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Abstract. It is known that the discrete matrix Riccati equation has the order
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and the order preserving property holds for all such symmetric matrices.
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1. INTRODUCTION AND MOTIVATION

In the whole paper we denote by S the set of real symmetric n×n matrices and by S2
the set of real symmetric 2 × 2 matrices. For any two symmetric matrices Q, Q̂ ∈ S,
by the inequality Q ≤ Q̂ we mean that the symmetric matrix Q̂−Q is non-negative
definite. The 2n× 2n matrix S = [ A B

C D ] with block entries A, B, C, D is symplectic if

ATC = CTA, BTD = DTB, ATD − CTB = I,

where A,B, C,D are n× n matrices.
A function f : S → S has the order preserving property on a set M ⊆ S if

Q ≤ Q̂ ⇔ f(Q) ≤ f(Q̂) for all Q, Q̂ ∈ M ⊆ S. (1.1)

There are known results about the order preserving property of the discrete matrix
Riccati equation,

R[Q]k := Qk+1(Ak + BkQk) − (Ck + DkQk) = 0,

where Ak, Bk, Ck, Dk, and Qk are real n × n matrices, Qk are symmetric and the
2n × 2n matrices Sk with block entries Ak, Bk, Ck, Dk are symplectic. See e.g. [5].
The following more general form of this result is formulated in [8].
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Proposition 1.1 ([8, Corollary 2.7]). Let S = [ A B
C D ] be a symplectic 2n× 2n matrix

and Q, Q̂ ∈ S be such that both inverses (A + BQ)−1 and (A + BQ̂)−1 exist and
both inequalities (A + BQ)−1B ≤ 0, (A + BQ̂)−1B ≤ 0 hold, or both inequalities
(A + BQ)−1B ≥ 0, (A + BQ̂)−1B ≥ 0 hold. Then

Q ≤ Q̂ ⇔ (C + DQ)(A + BQ)−1 ≤ (C + DQ̂)(A + BQ̂)−1.

The question is, if there exist symmetric matrix functions with the order preserving
property that are not of this Riccati type, i.e. not defined as

f(Q) = (C + DQ)(A + BQ)−1.

A corresponding result in the continuous case was formulated in [6] by Stokes.
It says that if a symmetric matrix differential equation has the order preserving
property and the matrix dimension is n ≥ 2, then this equation is the continuous
matrix Riccati equation. Converse results for the continuous case were published by
Reid in [4] and Coppel in [1].

In the discrete case, there is a result regarding this problem, published in [7],
but modified assumptions are required there.

By the symmetric matrix function f : S → S we mean here any function mapping
S to S. Another commonly used meaning of the term “matrix function” is a function
derived from a scalar function by applying this function to the eigenvalues of the
matrix. Such types of functions are studied e.g. in [2]. There are many results about
monotonicity of such matrix functions (called also operator monotone), which were
studied already by Löwner in [3]. The order preserving property is often formulated
only as an implication,

Q ≤ Q̂ ⇒ f(Q) ≤ f(Q̂), for all Q, Q̂ ∈ M ⊆ S, (1.2)

compared to the order preserving property (1.1), which is an equivalence. Löwner
showed in [3, p. 187] that if the matrix dimension n = 2, the only function such that
it has property (1.2) together with its inverse on a suitable set M , is the function
derived from the scalar function f(q) = c+dq

a+bq , where a, b, c, d, q are real numbers.
In this paper we formulate and prove the converse of Proposition 1.1 for the case

when B = 0 and n = 2.

1.1. PROBLEM FORMULATION

First, we rewrite Proposition 1.1 in a more suitable form.

Proposition 1.2. Let S = [ A B
C D ] be a symplectic 2n × 2n matrix and let function

f : S → S be defined as f(Q) = (C + DQ)(A + BQ)−1. Then f has property (1.1)
on M+ and f has property (1.1) on M−, where

M+ = {Q ∈ S : (A + BQ)−1 exists, (A + BQ)−1B ≥ 0},
M− = {Q ∈ S : (A + BQ)−1 exists, (A + BQ)−1B ≤ 0}.
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Now, if B = 0, then M+ = M− = S, and further, if the matrix S = [ A 0
C D ]

is symplectic, then
ATC = CTA, ATD = I

and
(C + DQ)(A + BQ)−1 = (C + AT−1Q)A−1 = CA−1 + AT−1QA−1.

The matrix CA−1 is symmetric and the matrix A−1 is invertible. Proposition 1.2
becomes the following.

Proposition 1.3. Let f : S → S be defined as f(Q) = K + LTQL, where K is
a symmetric n×n matrix and L is an invertible n×n matrix. Then f has property (1.1)
on the whole S.

Proof of this proposition is trivial. The converse of this proposition may be
formulated as follows.

Hypothesis 1.4. Let n ≥ 2 and f : S → S be a continuous function such that f has
property (1.1) on the whole S. Then f is of the form f(Q) = K + LTQL, where K is
a symmetric n× n matrix and L is an invertible n× n matrix.

In this paper we present the proof of this hypothesis for the case when n = 2.
To prove this, we use geometric approach, where any symmetric 2×2 matrix represents
a point in 3-dimensional space and the set of all positive definite matrices is a cone
in this space.

Notation 1.5. Let A ∈ S. Denote

K+(A) := {Q ∈ S : Q ≥ A}, K+
0 (A) := {Q ∈ K+(A) : det(Q−A) = 0},

K−(A) := {Q ∈ S : Q ≤ A}, K−
0 (A) := {Q ∈ K−(A) : det(Q−A) = 0},

K(A) := K+(A) ∪K−(A), K0(A) := K+
0 (A) ∪K−

0 (A).

2. AUXILIARY LEMMAS

In this section is n = 2 and S = S2 is the set of real symmetric 2 × 2 matrices.
This section contains auxiliary lemmas, statements of which are mostly obvious from
a geometric point of view, they follow from the basic theory of linear algebra and
geometry. To ensure the correctness of all proofs, we present them all here in our
non-geometric notation. These lemmas will be used in Section 3, which deals with the
properties of the function f .

Lemma 2.1. Let Q ∈ S2 be such that det(Q) = 0 and Q ̸= 0. Then there exist unique
φ ∈ [0, 2π) and r ∈ R such that

Q = r

(
I +

[
cosφ sinφ
sinφ − cosφ

])
. (2.1)
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Proof. If Q ∈ S2, det(Q) = 0 and Q ̸= 0, then there exist unique x, z, σ ∈ R such that
Q = σ

[
x2 xz
xz z2

]
and σ = ±1, where x2 + z2 ≠ 0. We take r := σ x

2+z2

2 and φ ∈ [0, 2π)
such that cos φ2 = x√

2|r|
, sin φ

2 = z√
2|r|

. The relation (2.1) follows from the basic
trigonometric identities.

We will now introduce a possible geometric view, that is useful for a better idea
of all this. Each symmetric 2 × 2 matrix Q with zero determinant can be uniquely
represented by a point in 3-dimensional space. We take the point with the spherical
coordinates r, φ and π

4 or 3π
4 (radial distance is r, azimuthal angle is φ, and polar

angle is π
4 or 3π

4 , depending on the sign of the diagonal elements of the matrix), where
r, φ are given from relation (2.1). The matrix, which is represented by the point with
spherical coordinates 1, φ and π

4 , we denote U(φ).

Notation 2.2. Let φ ∈ [0, 2π). Denote

U(φ) := I +
[
cosφ sinφ
sinφ − cosφ

]
.

Remark 2.3. The point, which is represented by the sum U(φ) +U(φ+ π) = 2I, lies
on the z-axis. The point, which is represented by the difference U(φ) − U(φ+ π) =
2(U(φ) − I), is the projection of 2U(φ) to the xy-plane.

We will further work with the following two types of sets.

Notation 2.4. Let A ∈ S2 and φ,ψ, θ ∈ [0, 2π). Denote

lφ(A) := {A+ tU(φ) : t ∈ R} ,
pψ,θ(A) := {A+ rU(ψ) + sU(θ) : r, s ∈ R} .

In our geometric view, the set lφ(A) is represented by the straight line passing
through the point A, with the polar angle of the direction vector π

4 and azimuthal
angle φ. We will refer to this type of line as π

4 -line. The π
4 -lines lφ(A) and lφ+π(A)

are perpendicular.
The set pψ,θ(A) is then the plane given by the point A and the π

4 -lines lψ(A), lθ(A).
We will refer to this type of plane as π

4 -plane. The π
4 -plane pψ,ψ+π(A) is vertical.

The set K0(A) from Notation 1.5 is (for n = 2) the right circular double cone with
angle π

4 and with vertex at the point A. We will refer to this surface simply as the
cone with vertex at the point A, since no other types of cones appear in this text.
The set K+

0 (A) is the upper half of this cone and the set K−
0 (A) is its lower half.

The following three lemmas contain auxiliary identities that will be used later
in the proofs.
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Lemma 2.5. Let φ, α, β ∈ [0, 2π). The following identities hold:

det (U(φ) − I) = −1, (2.2)
[U(α) − I][U(α) − I] = I, (2.3)

[U(α) − I][U(β) − I] =
[
cos(α− β) − sin(α− β)
sin(α− β) cos(α− β)

]
, (2.4)

[U(α) − I]U(φ)[U(α) − I] = U(2α− φ). (2.5)

Proof. The identities can be proven directly with use of the basic trigonometric
identities.

Lemma 2.6. Let φ ∈ [0, 2π). The following identities hold:
[
U

(
φ
2

)
− I

]
U(φ)

[
U

(
φ
2

)
− I

]
= U(0) =

[
2 0
0 0

]
,

[
U

(
φ
2

)
− I

]
U(φ+ π)

[
U

(
φ
2

)
− I

]
= U(−π) =

[
0 0
0 2

]
,

[
U

(
φ
2

)
− I

] [
U(φ+ π

2 ) − I
] [
U

(
φ
2

)
− I

]
= U

(
−π

2
)

− I =
[

0 −1
−1 0

]
.

(2.6)

Proof. The identities follow from identities (2.3), (2.5) in Lemma 2.5.

Lemma 2.7. Let α1, . . . , αk, β ∈ [0, 2π), and a1, . . . , ak, b ∈ R. Then the identity

2b
k∑

i=1
ai(1 − cos(β − αi)) = − det

k∑

i=1
aiU(αi)

holds if and only if there exist γ ∈ [0, 2π), c ∈ R such that

a1U(α1) + a2U(α2) + . . .+ akU(αk) + bU(β) = cU(γ). (2.7)

Proof. We multiply equation (2.7) by the matrix U
(
β
2

)
− I from both the left and

the right and then use identity (2.5) to obtain the equivalent equation
k∑

i=1
aiU(β − αi) + bU(0) = cU(β − γ).

Hence, there exist γ ∈ [0, 2π), c ∈ R such that the equation holds if and only if
the determinant of the matrix on the left is zero, that is

0 = det
[

k∑

i=1
aiU(β − αi) + bU(0)

]

= det
k∑

i=1
aiU(αi) + 2b

k∑

i=1
ai(1 − cos(β − αi)),

where we used that det
∑k
i=1 aiU(β − αi) = det

∑k
i=1 aiU(αi), which follows from

identity (2.2). This completes the proof.
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The lemmas, that are presented in the rest of this section, have obvious geometric
meanings. Sometimes it is more convenient to consider a representation of a matrix
not as a point, but as a vector starting at 0 and ending at a given point. The next
two lemmas say, that any vector in 3-dimensional space can be written as a linear
combination of 3 mutually perpendicular vectors U(φ), U(φ+ π) and U(φ+ π

2 ) − I
for any φ, and any vector can be written as a linear combination of 2 mutually
perpendicular vectors U(φ), U(φ+ π) for some φ. Then φ or φ+ π is the azimuthal
angle of this vector.
Lemma 2.8. Let A ∈ S2 and φ ∈ [0, 2π). Then there exist a, b, c ∈ R such that

A = aU(φ) + bU(φ+ π) + c
(
U(φ+ π

2 ) − I
)
. (2.8)

Moreover, equation (2.8) is equivalent with
[

2a −c
−c 2b

]
=

[
U

(
φ
2

)
− I

]
A

[
U

(
φ
2

)
− I

]
. (2.9)

Proof. Equation (2.9) is equivalent with
[
U

(
φ
2

)
− I

]
A

[
U

(
φ
2

)
− I

]
= aU(0) + bU(−π) + c

(
U

(
−π

2
)

− I
)
,

A =
[
U

(
φ
2

)
− I

] [
aU(0) + bU(−π) + c

(
U

(
−π

2
)

− I
)] [

U
(
φ
2

)
− I

]
.

The conclusion follows from identities (2.3), (2.6).

Lemma 2.9. Let A ∈ S2. Then there exists φ ∈ [0, 2π) and a, b ∈ R such that

A = aU(φ) + bU(φ+ π). (2.10)

Moreover, if A > 0, then a > 0, b > 0.
Proof. By Lemma 2.8, we have that it suffices to show that there exists such φ ∈ [0, 2π)
that the matrix

[
U

(
φ
2

)
− I

]
A

[
U

(
φ
2

)
− I

]
is diagonal. The matrix U

(
φ
2

)
− I is

orthonormal and can be found by eigendecomposition of the matrix A. The coefficients
2a, 2b are the eigenvalues of the matrix A.

Lemma 2.10. Let φ, δ ∈ [0, 2π) and a, b, c, d ∈ R be such that

aU(φ) + bU(φ+ π) + c
(
U(φ+ π

2 ) − I
)

= dU(δ). (2.11)

Then
aU(φ) + bU(φ+ π) − c

(
U(φ+ π

2 ) − I
)

= dU(2φ− δ). (2.12)
Moreover, for all φ ∈ [0, 2π) it holds that c2 = 4ab if and only if there exist δ ∈ [0, 2π)
and d ∈ R such that (2.11) holds.
Proof. We multiply both sides of equation (2.11) by the matrix U(φ) − I and then,
using identity (2.5), we obtain

aU(φ) + bU(φ− π) + c
(
U

(
φ− π

2
)

− I
)

= dU(2φ− δ),
aU(φ) + bU(φ+ π) − c

(
U(φ+ π

2 ) − I
)

= dU(2φ− δ).
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Further, Lemma 2.8, (2.9) yields that equation (2.11) is equivalent with
[

2a −c
−c 2b

]
=

[
U

(
φ
2

)
− I

]
dU(δ)

[
U

(
φ
2

)
− I

]
,

and this implies that 0 = det
[ 2a −c

−c 2b
]

= 4ab− c2. Conversely, if det
[ 2a −c

−c 2b
]

= 0, then
there exist δ ∈ [0, 2π) and d ∈ R such that (2.11) holds.

The geometric meaning of the next lemma is, that if a linear combination of two
vectors with the polar angle π

4 or 3π
4 is again a vector with the polar angle π

4 or 3π
4 ,

then one of these vectors is a multiple of the other. This lemma has also an algebraic
meaning, namely that if the sum of two nonzero symmetric 2 × 2 matrices with zero
determinants has also zero determinant, then one of these matrices is a multiple of
the other.

Lemma 2.11. Let α, β, γ ∈ [0, 2π), and a, b, c ∈ R be such that

aU(α) + bU(β) + cU(γ) = 0. (2.13)

If a ̸= 0, b ̸= 0, then α = β. If α ̸= β ̸= γ ̸= α, then a = b = c = 0.

Proof. Lemma 2.7 applied to (2.13) yields that

2ab(1 − cos(β − α)) = − det aU(α) = 0

and this implies that if a ̸= 0, b ̸= 0, then α = β and if α ̸= β, then either a = 0
or b = 0. The same statements hold for the pairs α, γ and β, γ, which together with
(2.13) implies that if α ̸= β ̸= γ ̸= α, then a = b = c = 0.

Lemma 2.12. Let α1, α2 ∈ [0, 2π), α1 < α2 and a1, a2, c ∈ R, c ̸= 0 be such that

a1U(α1) + a2U(α2) = cI. (2.14)

Then α2 = α1 + π and a1 = a2 = c
2 .

Proof. We write (2.14) as

a1 [U(α1) − I] + a2 [U(α2) − I] = (c− a1 − a2)I,

and this equation holds if and only if both its sides are zero matrices, thus c = a1 + a2.
By substituting this into (2.14) we further get

a1U(α1) + a2U(α2) = (a1 + a2)I = a1 + a2
2 (U(α1) + U(α1 + π)),

a1 − a2
2 U(α1) + a2U(α2) − a1 + a2

2 U(α1 + π) = 0.

Lemma 2.11 applied to this equation yields that a1 = a2, because α1 ̸= α2 and
α1 ̸= α1 + π. Then a2U(α2) − a2U(α1 + π) = 0, thus α2 = α1 + π.
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Lemma 2.13. Let α1, . . . , αk, β1, β2, γ ∈ [0, 2π), β1 ≠ β2 and a1, . . . , ak ∈ R, b, c ∈ R
be such that

a1U(α1) + a2U(α2) + . . .+ akU(αk) + b(U(β1) + U(β2)) = cU(γ). (2.15)

If 0 ≤ ai, i = 1, . . . , k, then b ≤ 0.

Proof. We will suppose that b ̸= 0. Similarly, as in the proof of Lemma 2.12, we get
from (2.15) that c = 2b+

∑k
i=1 ai and

k∑

i=1
ai [U(αi) − I] + b [U(β1) − I] + b [U(β2) − I] = c [U(γ) − I] . (2.16)

Since b ̸= 0, β1 ̸= β2 and 0 ≤ ai, i = 1, . . . , k, equation (2.16) yields |c| < ∑k
i=1 ai+2|b|.

From this, by substituting
∑k
i=1 ai = c− 2b, we further get |c| < c− 2b+ 2|b|, which

implies that b < 0.

Lemma 2.14. Let α1, . . . , αk ∈ [0, 2π), a1, . . . , ak ∈ R. Then there exists γ ∈ [0, 2π)
and c ∈ R, c ≥ 0 such that

a1 [U(α1) − I] + a2 [U(α2) − I] + . . .+ ak [U(αk) − I] = c [U(γ) − I] , (2.17)

and c2 = − det
∑k
i=1 ai [U(αi) − I].

Proof. There exist a, b ∈ R such that

k∑

i=1
ai [U(αi) − I] =

[
a b
b −a

]
=

√
a2 + b2

[
a√

a2+b2
b√

a2+b2
b√

a2+b2
−a√
a2+b2

]
,

− det
k∑

i=1
ai [U(αi) − I] = a2 + b2.

Further, there exist γ ∈ [0, 2π) and c ∈ R such that cos γ = a√
a2+b2 , sin γ = b√

a2+b2 ,
c =

√
a2 + b2, c ≥ 0.

Lemma 2.15. Let A,D ∈ S2, α ∈ [0, 2π) be such that lα(A) ∩ K0(D) = ∅. Then
the following propositions hold.

(i) For all t ∈ R, t ̸= 0 and all δ ∈ [0, 2π), δ ≠ α, the intersection lα(A) ∩K0(D +
tU(δ)) is nonempty.

(ii) For all δ ∈ [0, 2π), δ ̸= α, except one, the intersection lδ(A) ∩K0(D) is nonempty.

Proof. Let δ ∈ [0, 2π), δ ̸= α. The intersection lα(A) ∩ K0(D + tU(δ)) is nonempty
if and only if there exist a, b ∈ R, β ∈ [0, 2π) such that

A+ aU(α) = D + tU(δ) + bU(β). (2.18)
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Let γ ∈ [0, 2π), c, d ∈ R be such that

A−D = cU(γ) + dU(γ + π).

Existence of such constants follows from Lemma 2.9. Then (2.18) is equivalent with

aU(α) + cU(γ) + dU(γ + π) − tU(δ) − bU(β) = 0.

Lemma 2.7 applied to this equation yields that (2.18) holds for some a, b ∈ R, β ∈ [0, 2π)
if and only if

2a
[
c(1 − cos(α− γ)) + d(1 − cos(α− γ − π)) − t(1 − cos(α− δ))

]

= − det [cU(γ) + dU(γ + π) − tU(δ)]
(2.19)

holds for some a ∈ R. Denote the coefficient at a as

k(t) := c(1 − cos(α− γ)) + d(1 − cos(α− γ − π)) − t(1 − cos(α− δ)).

Since lα(A) ∩ K0(D) = ∅, we get that k(0) = 0, hence k(t) = −t(1 − cos(α − δ)).
If t ̸= 0, then k(t) ̸= 0, because δ ̸= α, and there exists a such that (2.19) holds. Then,
by Lemma 2.7, there also exist b, β such that (2.18) holds.

Now we prove (ii). We again have that k(0) = 0. Thus if δ ̸= α, δ ̸= 2γ − α+ 2kπ,
k ∈ Z, we have that

c(1 − cos(δ − γ)) + d(1 − cos(δ − γ − π)) ̸= 0,

therefore there exists a such that

2a [c(1 − cos(δ − γ)) + d(1 − cos(δ − γ − π))] = − det [cU(γ) + dU(γ + π)] ,

and then, by Lemma 2.7, there also exist b, β such that

aU(δ) + cU(γ) + dU(γ + π) − bU(β) = 0,

thus (ii) holds.

Lemma 2.16. Let A ∈ S2, A > 0. Then there exist α, β, γ, δ ∈ [0, 2π), all different,
and a, b, c, d ∈ R such that

A = aU(α) + bU(β) = cU(γ) + dU(δ).

Proof. We have by Lemma 2.9 that there exist α, β ∈ [0, 2π) and a, b ∈ R such that
β = α + π, A = aU(α) + bU(β). Since A > 0, we have that a ̸= 0, b ̸= 0. Now
let γ ∈ [0, 2π) be such that it is different from α, β. Now we need to show that
there exist c, d, δ such that aU(α) − cU(γ) = dU(δ) − bU(β). This holds if the set
lγ(aU(α))∩K0(−bU(β)) is nonempty. In the case this set is empty, then by Lemma 2.15,
there exist infinitely many γ̄ ∈ [0, 2π) such that the set lγ̄(aU(α)) ∩K0(−bU(β)) is
nonempty, and we can take any of these γ̄ that is different from α, β.

Thus, there exist c, d, γ, δ such that γ is different from α, β and aU(α) − cU(γ) =
dU(δ)−bU(β). Now, since a ̸= 0, b ̸= 0, then, by Lemma 2.11, δ ̸= α, δ ̸= β, δ ̸= γ.
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Lemma 2.17. Let D ∈ S2, a, b ∈ R, α, β, γ ∈ [0, 2π) be such that a ̸= 0, b ̸= 0, α ≠ β,
α ̸= γ, β ̸= γ and denote

A = D + aU(α) + bU(β), B = D + (a+ b)U(α), C = D + (a+ b)U(γ).

Then there exist V,W ∈ S2 such that V < W and A,B,C ∈ K+
0 (V ) ∩K−

0 (W ).
Proof. First we show that there exists v ∈ R such that

det
(
v

[
U

(
α+γ

2
)

− I
]

− (a+ b) [U(α) − I]
)

= det
(
v

[
U

(
α+γ

2
)

− I
]

− (a+ b) [U(γ) − I]
)
,

(2.20)

det
(
v

[
U

(
α+γ

2
)

− I
]

− (a+ b) [U(α) − I]
)

= det
(
v

[
U

(
α+γ

2
)

− I
]

− a [U(α) − I] − b [U(β) − I]
)
.

(2.21)

Identities (2.5), (2.2) yield that (2.20) holds for all v ∈ R. Now we multiply matrices
in (2.21) by

[
U

(
α+γ

2
)

− I
]

from the right, and use identity (2.5) to get equivalent
equation

det
(
vI − (a+ b) [U(α) − I]

[
U

(
α+γ

2
)

− I
])

= det
(
vI − a [U(α) − I]

[
U

(
α+γ

2
)

− I
]

− b [U(β) − I]
[
U

(
α+γ

2
)

− I
])
.

The matrices, by identity (2.4), are of the form

vI − (a+ b) [U(α) − I]
[
U

(
α+γ

2
)

− I
]

=
[
p+ v q
−q p+ v

]
,

vI − a [U(α) − I]
[
U

(
α+γ

2
)

− I
]

− b [U(β) − I]
[
U

(
α+γ

2
)

− I
]

=
[
r + v s
−s r + v

]
,

where p, q, r, s ∈ R and p − r = b
(

cos
(
α−γ

2
)

− cos
(
α+γ−2β

2

))
. We have supposed

that b ̸= 0, β ̸= γ and β ̸= α, hence p ̸= r and there exists such v that

v2 + 2pv + p2 + q2 = v2 + 2rv + r2 + s2, det
[ p+v q

−q p+v
]

= det
[
r + v s
−s r + v

]
.

Now, by Lemma 2.14, there exists d ∈ R, d ≥ 0 and δ1, δ2, δ3 ∈ [0, 2π) such that

v
[
U

(
α+γ

2
)

− I
]

− a [U(α) − I] − b [U(β) − I] = d [U(δ1) − I] ,
v

[
U

(
α+γ

2
)

− I
]

− (a+ b) [U(α) − I] = d [U(δ2) − I] ,
v

[
U

(
α+γ

2
)

− I
]

− (a+ b) [U(γ) − I] = d [U(δ3) − I] .

We denote w = d− v + a+ b and obtain the following relations from the above

vU
(
α+γ

2
)

− aU(α) − bU(β) = dU(δ1) − wI = −dU(δ1 + π) − (w − 2d)I,
vU

(
α+γ

2
)

− (a+ b)U(α) = dU(δ2) − wI = −dU(δ2 + π) − (w − 2d)I,
vU

(
α+γ

2
)

− (a+ b)U(γ) = dU(δ3) − wI = −dU(δ3 + π) − (w − 2d)I.
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Since α ̸= γ, Lemma 2.12 yields that d > 0. Now we take V,W ∈ S2 as

W = D + vU

(
α+ γ

2

)
+ wI and V = D + vU

(
α+ γ

2

)
+ (w − 2d)I,

and we get

W −A = vU
(
α+γ

2
)

− aU(α) − bU(β) + wI = dU(δ1),
W −B = vU

(
α+γ

2
)

− (a+ b)U(α) + wI = dU(δ2),
W − C = vU

(
α+γ

2
)

− (a+ b)U(γ) + wI = dU(δ3),
V −A = vU

(
α+γ

2
)

− aU(α) − bU(β) + (w − 2d)I = −dU(δ1 + π),
V −B = vU

(
α+γ

2
)

− (a+ b)U(α) + (w − 2d)I = −dU(δ2 + π),
V − C = vU

(
α+γ

2
)

− (a+ b)U(γ) + (w − 2d)I = −dU(δ3 + π).

Thus, A,B,C ∈ K+
0 (V ) ∩K−

0 (W ). Further, W − V = 2dI > 0.

Lemma 2.18. Let V,W ∈ S2, V < W , ψ, θ ∈ [0, 2π), ψ < θ. Let A,B,C ∈ S2
be such that A,B,C ∈ pψ,θ(A) ∩K+

0 (V ) ∩K−
0 (W ). Then B = C or B = A or C = A.

Proof. Since A,B,C ∈ pψ,θ(A) ∩ K+
0 (V ) ∩ K−

0 (W ), there exist a, b, c ∈ R, a > 0,
b > 0, c > 0 and α, β, γ ∈ [0, 2π) such that

A− V = aU(α), B − V = bU(β), C − V = cU(γ),
A−B = aU(α) − bU(β), A− C = aU(α) − cU(γ).

(2.22)

Similarly, there exist ā, b̄, c̄ ∈ R, ā < 0, b̄ < 0, c̄ < 0 and ᾱ, β̄, γ̄ ∈ [0, 2π) such that

A−W = āU(ᾱ), B −W = b̄U(β̄), C −W = c̄U(γ̄),
A−B = āU(ᾱ) − b̄U(β̄), A− C = āU(ᾱ) − c̄U(γ̄).

(2.23)

First suppose that there exists m ∈ R such that

A− C = m(U(ψ) + U(θ)).

Then (2.22) yields
aU(α) −m(U(ψ) + U(θ)) = cU(γ).

Using Lemma 2.13 and the fact that a > 0, we obtain m ≥ 0. Similarly, (2.23) yields

−āU(ᾱ) +m(U(ψ) + U(θ)) = −c̄U(γ̄),

and since −ā > 0, we obtain m ≤ 0, again by Lemma 2.13. Hence, m = 0 and A = C.
If

A− C ̸= m(U(ψ) + U(θ))
for all m ∈ R, then since B,C ∈ pψ,θ(A), there exist k, l ∈ R such that

A−B + k(U(ψ) + U(θ)) = l(A− C).
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This relation is equivalent with

C −B + k(U(ψ) + U(θ)) = (1 − l)(C −A)

and if l ̸= 0 then also with

A− C − k

l
(U(ψ) + U(θ)) = 1

l
(A−B).

We may suppose that

A−B + k(U(ψ) + U(θ)) = l(A− C), l ≥ 1. (2.24)

Otherwise, the rest would be same, just we would exchange B with C or A with C.
By substituting from (2.22) into (2.24), we get

aU(α) − bU(β) + k(U(ψ) + U(θ)) = l(aU(α) − cU(γ)),

a(l − 1)U(α) + bU(β) − k(U(ψ) + U(θ)) = clU(γ).

Since a > 0, (l − 1) ≥ 0, b > 0, Lemma 2.13 yields that k ≥ 0. Now, by substituting
from (2.23) into (2.24) we similarly get

−ā(l − 1)U(ᾱ) − b̄U(β̄) + k(U(ψ) + U(θ)) = −c̄lU(γ̄).

Since −ā > 0, (l − 1) ≥ 0,−b̄ > 0, Lemma 2.13 yields that k ≤ 0. The only possibility
is that k = 0, and

a(l − 1)U(α) + bU(β) = clU(γ), −ā(l − 1)U(ᾱ) − b̄U(β̄) = −c̄lU(γ̄).

Then Lemma 2.11 implies that either l = 1 or α = β, ᾱ = β̄. If l = 1, then B = C.
If α = β, ᾱ = β̄, then we obtain from (2.22), (2.23) that

A−B = (a− b)U(α) = (ā− b̄)U(ᾱ)

and hence either A = B or α = ᾱ. But since V < W , we have that

0 ̸= det[W − V ] = det[aU(α) − āU(ᾱ)]

and α ̸= ᾱ. Thus, B = C or A = B.

Lemma 2.19. Let ψ ∈ [0, 2π), u1, u2 ∈ R, 0 < u1, 0 < u2 and let A, V,W ∈ S2 be
such that

W = V + 2u1U(ψ) + 2u2U(ψ + π)

and pψ,ψ+π(A) ∩K0(V ) ∩K0(W ) = {A}. Then A is of the form

A = V+W
2 ± 2√

u1u2
[
U

(
ψ + π

2
)

− I
]
.
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Proof. By Lemma 2.8, there exist a1, a2, a3 ∈ R such that

A = V+W
2 + a1U(ψ) + a2U(ψ + π) + a3

[
U

(
ψ + π

2
)

− I
]
.

Since A ∈ K0(V ) ∩ K0(W ), there exist a, b ∈ R and α, β ∈ [0, 2π) such that
a = a1 + a2 + u1 + u2, b = −a1 − a2 + u1 + u2 and

A− V = aU(α) = W−V
2 + a1U(ψ) + a2U(ψ + π) + a3

[
U

(
ψ + π

2
)

− I
]

= (a1 + u1)U(ψ) + (a2 + u2)U(ψ + π) + a3
[
U

(
ψ + π

2
)

− I
]
,

(2.25)

W −A = bU(β) = W−V
2 − a1U(ψ) − a2U(ψ + π) − a3

[
U

(
ψ + π

2
)

− I
]

= (−a1 + u1)U(ψ) + (−a2 + u2)U(ψ + π) − a3
[
U

(
ψ + π

2
)

− I
]
.

(2.26)

Now let Ā ∈ S2 be such that

Ā = A− 2a1U(ψ) − 2a2U(ψ + π).

Then

Ā− V =(−a1 + u1)U(ψ) + (−a2 + u2)U(ψ + π) + a3
[
U

(
ψ + π

2
)

− I
]
, (2.27)

W − Ā =(a1 + u1)U(ψ) + (a2 + u2)U(ψ + π) − a3
[
U

(
ψ + π

2
)

− I
]
, (2.28)

and Lemma 2.10 applied to (2.25), (2.28) and to (2.26), (2.27) yields that

Ā− V = bU(2ψ − β),W − Ā = aU(2ψ − α),

hence Ā ∈ pψ,ψ+π(A) ∩K0(V ) ∩K0(W ) and Ā = A. This implies that a1 = a2 = 0.
Further, by Lemma 2.10 we also have that a2

3 = 4(a1 + u1)(a2 + u2), which yields
a3 = ±2√

u1u2.

Lemma 2.20. Let ψ ∈ [0, 2π), z ∈ R, z > 0 and A,B, V,W ∈ S2 be such that
A = B + z

[
U

(
ψ + π

2
)

− I
]
, V = B − zI,W = B + zI. Then

pψ,ψ+π(A) ∩K0(V ) ∩K0(W ) = {A}.

Proof. It suffices to prove this for B = 0, because pψ,ψ+π(A) ∩K0(V ) ∩K0(W ) = {A}
if and only if pψ,ψ+π(A+B) ∩K0(V +B) ∩K0(W +B) = {A+B}.

A− V = zU
(
ψ + π

2
)
, W −A = zI − z

[
U

(
ψ + π

2
)

− I
]

= zU
(
ψ + 3π

2
)
,

hence A ∈ K0(V )∩K0(W ). It remains to show, that if Ā ∈ pψ,ψ+π(A)∩K0(V )∩K0(W ),
then Ā = A. Let Ā be such matrix. Then there exist a, b, c, d ∈ R, α, β ∈ [0, 2π) such
that

W − Ā = zI − Ā = aU(α), Ā− V = Ā+ zI = bU(β), (2.29)
Ā = A+ cU(ψ) + dU(ψ + π)

= z
[
U

(
ψ + π

2
)

− I
]

+ cU(ψ) + dU(ψ + π).
(2.30)
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We have from (2.29) that W − Ā+ Ā− V = 2zI = aU(α) + bU(β), and Lemma 2.12
yields a = b = z. Now from (2.29), we have that Ā = zI − zU(α). This with (2.30)
gives us

z
[
U

(
ψ + π

2
)

− I
]

+ cU(ψ) + dU(ψ + π) = zI − zU(α),

thus c = −d. From identities (2.3), (2.5), (2.9) we further get
[

2c −z
−z −2c

]
=

[
U

(
ψ
2

)
− I

]
[zI − zU(α)]

[
U

(
ψ
2

)
− I

]
= zI − zU(ψ − α),

−4c2 − z2 = z2 det[I − U(ψ − α)] = −z2,

hence c = d = 0 and Ā = A.

Lemma 2.21. Let a1, a2, b1, b2, c1, c2, d1, d2 ∈ R and let α, β, γ, δ ∈ [0, 2π) be all
different and such that

a1U(α) + b1U(β) = c1U(γ) + d1U(δ),
a2U(α) + b2U(β) = c2U(γ) + d2U(δ).

(2.31)

Then there exists t such that a1 = tb1, a2 = tb2.

Proof. Lemma 2.11 implies that either none of a1, b1, c1, d1 is zero, or all of them are.
We will further suppose that the first case is true. From equations (2.31) we get that

(a1b2 − a2b1)U(α) = (c1b2 − c2b1)U(γ) + (d1b2 − d2b1)U(δ),

and Lemma 2.11 implies that a1b2 − a2b1 = 0. Since b1 ̸= 0, there exists t such that
a1 = tb1. Then a2b1 = a1b2 = tb1b2 and since b1 ̸= 0, we get that a2 = tb2.

Lemma 2.22. Let A,B ∈ S2, A > 0 and B be such that B /∈ {At, t ∈ R}. Then there
exist t1, t2 ∈ R, t1 ̸= t2 and α1, α2 ∈ [0, 2π), a1, a2 ∈ R such that At1 +B = a1U(α1),
At2 +B = a2U(α2).

Proof. Let φ ∈ [0, 2π) and a, b, c, d, e ∈ R be such that

A = aU(φ) + bU(φ+ π),
B = cU(φ) + dU(φ+ π) + e

(
U(φ+ π

2 ) − I
)
.

Such constants exist by Lemma 2.8 and Lemma 2.9, and since A > 0, then a > 0, b > 0.
Then

At+B = (at+ c)U(φ) + (bt+ d)U(φ+ π) + e
(
U(φ+ π

2 ) − I
)
.

Now, by Lemma 2.10, if e2 = 4(at + c)(bt + d), then the matrix At + B has
zero determinant. And since a > 0, b > 0 and B /∈ {At, t ∈ R}, the equation
e2 = 4(at+ c)(bt+ d) has two solutions t1, t2.

Lemma 2.23. Let A,B,C ∈ S2, B > C and A /∈ {C + t(B−C) : t ∈ R}. Then there
exist α, β ∈ [0, 2π) such that A,B ∈ pα,β(C).
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Proof. By Lemma 2.22, there exist t1 ̸= t2 and α, β, a, b such that

A− C + t1(B − C) = aU(α), A− C + t2(B − C) = bU(β).

From this,

B − C = a

t1 − t2
U(α) − b

t1 − t2
U(β), A− C = −t2a

t1 − t2
U(α) + t1b

t1 − t2
U(β),

which implies that A,B ∈ pα,β(C).

3. LEMMAS ABOUT FUNCTIONS WITH ORDER PRESERVING PROPERTY

In this section, statements about functions with the order preserving property (1.1)
are derived. The first four lemmas in this section (Lemmas 3.1–3.4) are proven for any
dimension n ∈ N. The first two of them are about the injectivity of such functions and
the order preserving property of their inverse. If f : S → S has property (1.1) on the
whole set S, then its surjectivity is also expected, but not obvious, and we will not be
able to prove it, until we have the final form of f . Therefore, we will work with the
surjective function f : M → f(M) or f : S → f(S).

Lemma 3.1. Let M ⊆ S and f : M → f(M) have property (1.1) on M . Then f is
injective on M and its inverse f−1 : f(M) → M has property (1.1) on f(M),

Q ≤ Q̂ ⇔ f−1(Q) ≤ f−1(Q̂) for all Q, Q̂ ∈ f(M) ⊆ S. (3.1)

Proof. We have from property (1.1) that if Q1, Q2 ∈ M , then f(Q1) = f(Q2) implies
both Q1 ≤ Q2 and Q1 ≥ Q2. This gives us that Q1 = Q2. Hence, f is injective on M
and its inverse exists there. The property (3.1) follows directly from property (1.1).

Lemma 3.2. Let f : S → S have property (1.1) on S. Then f is injective on S and
f−1 : f(S) → S has property (1.1) on f(S).

Proof. It follows from Lemma 3.1, we have M = S.

3.1. IMAGES AND PREIMAGES OF CONES, π
4 -LINES AND π

4 -PLANES

We show successively, that if f has property (1.1) on the whole set S2, then the
image/preimage of a subset of any (upper/lower) cone is again a subset of (upper/lower)
cone. Further, this implies, that the image/preimage of a subset of any π

4 -line is again
a subset of a π

4 -line and this further implies that the image/preimage of a subset of
any π

4 -plane is a subset of a π
4 -plane.

If f has property (1.1) only on a subset M ⊂ S2, then the statements about cones
and π

4 -lines hold as well, but the preimage of a subset of a π
4 -plane is not always

a subset of a π
4 -plane for such f .
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Lemma 3.3. Let M ⊆ S and let f : M → f(M) be continuous and have property (1.1)
on M . Let A ∈ M . Then the following sets are equal:

(i) f(K0(A) ∩M) = K0(f(A)) ∩ f(M),
(ii) f(K+

0 (A) ∩M) = K+
0 (f(A)) ∩ f(M),

(iii) f(K−
0 (A) ∩M) = K−

0 (f(A)) ∩ f(M).

Proof. If the matrix dimension n = 1, then we have K0(A) = K+
0 (A) = K−

0 (A) = {A}
and the sets in (i)–(iii) are all equal to {f(A)}.

Further we suppose that n ≥ 2. If Q ∈ K+(A) ∩M , then Q ≥ A and property (1.1)
implies that f(Q) ≥ f(A). That means f(Q) ∈ K+(f(A)). Similarly, ifQ ∈ K−(A)∩M ,
then f(Q) ∈ K−(f(A)). And thus, if Q ∈ K(A) ∩M , then f(Q) ∈ K(f(A)).

We have that K0(A) is a limit of K(A), i.e. if Q ∈ K0(A), then in any neighborhood
of Q there exists a matrix Q1 such that both Q1 ≱ A and Q1 ≰ A. Then also K0(A)∩M
is a limit of K(A) ∩M . From continuity of f it follows that if Q ∈ K0(A) ∩M , then
f(Q) ∈ K0(f(A)), and hence

f(K0(A) ∩M) ⊆ K0(f(A)) ∩ f(M)

holds.
Now if

Q ∈ K+
0 (A) ∩M = K+(A) ∩K0(A) ∩M,

then we have shown that f(Q) ∈ K0(f(A)) and also f(Q) ∈ K+(f(A)), hence
f(Q) ∈ K+

0 (f(A)), and

f(K+
0 (A) ∩M) ⊆ K+

0 (f(A)) ∩ f(M)

holds. Similarly, we can prove that

f(K−
0 (A) ∩M) ⊆ K−

0 (f(A)) ∩ f(M)

holds.
Now we use Lemma 3.1, property (3.1) and obtain that for any f(A) ∈ f(M)

the inclusion
f−1(K0(f(A)) ∩ f(M)) ⊆ K0(A) ∩M

holds, which is equivalent with

K0(f(A)) ∩ f(M) ⊆ f(K0(A) ∩M),

hence (i) holds. Statements (ii) and (iii) can be proven in analogical way.

Lemma 3.4. Let f : S → S be continuous and have property (1.1) on S. Let A ∈ S.
Then:

(i) f(K0(A)) = K0(f(A)) ∩ f(S),
(ii) f(K+

0 (A)) = K+
0 (f(A)) ∩ f(S),

(iii) f(K−
0 (A)) = K−

0 (f(A)) ∩ f(S).
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Proof. It follows from Lemma 3.3, we have M = S.

Now throughout the rest of this section we again suppose that n = 2.

Lemma 3.5. Let M ⊆ S2 and let f : M → f(M) be continuous and have property (1.1)
on M . Let φ ∈ [0, 2π), Q ∈ M . Then there exist ψ, θ ∈ [0, 2π) such that

lφ(f(Q)) ∩ f(M) = f(lψ(Q) ∩M), f(lφ(Q) ∩M) = lθ(f(Q)) ∩ f(M).

Proof. From Lemma 3.3 we have that the following equivalences

Q1, Q2 ∈ K0(Q) ∩M ⇔ f(Q1), f(Q2) ∈ K0(f(Q)), (3.2)
Q1 ∈ K0(Q2) ∩M ⇔ f(Q1) ∈ K0(f(Q2)) (3.3)

hold for allQ1, Q2 ∈ S2. Let φ ∈ R andQ1 ∈ lφ(Q)∩M ,Q1 ̸= Q. Since lφ(Q) ⊆ K0(Q),
we get from (3.2) that f(Q1) ∈ K0(f(Q)) and there exists θ ∈ [0, 2π) such that
f(Q1) − f(Q) = tU(θ), where t ̸= 0.

Let Q2 ∈ lφ(Q) ∩M , Q2 ≠ Q. Since lφ(Q) ⊆ K0(Q) and Q1 ∈ lφ(Q2) ⊆ K0(Q2),
we get from (3.2), (3.3) that f(Q2) ∈ K0(f(Q)), f(Q1) ∈ K0(f(Q2)) and there exist
α, β ∈ [0, 2π), a, b ∈ R, a ̸= 0, such that

f(Q2) − f(Q) = aU(α), f(Q1) − f(Q2) = bU(β).

Since tU(θ) − aU(α) = bU(β), we have by Lemma 2.11 that α = θ and thus
f(Q2) ∈ lθ(f(Q)).

We have proven that for all φ ∈ [0, 2π) there exists θ ∈ [0, 2π) such that the
inclusion

f(lφ(Q) ∩M) ⊆ lθ(f(Q)) ∩ f(M)
holds. By Lemma 3.1, property (3.1), we analogically get that for all θ ∈ [0, 2π) there
exists ω ∈ [0, 2π) such that the inclusion

lθ(f(Q)) ∩ f(M) ⊆ f(lω(Q) ∩M)

holds. Together we have that for all φ ∈ [0, 2π) there exist θ, ω, ν ∈ [0, 2π) such that

f(lφ(Q) ∩M) ⊆ lθ(f(Q)) ∩ f(M) ⊆ f(lω(Q) ∩M) ⊆ lν(f(Q)) ∩ f(M),

which implies that θ = ν, ω = φ, and

f(lφ(Q) ∩M) = lθ(f(Q)) ∩ f(M).

The proof of the second equality is analogical.

Lemma 3.6. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
φ ∈ [0, 2π), Q ∈ S2. Then there exist ψ, θ ∈ [0, 2π) such that

lφ(f(Q)) ∩ f(S2) = f(lψ(Q)), f(lφ(Q)) = lθ(f(Q)) ∩ f(S2).

Proof. It follows from Lemma 3.5, we have M = S2.
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Lemma 3.7. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
φ, φ̄ ∈ [0, 2π), φ ̸= φ̄ and Q ∈ S2. Then there exist ψ, θ ∈ [0, 2π) such that

lφ(f(Q) ∩ f(S2) = f(lψ(Q)), lφ̄(f(Q)) ∩ f(S2) = f(lθ(Q)),
pφ,φ̄(f(Q)) ∩ f(S2) ⊆ f(pψ,θ(Q)).

Proof. Let ψ, θ ∈ [0, 2π) be such that

lφ(f(Q)) ∩ f(S2) = f(lψ(Q)), lφ̄(f(Q)) ∩ f(S2) = f(lθ(Q)).

Such ψ, θ exist by Lemma 3.6, and ψ ̸= θ because φ ̸= φ̄. Let D ∈ S2 be such that
D ∈ pφ,φ̄(f(Q)) ∩ f(S2) and D /∈ f(lψ(Q)), D /∈ f(lθ(Q)). Then there exist r, s ∈ R,
r ̸= 0, s ̸= 0 such that

D = f(Q) + rU(φ) + sU(φ̄).

First we will suppose that the set K0(f−1(D)) ∩ lψ(Q) is nonempty. Then there
exists P ∈ S2 such that P ∈ K0(f−1(D)) ∩ lψ(Q) and further there exist ω, a, d ∈ R
such that

P = Q+ aU(ψ) = f−1(D) + dU(ω)

and from this
f−1(D) = Q+ aU(ψ) − dU(ω).

We show that f(lω(P )) ⊆ lφ̄(f(P )). By Lemma 3.6, there exists α ∈ [0, 2π) such
that f(lω(P )) ⊆ lα(f(P )). Since D ∈ f(lω(P )), we get that D ∈ lα(f(P )). Since
P ∈ lψ(Q), we get that f(P ) ∈ lφ(f(Q)). This together implies that there exist
u, v ∈ R such that

D = f(P ) + vU(α) = f(Q) + uU(φ) + vU(α).

We also have that
D = f(Q) + rU(φ) + sU(φ̄),

with r ̸= 0, s ̸= 0, hence we have by Lemma 2.11 that α = φ̄.
We show that a ̸= 0. If a = 0, then f(P ) = f(Q) and D = f(Q) + vU(φ̄), hence

D ∈ lφ̄(f(Q)) ∩ f(S2) = f(lθ(Q)), but we supposed that D /∈ f(lθ(Q)).
Now we show that ω = θ. We will suppose that ω ≠ θ and get a contradiction.

Let b ∈ R be such that b ̸= 0, b ̸= a. We take

A = Q+ aU(ψ) − bU(ω) ∈ lω(P ),
B = Q+ (a− b)U(ψ) ∈ lψ(Q),
C = Q+ (a− b)U(θ) ∈ lθ(Q).

We have supposed that ω ̸= θ, and we also have that ψ ≠ θ and further also
ω ̸= ψ, because D /∈ f(lψ(Q)), hence by Lemma 2.17, there exist V,W ∈ S2 such
that A,B,C ∈ K+

0 (V ) and A,B,C ∈ K−
0 (W ) and V < W . Then Lemma 3.4 yields
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that f(A), f(B), f(C) ∈ K+
0 (f(V )) ∩ K−

0 (f(W )). Since A ∈ lω(P ), B ∈ lψ(Q), C ∈
lθ(Q), we have that

f(A) ∈ lφ̄(f(P )) ⊆ pφ,φ̄(f(Q)) = pφ,φ̄(f(A)),
f(B) ∈ lφ(f(Q)) ⊆ pφ,φ̄(f(Q)) = pφ,φ̄(f(A)),
f(C) ∈ lφ̄(f(Q)) ⊆ pφ,φ̄(f(Q)) = pφ,φ̄(f(A)).

Together it implies that f(A), f(B), f(C) ∈ pφ,φ̄(f(A)) ∩K+
0 (f(V )) ∩K−

0 (f(W )) and
by Lemma 2.18 either f(A) = f(B) or f(A) = f(C) or f(B) = f(C), hence either
A = B or A = C or B = C. But this is not possible, since we have

A−B = b[U(ψ) − U(ω)], and b ̸= 0, ω ̸= ψ,

B − C = (a− b)[U(ψ) − U(θ)], and a− b ̸= 0, θ ̸= ψ,

C −A = (a− b)U(θ) − aU(ψ) + bU(ω), and a ̸= 0, b ̸= 0, ω ̸= ψ,

and Lemma 2.11 implies that A ̸= B ̸= C ≠ A. Thus, we got a contradiction, and
we have proven that ω = θ and

f−1(D) = Q+ aU(ψ) − dU(θ), f−1(D) ∈ pψ,θ(Q), D ∈ f(pψ,θ(Q)).

It remains to prove this for such D when the set K0(f−1(D)) ∩ lψ(Q) is empty.
Let δ1, δ2 ∈ [0, 2π) be such that

lφ(D) ∩ f(S2) = f(lδ1(f−1(D))) and lφ̄(D) ∩ f(S2) = f(lδ2(f−1(D))).

Such δ1, δ2 exist by Lemma 3.6, and we have that δ1 ̸= δ2 because φ ̸= φ̄. Hence, at
least one of them is different from ψ. Denote it δ.

Now, by Lemma 2.15, we further have that for all t ̸= 0 the set lψ(Q)∩K0(f−1(D)+
tU(δ)) is nonempty. Denote Dt = f(f−1(D) + tU(δ))). We have that

Dt ∈ pφ,φ̄(D) ∩ f(S2) = pφ,φ̄(f(Q)) ∩ f(S2).

Since D /∈ f(lψ(Q)), D /∈ f(lθ(Q)), there exists t0 such that for all |t| < t0,
Dt /∈ f(lψ(Q)), Dt /∈ f(lθ(Q)).

Hence, we can again show in the same way as before, that for all t ̸= 0, |t| < t0,

Dt = f(f−1(D) + tU(δ))) ∈ f(pψ,θ(Q)).

Since f is continuous, then also D ∈ f(pψ,θ(Q)).

Lemma 3.8. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
Q ∈ S2 and φ, φ̄, ψ, ψ̄ ∈ [0, 2π), φ ̸= φ̄ be such that

lφ(f(Q)) ∩ f(S2) = f(lψ(Q)), lφ̄(f(Q)) ∩ f(S2) = f(lψ̄(Q)), (3.4)
pφ,φ̄(f(Q)) ∩ f(S2) ⊆ f(pψ,ψ̄(Q)). (3.5)

Let P ∈ S2 be such that P ∈ pψ,ψ̄(Q). Then f(P ) ∈ pφ,φ̄(f(Q)) and

lφ(f(P )) ∩ f(S2) = f(lψ(P )), lφ̄(f(P )) ∩ f(S2) = f(lψ̄(P )). (3.6)
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Proof. First suppose that P ∈ lψ(Q). Then lψ(P ) = lψ(Q) and we obtain
from (3.4) that f(P ) ∈ lφ(f(Q), which implies that also lφ(f(P )) = lφ(f(Q)), hence
lφ(f(P )) ∩ f(S2) = f(lψ(P )).

Further we will suppose that P /∈ lψ(Q). Since P ∈ pψ,ψ̄(Q), then lψ(P ) ⊆ pψ,ψ̄(Q).
Let C ∈ pψ,ψ̄(Q) be such that C ∈ lψ(P ) ∩ lψ̄(Q). Since P /∈ lψ(Q), then C ̸= Q.
Further, lψ(C) = lψ(P ) and we obtain from (3.4) that f(C) ∈ lφ̄(f(Q)), hence
f(C) ∈ pφ,φ̄(f(Q)) and also lφ(f(C)) ⊆ pφ,φ̄(f(Q)). Thus, we obtain from (3.5) that

lφ(f(C)) ∩ f(S2) ⊆ pφ,φ̄(f(Q)) ∩ f(S2) ⊆ f(pψ,ψ̄(Q)). (3.7)
By Lemma 3.6, there exists γ ∈ [0, 2π) such that

lφ(f(C)) ∩ f(S2) = f(lγ(C)). (3.8)

Then, by (3.7), lγ(C) ⊆ pψ,ψ̄(Q) and either γ = ψ or γ = ψ̄. Since f(Q) ∈ lφ̄(f(C))
and C ̸= Q, then f(Q) /∈ lφ(f(C)), hence, by (3.8), Q /∈ lγ(C). This together with
C ∈ lψ̄(Q) implies that γ ̸= ψ̄ and hence γ = ψ. Then, by (3.8),

lφ(f(C)) ∩ f(S2) = f(lψ(C)) = f(lψ(P )).
Finally,

f(P ) ∈ f(lψ(P )) = lφ(f(C)) ∩ f(S2) ⊆ pφ,φ̄(f(Q)) ∩ f(S2)
and from this further lφ(f(P )) = lφ(f(C)), hence the first equality in (3.6) holds.
The proof of the second equality in (3.6) is analogical.

Lemma 3.9. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
φ, φ̄ ∈ [0, 2π), φ ̸= φ̄ and Q ∈ S2. Then there exist ψ, ψ̄, θ, θ̄ ∈ [0, 2π) such that

lφ(f(Q)) ∩ f(S2) = f(lψ(Q)), lφ̄(f(Q)) ∩ f(S2) = f(lψ̄(Q)),
pφ,φ̄(f(Q)) ∩ f(S2) = f(pψ,ψ̄(Q)),
lθ(f(Q)) ∩ f(S2) = f(lφ(Q)), lθ̄(f(Q)) ∩ f(S2) = f(lφ̄(Q)),
pθ,θ̄(f(Q)) ∩ f(S2) = f(pφ,φ̄(Q)).

Proof. We have by Lemma 3.7 that there exist ψ, ψ̄ ∈ [0, 2π) such that
lφ(f(Q)) ∩ f(S2) = f(lψ(Q)), lφ̄(f(Q)) ∩ f(S2) = f(lψ̄(Q)),
pφ,φ̄(f(Q)) ∩ f(S2) ⊆ f(pψ,ψ̄(Q)).

Then also
f(pψ,ψ̄(Q)) ⊆ pφ,φ̄(f(Q)) ∩ f(S2),

which follows from Lemma 3.8. Now we have by Lemma 3.6 that there exist θ, θ̄ ∈ [0, 2π)
such that

lθ(f(Q)) ∩ f(S2) = f(lφ(Q)), lθ̄(f(Q)) ∩ f(S2) = f(lφ̄(Q)).
From the first part of Lemma 3.9 we have that for these θ, θ̄ there exist ω, ω̄ such that

lθ(f(Q)) ∩ f(S2) = f(lω(Q)), lθ̄(f(Q)) ∩ f(S2) = f(lω̄(Q)),
pθ,θ̄(f(Q)) ∩ f(S2) = f(pω,ω̄(Q)).

Thus, we get that ω = φ, ω̄ = φ̄ and pθ,θ̄(f(Q)) ∩ f(S2) = f(pφ,φ̄(Q)).
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3.2. PARAMETERS φ,ψ, f1, f2

Now we introduce four real (nonnegative) parameters that are assigned to each
continuous function f with property (1.1) on S2. These we denote as φ,ψ and f1, f2.
The geometric meaning of these parameters is as follows. The parameter φ is the
azimuthal angle of the point f(I) − f(0). The parameters f1 and f2 are the first two
coordinates of the point f(I) in the coordinate system with the center f(0) and axes
U(φ), U(φ + π) and U(φ + π

2 ) − I. The parameter ψ is the azimuthal angle of the
preimage of lφ(f(0)) ∩ f(S2).

In this subsection we show, that the image of any vertical plane or a π
4 -line with

azimuthal angle ψ is a subset of a vertical plane or a π
4 -line with azimuthal angle φ.

Further, the image of any vertical line is parallel with f(I) − f(0). We use this to
show that if a point is shifted by the vector with coordinates (x, y, 0) in the coordinate
system with the center 0 and axes U(ψ), U(ψ + π) and U

(
ψ + π

2
)

− I, then its image
is shifted by the vector with coordinates (2xf1, 2yf2, 0) in the coordinate system with
the center 0 and axes U(φ), U(φ+ π) and U(φ+ π

2 ) − I. And further, if a point is
shifted by the vector (0, 0, z), then its image is shifted by the vector ±(0, 0, 2z

√
f1f2)

in the same coordinate systems. This together then gives us the desired form of f .

Lemma 3.10. Let f : S2 → S2 be continuous and have property (1.1) on S2. Then
there exist φ,ψ ∈ [0, 2π) and f1, f2 ∈ R, f1 > 0, f2 > 0 such that

f(I) − f(0) = f1U(φ) + f2U(φ+ π),
lφ(f(0)) ∩ f(S2) = f(lψ(0)), lφ+π(f(0)) ∩ f(S2) = f(lψ+π(0)),
pφ,φ+π(f(0)) ∩ f(S2) = f(pψ,ψ+π(0)).

(3.9)

Proof. We have 0 < I, hence f(0) < f(I). By Lemma 2.9, there exist φ ∈ [0, 2π) and
f1, f2 ∈ R, f1 > 0, f2 > 0 such that the first equation from 3.9 holds.

By Lemma 3.9, there exist ψ, θ ∈ [0, 2π) such that

lφ(f(0)) ∩ f(S2) = f(lψ(0)), lφ+π(f(0)) ∩ f(S2) = f(lθ(0)),
pφ,φ+π(f(0)) ∩ f(S2) = f(pψ,θ(0)).

The first equation from (3.9) implies that f(I) ∈ pφ,φ+π(f(0)), hence I ∈ pψ,θ(0) and
there exist s, r such that I = 0 + sU(ψ) + rU(θ). We get, by Lemma 2.12, that s = r
and either θ = ψ + π or θ = ψ − π. Hence, pψ,θ(0) = pψ,ψ+π(0), lθ(0) = lψ+π(0) and
all relations in (3.9) hold.

Lemma 3.11. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
φ,ψ ∈ [0, 2π) be such that relations (3.9) from Lemma 3.10 hold and Q ∈ S2. Then

f(lψ(Q)) = lφ(f(Q)) ∩ f(S2), f(lψ+π(Q)) = lφ+π(f(Q)) ∩ f(S2),
f(pψ,ψ+π(Q)) = pφ,φ+π(f(Q)) ∩ f(S2).

(3.10)

Proof. First suppose that Q ∈ pψ,ψ+π(0). Then pψ,ψ+π(Q) = pψ,ψ+π(0), and by
(3.9) and Lemma 3.8, f(Q) ∈ pφ,φ+π(f(0)), pφ,φ+π(f(Q)) = pφ,φ+π(f(0)), and rela-
tions (3.9) imply relations (3.10).
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Now let Q /∈ pψ,ψ+π(0). By Lemma 3.9, there exist ω, θ ∈ [0, 2π) such that

f(lω(Q)) = lφ(f(Q) ∩ f(S2), f(lθ(Q)) = lφ+π(f(Q)) ∩ f(S2),
f(pω,θ(Q)) = pφ,φ+π(f(Q)) ∩ f(S2).

(3.11)

If Q /∈ pψ,ψ+π(0), then f(Q) /∈ pφ,φ+π(f(0)) by (3.9), and

pφ,φ+π(f(0)) ∩ pφ,φ+π(f(Q)) = ∅.

This implies that also pψ,ψ+π(0) ∩ pω,θ(Q) = ∅, hence pω,θ(Q) = pψ,ψ+π(Q) and this
further implies that either ω = ψ, θ = ψ + π or ω = ψ + π, θ = ψ. That the first case
is true follows from (3.9) and the continuity of the function f . Hence, relations (3.11)
are equivalent with relations (3.10).

Lemma 3.12. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
P,Q ∈ S2, P ̸= Q and denote

l1 = {Q+ z(P −Q) : z ∈ R}, l2 = {f(Q) + z(f(P ) − f(Q)) : z ∈ R}.

Then f(l1) = l2 ∩ f(S2).

Proof. From Lemma 2.16, we have that there exist φ, φ̄, ψ, ψ̄ ∈ [0, 2π), all different,
and a, b, c, d ∈ R such that

f(P ) − f(Q) = aU(φ) + bU(φ̄) = cU(ψ) + dU(ψ̄),

hence
f(P ) ∈ pφ,φ̄(f(Q)), f(P ) ∈ pψ,ψ̄(f(Q)).

Further, by Lemma 3.9, there exist θ, θ̄, ω, ω̄ ∈ [0, 2π) such that

pφ,φ̄(f(Q)) ∩ f(S2) = f(pθ,θ̄(Q)),
pψ,ψ̄(f(Q)) ∩ f(S2) = f(pω,ω̄(Q)),

and θ, θ̄, ω, ω̄ are all different. Then, we have that for all z ∈ R holds

P ∈ pθ,θ̄(Q) ∩ pω,ω̄(Q),
Q+ z(P −Q) ∈ pθ,θ̄(Q) ∩ pω,ω̄(Q),

f(Q+ z(P −Q)) ∈ pφ,φ̄(f(Q)) ∩ pψ,ψ̄(f(Q)) ∩ f(S2).

We have that l1 ⊆ pθ,θ̄(Q) ∩ pω,ω̄(Q), and now we show the opposite inclusion. Let
A ∈ S2 be such that A ∈ pθ,θ̄(Q) ∩ pω,ω̄(Q). Since also P ∈ pθ,θ̄(Q) ∩ pω,ω̄(Q), there
exist r1, s1, v1, w1 and r2, s2, v2, w2, such that

A = Q+ r1U(θ) + s1U(θ̄) = Q+ v1U(ω) + w1U(ω̄),
P = Q+ r2U(θ) + s2U(θ̄) = Q+ v2U(ω) + w2U(ω̄),
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and we get by Lemma 2.21 that there exists a t such that r1 = ts1, r2 = ts2. Since
P ̸= Q, we have s2 ̸= 0, and we get from the above equations that

s2(A−Q) = s1s2[tU(θ) + (θ̄)] = s1(P −Q),

A = Q+ s1
s2

(P −Q),

hence A ∈ l1 and l1 = pθ,θ̄(Q) ∩ pω,ω̄(Q).
Since

l2 ⊆ pφ,φ̄(f(Q)) ∩ pψ,ψ̄(f(Q)),
then

l2 ∩ f(S2) ⊆ f(pθ,θ̄(Q) ∩ pω,ω̄(Q)),
which is equivalent with l2 ∩ f(S2) ⊆ f(l1).

Now we show the opposite inclusion. Since

f(Q+ z(P −Q)) ∈ pφ,φ̄(f(Q)) ∩ pψ,ψ̄(f(Q)),

there exist real continuous functions r, s, v, w such that

f(Q+ z(P −Q)) = f(Q) + r(z)U(φ) + s(z)U(φ̄) = f(Q) + v(z)U(ψ) + w(z)U(ψ̄).

Further, we get by Lemma 2.21 that there exists a t such that r(z) = ts(z) for all
z ∈ R and since P ̸= Q and f is injective, we have s(1) ̸= 0, hence

f(Q+ z(P −Q)) = f(Q) + s(z)(tU(φ) + U(φ̄) = f(Q) + s(z)
s(1) (f(P ) − f(Q)).

This implies the inclusion f(l1) ⊆ l2 ∩ f(S2).

Lemma 3.13. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
φ,ψ ∈ [0, 2π) and f1, f2 ∈ R be such that relations (3.9) from Lemma 3.10 hold.
Let Q ∈ S2. Then for all z ∈ R there exists s ∈ R such that

f(Q+ zI) = f(Q) + s[f(I) − f(0)]. (3.12)

Proof. We have from continuity of f , that there exists s0 ∈ R, s0 ≠ 0 such that
f(Q) + s0[f(I) − f(0)] ∈ f(S2). Let denote

l1 = {sI : s ∈ R},
l2 = {f(0) + s[f(I) − f(0)] : s ∈ R},
k1 = {Q+ s[f−1(f(Q) + s0[f(I) − f(0)]) −Q] : s ∈ R},
k2 = {f(Q) + s[f(I) − f(0)] : s ∈ R}.

From Lemma 3.12, we have that f(l1) = l2 ∩ f(S2) and f(k1) = k2 ∩ f(S2).
If the intersection l2 ∩ k2 is nonempty, then there exist A ∈ S2, s1, s2 ∈ R such

that
A = f(0) + s1[f(I) − f(0)] = f(Q) + s2[f(I) − f(0)],
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hence
f(Q) = f(0) + (s1 − s2)[f(I) − f(0)] ∈ l2

and thus Q ∈ l1. For such Q, relation (3.12) holds by Lemma 3.12.
Now suppose that l2 ∩ k2 = ∅. Then also f−1(l2 ∩ k2 ∩ f(S2)) = ∅, and we get that

l1 ∩ k1 = ∅.
By Lemma 2.23, there exist α, β such that f(Q), f(I) ∈ pα,β(f(0)). Then we have

that k2 ⊆ pα,β(f(0)). Further we have by Lemma 3.9 that there exist γ, δ such that
pα,β(f(0))∩f(S2) = f(pγ,δ(0)). Since Q, I ∈ pγ,δ(0), we also have that l1, k1 ⊆ pγ,δ(0).
This together with l1 ∩k1 = ∅ implies that k1 = {Q+ sI, s ∈ R}, and since f(k1) ⊆ k2,
the statement of the lemma is proven.

Lemma 3.14. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
φ,ψ ∈ [0, 2π) and f1, f2 ∈ R be such that relations (3.9) from Lemma 3.10 hold. Then
for all Q ∈ S2 there exists sQ ∈ R such that

f(Q+ xU(ψ) + yU(ψ + π)) = f(Q) + 2xsQf1U(φ) + 2ysQf2U(φ+ π) (3.13)

holds for any x, y ∈ R.

Proof. Let Q ∈ S2. Let u, v ∈ R. We take A,B,C,D,E ∈ S2 as

A = Q+ vI = Q+ v
2 [U(ψ) + U(ψ + π)] ,

B = Q+ (u− 1)vI = Q+ (u−1)v
2 [U(ψ) + U(ψ + π)] ,

C = Q+ uvI = Q+ uv
2 [U(ψ) + U(ψ + π)] ,

D = Q+ (u−1)v
2 U(ψ) = B − (u−1)v

2 U(ψ + π),
E = A+ (u−1)v

2 U(ψ) = C − (u−1)v
2 U(ψ + π) = D + vI

= Q+ uv
2 U(ψ) + v

2U(ψ + π).

(3.14)

By Lemma 3.11, Lemma 3.13 and (3.9), there exist t1, t2, . . . , t8 ∈ R such that

f(A) = f(Q) + t1[f(I) − f(0)] = f(Q) + t1(f1U(φ) + f2U(φ+ π)), (3.15)
f(B) = f(Q) + t2[f(I) − f(0)] = f(Q) + t2(f1U(φ) + f2U(φ+ π)),
f(C) = f(Q) + t3[f(I) − f(0)] = f(Q) + t3(f1U(φ) + f2U(φ+ π)), (3.16)
f(D) = f(Q) + t4U(φ), (3.17)
f(D) = f(B) + t5U(φ+ π)

= f(Q) + t5U(φ+ π) + t2(f1U(φ) + f2U(φ+ π)),
(3.18)

f(E) = f(A) + t6U(φ) = f(Q) + t6U(φ) + t1(f1U(φ) + f2U(φ+ π)), (3.19)
f(E) = f(C) + t7U(φ+ π)

= f(Q) + t7U(φ+ π) + t3(f1U(φ) + f2U(φ+ π)),
(3.20)

f(E) = f(D) + t8[f(I) − f(0)]
= f(Q) + t4U(φ) + t8(f1U(φ) + f2U(φ+ π)).

(3.21)
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Equations (3.17), (3.18) imply t4 = f1t2, equations (3.21), (3.20) imply t4+f1t8 = f1t3,
and equations (3.21), (3.19) imply f2t8 = f2t1. Since f1 > 0, f2 > 0, this further implies
t1 + t2 = t3, hence

f(C) − f(Q) = [f(A) − f(Q)] + [f(B) − f(Q)] ,
f(Q+ uvI) − f(Q) = [f(Q+ vI) − f(Q)] + [f(Q+ (u− 1)vI) − f(Q)] .

This holds for all u, v ∈ R. Now we can prove by induction that

f(Q+ uvI) − f(Q) = u [f(Q+ vI) − f(Q)] , u = 0, 1, 2, . . . , v ∈ R,
f(Q− uvI) − f(Q) = −u [f(Q+ vI) − f(Q)] , u = 0, 1, 2, . . . , v ∈ R.

Together we have

f(Q+ uvI) − f(Q) = u [f(Q+ vI) − f(Q)] , u ∈ Z, v ∈ R. (3.22)

When we put v = 1
u , we get

f(Q+ 1
uI) − f(Q) = 1

u [f(Q+ I) − f(Q)] , u ∈ Z \ {0}. (3.23)

From (3.22), (3.23) we further get that if z = p
q , p, q ∈ Z, then

f(Q+ zI) − f(Q) = p
[
f(Q+ 1

q I) − f(Q)
]

= z [f(Q+ I) − f(Q)] .

And we get from the continuity of f that

f(Q+ zI) − f(Q) = z [f(Q+ I) − f(Q)] = zsQ [f(I) − f(0)] , z ∈ R, (3.24)

where sQ ∈ R is the parameter s from Lemma 3.13 with z = 1.
Now let again u, v ∈ R and take A,B,C,D,E as in (3.14) and let x = uv

2 , y = v
2 .

From (3.15), (3.16), (3.24) we have that

f(Q+ 2xI) = f(Q) + t3[f(I) − f(0)] = f(Q) + 2xsQ [f(I) − f(0)] ,
f(Q+ 2yI) = f(Q) + t1[f(I) − f(0)] = f(Q) + 2ysQ [f(I) − f(0)] ,

and we get that t1 = 2ysQ, t3 = 2xsQ.
Now from (3.20), (3.19), we have that

f(E) = f(Q) + f1t3U(φ) + f2t1U(φ+ π)),

and from (3.14) is E = Q+ xU(ψ) + yU(ψ + π), hence we get

f(Q+ xU(ψ) + yU(ψ + π)) = f(Q) + 2f1xsQU(φ) + 2f2ysQU(φ+ π)). (3.25)

This relation holds for all x, y ∈ R such that x = uv
2 , y = v

2 for some u, v. These
are all x, y ∈ R except of x ̸= 0, y = 0. If we take A,B,C,D,E as in (3.14), but we
exchange U(ψ) and U(ψ + π), we get that relation (3.25) holds for all x, y ∈ R except
of y ̸= 0, x = 0. Together we get that it holds for all x, y ∈ R.
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Lemma 3.15. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
φ,ψ ∈ [0, 2π) and f1, f2 ∈ R be such that relations (3.9) from Lemma 3.10 hold.
Let Q ∈ S2 and x, y ∈ R. Then

f(Q+ xU(ψ) + yU(ψ + π)) = f(Q) + 2xf1U(φ) + 2yf2U(φ+ π). (3.26)

Proof. We show that for all Q ∈ S2, relation (3.13) from Lemma 3.13 holds with
sQ = 1. Since f(I) = f(0) + [f(I) − f(0)], we have that s0 = 1. Now let Q ∈ S2.
By Lemma 2.9, there exist α ∈ [0, 2π), a, b ∈ R such that

Q = aU(α) + bU(α+ π) = (a− b)U(α) + 2bI ∈ lα(2bI) ⊆ pα,α+π(I),
Q+ 2I = (a− b)U(α) + 2(b+ 1)I ∈ lα(2(b+ 1)I) ⊆ pα,α+π(I).

(3.27)

By Lemma 3.9 and Lemma 3.8, there exist β, γ ∈ [0, 2π) such that

f(pα,α+π(I)) ⊆ pβ,γ(f(I)) and f(lα(A)) ⊆ lβ(f(A))

for all A ∈ pα,α+π(I). Then we get from (3.27) that there exist c, d ∈ R such that

f(Q) ∈ lβ(f(2bI)), f(Q) = f(2bI) + cU(β),
f(Q+ 2I) ∈ lβ(f(2(b+ 1)I)), f(Q+ 2I) = f(2(b+ 1)I) + dU(β).

Now we use (3.13) and get from these equations that

f(Q) = f(0) + 2bf1U(φ) + 2bf2U(φ+ π) + cU(β),
f(Q+ 2I) = f(0) + 2(b+ 1)f1U(φ) + 2(b+ 1)f2U(φ+ π) + dU(β).

and also

f(Q+ 2I) = f(Q) + 2sQf1U(φ) + 2sQf2U(φ+ π).

Together we get that

f(Q+ 2I) − f(Q) = 2f1U(φ) + 2f2U(φ+ π) + (d− c)U(β)
= 2sQf1U(φ) + 2sQf2U(φ+ π),

2(1 − sQ) [f1U(φ) + f2U(φ+ π)] = (c− d)U(β),
and since f1 > 0, f2 > 0, we get by Lemma 2.11 that 1 − sQ = 0.

Lemma 3.16. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
φ,ψ ∈ [0, 2π) and f1, f2 ∈ R be such that relations (3.9) from Lemma 3.10 hold.
Let Q ∈ S2. Then

f(pψ,ψ+π(Q)) = pφ,φ+π(f(Q)). (3.28)
Proof. By Lemma 3.11, f(pψ,ψ+π(Q)) = pφ,φ+π(f(Q)) ∩ f(S2), hence we have
that f(pψ,ψ+π(Q)) ⊆ pφ,φ+π(f(Q)). It remains to show the opposite inclusion. Let
A ∈ pφ,φ+π(f(Q)). Then there exist a, b ∈ R such that

A = f(Q) + aU(φ) + bU(φ+ π).
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Since f1f2 > 0, there exist x, y ∈ R such that x = a
2f1

, y = b
2f1

. Then

A = f(Q) + 2xf1U(φ) + 2yf2U(φ+ π).

And, by Lemma 3.15, we further get that f(Q + xU(ψ) + yU(ψ + π)) = A, hence
A ∈ f(pψ,ψ+π(Q)).

Lemma 3.17. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
φ,ψ ∈ [0, 2π) and f1, f2 ∈ R be such that relations (3.9) from Lemma 3.10 hold.
Let Q ∈ S2 and z ∈ R. Then

f(Q+ z
(
U

(
ψ + π

2
)

− I
)
) = f(Q) + 2σz

√
f1f2

[
U(φ+ π

2 ) − I
]
,

where σ = 1 or σ = −1.

Proof. Denote
P = Q+ z

(
U

(
ψ + π

2
)

− I
)
.

We may assume that z > 0. Let V,W ∈ S2 be such that V = Q − zI, W = Q+ zI.
Then

W = V + zU(ψ) + zU(ψ + π),

and further, we have by Lemma 2.20 that

pψ,ψ+π(P ) ∩K0(V ) ∩K0(W ) = {P}.

By Lemmas 3.4 and 3.16, the images of these sets are f(K0(V )) = K0(f(V )) ∩ f(S2),
f(K0(W )) = K0(f(W )) ∩ f(S2), f(pψ,ψ+π(P )) = pφ,φ+π(f(P )), hence

{f(P )} = f(pψ,ψ+π(P )) ∩ f(K0(V )) ∩ f(K0(W ))
= pφ,φ+π(f(P )) ∩K0(f(V )) ∩K0(f(W )).

Further, by Lemma 3.15, we have that

f(V ) = f(Q− zI) = f
(
Q− z

2U(ψ) − z
2U(ψ + π)

)

= f(Q) − zf1U(φ) − zf2U(φ+ π),
f(W ) = f(Q+ zI) = f(Q) + zf1U(φ) + zf2U(φ+ π)

= f(V ) + 2zf1U(φ) + 2zf2U(φ+ π).

Now, by Lemma 2.19, we get that f(P ) is of the form

f(P ) = f(V )+f(W )
2 ± 2z

√
f1f2

[
U(φ+ π

2 ) − I
]

= f(Q) ± 2z
√
f1f2

[
U(φ+ π

2 ) − I
]
.

This completes the proof.

Now, by Lemma 3.15 and Lemma 3.17, we finally get the relation for the image of
any Q ∈ S2.
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Lemma 3.18. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
φ,ψ ∈ [0, 2π) and f1, f2 ∈ R be such that relations (3.9) from Lemma 3.10 hold.
Let Q ∈ S2 and x, y, z ∈ R be such that

Q = xU(ψ) + yU(ψ + π) + z
(
U

(
ψ + π

2
)

− I
)
.

Then

f(Q) = f(0) + 2xf1U(φ) + 2yf2U(φ+ π) + 2σz
√
f1f2

(
U(φ+ π

2 ) − I
)
,

where σ = 1 or σ = −1.

Proof. The relation follows from Lemma 3.15 and Lemma 3.17.

Now we write the relation from the previous lemma in the matrix form.

Lemma 3.19. Let f : S2 → S2 be continuous and have property (1.1) on S2. Let
φ,ψ ∈ [0, 2π) and f1, f2 ∈ R be such that relations (3.9) from Lemma 3.10 hold.
Let Q ∈ S2. Then f(Q) = f(0) + LQLT , where

L =
[
U

(
φ
2

)
− I

] [√
2f1 00 σ

√
2f2

] [
U

(
ψ
2

)
− I

]
, σ = 1 or σ = −1.

Proof. Let Q ∈ S2. By Lemma 2.8, there exist x, y, z ∈ R such that

Q = xU(ψ) + yU(ψ + π) + z
(
U

(
ψ + π

2
)

− I
)
.

By identities (2.6), it holds that
[
U

(
ψ
2

)
− I

]
Q

[
U

(
ψ
2

)
− I

]
=

[
2x −z
−z 2y

]
.

Further, it follows from Lemma 3.18 and identities (2.6) that

[
U

(
φ
2

)
− I

]
f(Q)

[
U

(
φ
2

)
− I

]
=

[
4xf1 2σz

√
f1f2

2σz
√
f1f2 4yf2

]

=
[√

2f1 0
0 σ

√
2f2

] [
2x −z
−z 2y

] [√
2f1 0
0 σ

√
2f2

]

=
[√

2f1 0
0 σ

√
2f2

] [
U

(
ψ
2

)
− I

]
Q

[
U

(
ψ
2

)
− I

] [√
2f1 0
0 σ

√
2f2

]
,

and identity (2.3) implies the statement of the lemma.

Hypothesis 1.4 with n = 2 is a direct consequence of Lemma 3.19.

Theorem 3.20. Let f : S2 → S2 be a continuous function such that f has prop-
erty (1.1) on the whole S2. Then f is of the form f(Q) = K + LTQL, where K is
a symmetric 2 × 2 matrix and L is an invertible 2 × 2 matrix.

Proof. It follows from Lemma 3.19.
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4. CONCLUSION AND FURTHER QUESTIONS

We were able to answer our question for the special case and proved that the only
continuous symmetric 2 × 2 matrix functions with the order preserving property (1.1)
on the whole S are the functions of the form f(Q) = K+LTQL. It is still not resolved,
whether this also holds for n > 2, and for the functions that have property (1.1) only
on a subset of S.

An example of such functions is the type we get when we put A = 0. If A = 0
then M+ = {Q ∈ S : Q > 0}, M− = {Q ∈ S : Q < 0} and further if C,D are such that
S = [ 0 B

C D ] is symplectic, then
BTD = DTB, CTB = −I

and
(C + DQ)(A + BQ)−1 = (−BT−1 + DQ)(BQ)−1 = −BT−1Q−1B−1 + DB−1.

The matrix DB−1 is symmetric and the matrix B−1 is invertible. Proposition 1.2
becomes the following.
Proposition 4.1. Let f : S → S be defined as f(Q) = K − LTQ−1L, where K is
a symmetric n×n matrix and L is an invertible n×n matrix. Then f has property (1.1)
on the set M+ = {Q ∈ S : Q > 0} and on the set M− = {Q ∈ S : Q < 0}.

The proof of this proposition is again simple. However, we do not yet know, how
it is with the converse of this proposition, or even how exactly it should be formulated.
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