫

Ωℓ

|∇(uℓ −W )|qjdx ≤ C

n∑

i=1

∫

Ωℓ

|(uℓ)xi
|qj + |Wxi

|qjdx ≤ Cℓn−r

This finishes the proof of the lemma.

Lemma 2.3. If p ≥ 2, then there exists a constant Cp > 0 such that
n∑

i=1

(
|xi|p−2xi − |yi|p−2yi

)
(xi − yi) ≥ Cp|x− y|p

for all x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn.

Proof. See [18].

Lemma 2.4. The function Vℓ(X1, X2) := W (X2) ∈ Vq1(Ωℓ), where W is as in (1.4),
satisfies the following equation weakly, for each ℓ > 0:





− ∑n
i=1

(∑m
j=1 |(Vℓ)xi

|qj−2(Vℓ)xi

)
xi

= f(X2) in Ωℓ,

Vℓ = 0 on ℓω1 × ∂ω2,

Vℓ = W on ∂(ℓω1) × ω2.
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Proof. For any v ∈ Vq1(Ωℓ), we have to prove the following:
n∑

i=1

m∑

j=1

∫

Ωℓ

|(Vℓ)xi |qj−2(Vℓ)xivxidx =
∫

Ωℓ

f(X2)vdx.

Using Fubini’s theorem, we get
n∑

i=1

m∑

j=1

∫

Ωℓ

|(Vℓ)xi
|qj−2(Vℓ)xi

vxi
dx

=
∫

ℓω1




n∑

i=n−r+1

m∑

j=1

∫

ω2

|(W )xi
(_, X2)|qj−2Wxi

(_, X2)vxi
(_, X2)dX2


 dX1.

Now, using the weak formulation of equation (1.2) and applying Fubini’s theorem
again, we obtain

n∑

i=1

m∑

j=1

∫

Ωℓ

|(Vℓ)xi
|qj−2(Vℓ)xi

vxi
dx =

∫

ℓω1




∫

ω2

f(X2)v(_, X2)dX2


 dX1

=
∫

Ωℓ

f(X2)vdx.

This finishes the proof of the lemma.

3. PROOFS OF THE THEOREMS

We now turn to the proof of our first result – Theorem 1.1.

Proof of Theorem 1.1. Since uℓ satisfies (1.1) weakly, this means for any v ∈ W 1,q1
0 (Ωℓ)

one has
n∑

i=1

m∑

j=1

∫

Ωℓ

|(uℓ)xi
|qj−2(uℓ)xi

vxi
dx =

∫

Ωℓ

f(X2)vdx.

This together with Lemma 2.4 gives for all v ∈ W 1,q1
0 (Ωℓ),

k∑

j=1

m∑

i=1

∫

Ωℓ

((uℓ)xi |qj−2(uℓ)xi − |Wxi |qj−2Wxi)vxidx = 0.

For ℓ′ ∈ (0, ℓ− 1), let ρℓ′ be a function, whose precise properties will be specified later,
such that v(= vℓ) := ρℓ(uℓ −W ) ∈ W 1,q1

0 (Ωℓ). Substituting this v into the previous
equation yields

m∑

j=1

n∑

i=1

∫

Ωℓ

(
|(uℓ)xi

|qj−2(uℓ)xi
− | Wxi

|qj−2Wxi

)
{(uℓ −W )(ρℓ)xi

+ ρℓ(uℓ −W )xi
}dx = 0.
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Hence, we have
m∑

j=1

n∑

i=1

∫

Ωℓ

(
|(uℓ)xi

|qj−2(uℓ)xi
− | Wxi

|qj−2Wxi

)
(uℓ −W )xi

ρℓdx

= −
m∑

j=1

n∑

i=1

∫

Ωℓ

(
|(uℓ)xi |qj−2(uℓ)xi− | Wxi |qj−2Wxi

)
(uℓ −W )(ρℓ)xidx.

Now, applying the inequality from Lemma 2.3, we obtain

C

m∑

j=1

∫

Ωℓ

ρℓ|∇(uℓ −W )|qjdx

≤
m∑

j=1

n∑

i=1

∫

Ωℓ

(
|(uℓ)xi

|qj−2(uℓ)xi
− | Wxi

|qj−2Wxi

)
(W − uℓ)(ρℓ)xi

dx.

Taking modulus on both sides of the equation above and using triangle inequality
together making the choice of ρℓ′ , a function of X1 satisfying the following properties:

0 ≤ ρℓ′ ≤ 1, ρℓ′ = 1 on Ωℓ′ , ρℓ′ = 0 outside Ωℓ′+1 and |∇X1ρℓ′ | ≤ 1,

we get

C

m∑

j=1

∫

Ωℓ

ρℓ|∇(uℓ −W )|qjdx

≤
m∑

j=1

n∑

i=1

∫

Ωℓ′+1\Ωℓ′

∣∣|(uℓ)xi
|qj−2(uℓ)xi

− |Wxi
|qj−2Wxi

∣∣ |uℓ −W | |(ρℓ)xi
| dx.

Now, |(ρℓ)xi
| ≤ 1, so

C

m∑

j=1

∫

Ωℓ

ρℓ|∇(uℓ −W )|qjdx ≤
m∑

j=1

n−r∑

i=1

∫

Ωℓ′+1\Ωℓ′

|(uℓ −W )xi
|qj−1|uℓ −W |dx.

Using Hölder’s inequality and Poincaré inequality, we have

C

m∑

j=1

∫

Ωℓ

ρℓ|∇(uℓ −W )|qjdx

≤
m∑

j=1

n−r∑

i−1




∫

Ωℓ′+1\Ωℓ′

|(uℓ −W )xi |qjdx




qj −1
qj




∫

Ωℓ′+1\Ωℓ′

|uℓ −W |qjdx




1
qj

.
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Now, using the uniform Poincaré inequality (Lemma 2.1), we have

|(uℓ −W )xi |q ≤ |∇(uℓ −W )|q.

Substituting this into the right-hand side of the above expression, we obtain, for some
constant C > 0,

m∑

j=1

∫

Ωℓ′

|∇(uℓ −W )|qjdx ≤ C

C + 1




m∑

j=1

∫

Ωℓ′+1

|∇(uℓ −W )|qjdx


 .

Now, by iterating the above inequality with the choice ℓ′ = ℓ
2 ,

ℓ
2 + 1, ℓ

2 + 2, . . . , ℓ
2 + [ ℓ

2 ],
where [ ℓ

2 ] denotes the greatest integer less than or equal to ℓ
2 , we obtain

m∑

j=1

∫

Ω ℓ
2

|∇(uℓ −W )|qjdx ≤
(

C

C + 1

)[ℓ/2]




∫

Ωℓ/2+[ℓ/2]

m∑

j=1
|∇(uℓ −W )|qjdx





≤
(

C

C + 1

)[ℓ/2]




∫

Ωℓ

m∑

j=1
|∇(uℓ −W )|qjdx



 .

Rewriting the above equation differently, we obtain

k∑

j=1

∫

Ω ℓ
2

|∇(uℓ −W )|qjdx ≤ e[ℓ/2] log( C
C+1 )





m∑

j=1

∫

Ωℓ

|∇(uℓ −W )|qjdx



 .

The proof of the theorem for α = 1
2 follows by applying Lemma 2.2 and noting that

log( C
C+1 ) < 0. The result follows by appropriately choosing the number of iterations

used earlier.

Now we present the proof of Theorem 1.2

Proof of Theorem 1.2. Consider the sequences of test function ψℓ ∈ W 1,q1
0 (Ωℓ)

defined as

ψℓ(X2) := 1
µn−r(ℓω1)

∫

ℓω1

uℓ(_, X2)dX1.

Since we have
Jω2(W ) = inf

u∈W
1,q1
0 (ω2)

Jω2(u),
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this implies that for ℓ > 0,

Jω2(W ) ≤ Jω2(ψℓ) =
m∑

j=1

1
qj




n∑

i=n−r+1

∫

ω2

|(ψℓ)xi
|qjdX2


 −

∫

ω2

fψℓdX2

=
m∑

j=1

1
qj




n∑

i=n−r+1

∫

ω2

∣∣∣∣∣∣
1

µn−r(ℓω1)

∫

ℓω1

(uℓ)xi(_, X2)dX1

∣∣∣∣∣∣

qj

dX2




−
∫

ω2

f(X2)
µn−r(ℓω1)




∫

ℓω1

uℓ(_, X2)dX1


 dX2.

Now using Jensen’s inequality for the integrals, one has

µn−r(ℓω1)Jω2(W ) ≤
m∑

j=1

1
qj




n∑

i=n−r+1

∫

ω2

∫

ℓω1

|(uℓ)xi(_, X2)|qj dX1dX2




−
∫

ω2

∫

ℓω1

fuℓ(X1, X2)dX1dX2

≤
m∑

j=1

1
qj




n∑

i=1

∫

Ωℓ

|(uℓ)xi |qj dx


 −

∫

Ωℓ

fuℓdx = Jℓ(Ωℓ).

For the second inequality, first we consider a Lipschitz continuous cutoff function
ρℓ = ρℓ(X1), 0 ≤ ρℓ ≤ 1, |∇X1ρℓ| ≤ C. We also further assume that ρℓ = 1 on
(ℓ − 1)ω1 and ρℓ = 0 on ∂(ℓω1). Since the function ρℓ(X1)W (X2) ∈ W 1,q1

0 (Ωℓ), we
have Jℓ(uℓ) ≤ Jℓ(ρℓW ). Now, estimating the right-hand side, we have

Jℓ(ρℓW ) = Jℓ−1(W ) −
∫

Ωℓ\Ωℓ−1

fρℓWdx

+
m∑

j=1

1
qj




n∑

i=1

∫

Ωℓ\Ωℓ−1

|(ρℓW )xi|qjdx




= Jℓ(W )

+





m∑

j=1

1
qj




n∑

i=1

∫

Ωℓ\Ωℓ−1

|(ρℓW )xi|qjdx


 −

∫

Ωℓ\Ωℓ−1

(fρℓW − fW )dx





−





m∑

j=1

1
qj




n∑

i=1

∫

Ωℓ\Ωℓ−1

|Wxi
|qjdx








= µn−r(ℓω1)Jω2(W ) + Aℓ.
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We estimate the first term of Aℓ and the rest term can be treated in a similar manner:
m∑

j=1

1
qj

( n∑

i=1

∫

Ωℓ\Ωℓ−1

|(ρℓW )xi|qjdx

)

≤
m∑

j=1

C

qj

( n∑

i=1

∫

Ωℓ\Ωℓ−1

|ρℓWxi
|qj + |W (ρℓ)xi

|qjdx

)
.

Using the properties of ρℓ, we can further estimate and, for some other constant
DW > 0, obtain

Aℓ ≤
m∑

j=1

C

qj




n∑

i=1

∫

Ωℓ\Ωℓ−1

|Wxi
|qj + |W |pdx


 = DW

p
µn−r(ℓω1\(ℓ−1)ω1) = Cℓn−r−1.

Combining the above estimates, we get

Jℓ(uℓ)
µn−r(ℓω1) ≤ Jω2(W ) + C

ℓ
.

This finishes the proof of the theorem.

4. APPENDIX

We will show the following claim:

Jℓ(uℓ) = inf
u∈W

1,q1
0 (Ωℓ)

Jℓ(u).

Proof. Fix ℓ > 0. First we have to show that

inf
u∈W

1,q1
0 (Ωℓ)

Jℓ(u) > −∞.

By definition, for u ∈ W 1,q1
0 (Ωℓ),

Jℓ(u) =
m∑

j=1

n∑

i=1

1
qj

∫

Ωℓ

|uxi
|qjdx−

∫

Ωℓ

fudx ≥
n∑

i=1

1
q1

∫

Ωℓ

|uxi
|q1dx−

∫

Ωℓ

fudx.

Now using Young’s inequality, for a, b ∈ R and ϵ > 0, p > 1,

ab ≤ ϵap + 1
ϵ
bp′
,

we get

Jℓ(u) ≥
n∑

i=1

1
q1

∫

Ωℓ

|uxi |q1dx− 1
ϵ

∫

Ω

|f |q′
1dx− ϵ

∫

Ω

|u|q1dx.
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Now using (2.2), we have for some constant C > 0,

Jℓ(u) ≥ (C − ϵ)
∫

Ω

|u|q1dx− 1
ϵ

∫

Ω

|f |q′
1dx ≥ −1

ϵ

∫

Ω

|f |q′
1dx.

The last inequality is ensured by choosing small ϵ > 0. Now the next step is to show
that the infimum value is achieved by a unique function u0 ∈ W 1,q1(Ωℓ). Let un be
a minimizing sequence, that is,

Jℓ(un) → inf
u∈W

1,q1
0 (Ωℓ)

Jℓ(u).

This implies that

Jℓ(un) =
m∑

j=1

n∑

i=1

1
qj

∫

Ωℓ

|(un)xi |qjdx−
∫

Ωℓ

fundx ≤ M.

Dropping all the terms in the double summation, except for the term containing the
exponent q1, we have

n∑

i=1

1
q1

∫

Ωℓ

|(un)xi |q1dx ≤ M +
∫

Ωℓ

fundx. (4.1)

Now, using Lemma (2.2) together with Young’s inequality, one can show that the
sequence un is uniformly bounded in W 1,q1

0 (Ωℓ) and hence weakly converges to some
function uℓ. By the lower semicontinuity of the functional Jℓ, it follows that

Jℓ(uℓ) = inf
u∈W

1,q1
0 (Ωℓ)

Jℓ(u).

The uniqueness of the function uℓ follows from the strict convexity of the functional Jℓ.
Therefore, it remains to show that uℓ is a weak solution of (1.1). This part is standard
and can be obtained by differentiating the real-valued function

f(t) := Jℓ(uℓ + tϕ)

at t = 0, where ϕ is an arbitrary function in C∞
c (Ωℓ), and using the fact that f attains

its minimum at t = 0.
Let uℓ and vℓ be two different solutions of (1.1). Then we have

m∑

j=1

n∑

i=1

∫

Ωℓ

|(uℓ)xi
|qj−2 (uℓ)xi

vxi
dx

−
m∑

j=1

n∑

i=1

∫

Ωℓ

|(vℓ)xi |qj−2 (vℓ)xivxidx = 0, ∀v ∈ W 1,q1
0 (Ωℓ).
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That is,
m∑

j=1

n∑

i=1

∫

Ωℓ

{
|(uℓ)xi

|qj−2 (uℓ)xi
− |(vℓ)xi

|qj−2 (vℓ)xi

}
vxi

dx = 0, ∀v ∈ W 1,q1
0 (Ωℓ).

Choosing v = uℓ − vℓ and using (2.3), we obtain

m∑

j=1
Cpj

∫

Ωℓ

|∇(uℓ − vℓ)|pjdx = 0.

Hence, uℓ = vℓ almost everywhere.
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