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Abstract. We study the monodromy invariant Hermitian forms for second order Fuchsian
differential equations with four singularities. The moduli space of our monodromy repre-
sentations can be realized by certain affine cubic surface. In this paper we characterize the
irreducible monodromies having the non-degenerate invariant Hermitian forms in terms of
that cubic surface. The explicit forms of invariant Hermitian forms are also given. Our result
may bring a new insight into the study of the Painlevé differential equations.
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1. INTRODUCTION

In the theory of Fuchsian differential equations, monodromy invariant Hermitian
forms play an important role in studying the geometric nature of solutions. The
criterion for the finiteness of monodromies is a typical example. In the famous result
of Beukers–Heckman [3], where the generalized hypergeometric equations with finite
monodromies are classified, the monodromy invariant Hermitian forms play a basic role.
Haraoka [8] studied the finite monodromies for the Pochhammer equation, where the
monodromy invariant Hermitian forms play also a basic role. He showed the existence
of monodromy invariant Hermitian forms for other classes of Fuchsian system (called
Yokoyama’s list) in [9].

On the other hand, monodromy invariant Hermitian forms are deeply connected
with the theory of integral representations of solutions; the monodromy invariant
Hermitian form appears as the inverse of the intersection matrix of twisted cycles
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associated with the integral representation of the solutions of Euler type [15]. Hence
if the differential equation has an integral representation of solutions of Euler type,
we may obtain the monodromy invariant Hermitian form. Haraoka–Hamaguchi [10]
proved that any irreducible Fuchsian system free from accessory parameters (i.e. rigid)
has an integral representation of solutions of Euler type. Hence we see that any
rigid Fuchsian differential equation has the monodromy invariant Hermitian form.
Incidentally, the differential equations treated in [3, 8, 9] are rigid ones. For non-rigid
equations, the existence of invariant Hermitian forms is known only the case when
the equation has an integral representation of solutions, as in the Dotsenko–Fateev
equation [6].

By looking at these results, one may feel that the existence of invariant Hermitian
forms would implies the existence of integral representations of solutions. But recently,
we showed the existence of the invariant Hermitian forms for certain family of the third
order non-rigid Fuchsian differential equation without assuming the existence of integral
representation of solutions [2]. This result suggests the possibility of introducing a new
class into the Fuchsian equations. Then it is natural to ask whether there exist other
non-rigid equations which belong to this class, that is, the existence of monodromy
invariant Hermitian forms for other non-rigid equations.

In this paper, we consider the existence of invariant Hermitian forms for
non-rigid second order Fuchsian differential equations of SL type with four singu-
larities t1, t2, t3, t4 ∈ P1. For a fundamental system of solutions at a base point
b ∈ P1 \ {t1, t2, t3, t4}, the monodromy representation of solution is determined as
anti-homomorphism of the fundamental group π1(P1 \ {t1, t2, t3, t4}, b) to SL(2,C),
describing the analytic continuations of the fundamental system of solutions. The
monodromy representation ρ : π1(P1 \ {t1, t2, t3, t4}, b) → SL(2,C) has an invariant
Hermitian form if there exists a Hermitian matrix H satisfying

ρ(γ)T
Hρ(γ) = H (γ ∈ π1(P1 \ {t1, t2, t3, t4}, b)), (1.1)

where ρ(γ)T denotes the complex conjugate of transpose of ρ(γ).
The monodromy representation depends on the choice of the fundamental system of

solutions and the change of the fundamental system of solutions leads to the equivalence
relation for the monodromy representations. If a monodromy representation has an
invariant Hermitian form, then any other equivalent representations also have invariant
Hermitian forms. Therefore, in studying invariant Hermitian forms, it is natural to
consider the moduli space of monodromy representations. Note that the moduli space
of monodromy representations can be identify with the moduli space of Fuchsian
differential equations via Riemann–Hilbert correspondence.

Let M(a) be the moduli space of monodromy representations with prescribed
local monodromy data a ∈ C4. Jimbo [14] pointed out that the moduli space M(a)
can be realized by certain affine cubic surface S(a) ⊂ C3. After that, Iwasaki [13]
introduced Zariski open subsets S◦(a) ⊂ S(a) and M◦(a) ⊂ M(a) which are called
big opens, and constructed a homeomorphism φ : S◦(a) ∼−→ M◦(a) explicitly. Since
the big opens S◦(a) and M◦(a) are identical to the entire surface S(a) and entire space
M(a) respectively for a generic a ∈ C4, Iwasaki’s result gives an useful correspondence
between the moduli space M(a) and the cubic surface S(a).
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In this paper, we first show that the subspace of M◦(a) consisting of the irreducible
elements which have invariant Hermitian forms can be identified with S◦(a) ∩ R3

through the above homeomorphism. Next we consider the case for non-generic a ∈ C4.
In this case the complement M(a)\M◦(a) is non-empty. We show that any irreducible
element in M(a) \ M◦(a) having an invariant Hermitian form corresponds to the
point in S(a) ∩ R3. Thus we characterized the set of irreducible elements in M(a)
having the invariant Hermitian form in terms of the cubic surface S(a). As stated
above, the irreducible elements in M(a) can be identified with the irreducible Fuchsian
differential equations. Therefore our result implies the existence of the family of the
irreducible Fuchsian differential equations having invariant Hermitian forms.

Our result may bring a new insight into the study of the Painlevé differential equa-
tions. The sixth Painlevé equation is characterized by the isomonodromic deformation
of the Fuchsian systems of rank two with four singularities. Isomonodromic nature
leads to an identification of the moduli space M(a) with the set of solution germs (or
the initial value space) at a base point of the sixth Painlevé equation. By looking at
this fact, our result implies that we implicitly find out a new class of the solutions of
the sixth Painlevé equation, which we will call “Hermitian-class”. Iwasaki’s pioneering
works [12, 13] intended to relate the dynamics on the cubic surface S(a) to the study
of nonlinear monodromy to the solutions of sixth Painlevé equation. Since the relation
between the solutions belonging to Hermitian-class and the point of S(a) is very clear,
the study of nonlinear monodromy of the solutions in Hermitian-class through the
dynamics on S(a) is an interesting future problem.

On the other hand, in the study of conformal field theory, the Fourier expansion of
tau function of the sixth Painlevé equation is expressed by conformal blocks, which
are monodromy invariant Hermitian forms [7,11]. Hence it is fascinate to investigate
the relation between Hermitian-class and conformal blocks.

This paper is organized as follows. In Section 2, we fix some notations and construct
the moduli space M(a). Following Iwasaki’s work [12,13], we review the correspondence
between M(a) and S(a) in Section 3. In Section 4, we give some remarks about
monodromy invariant Hermitian forms. Our main results are Theorems 5.1 and 6.12.
Their statements and proofs are given in Sections 5 and 6. We note that our proof
is constructive, that is, the explicit forms of Hermitian matrices associate to the
monodromy invariant Hermitian forms will be given.

2. MODULI SPACE OF MONODROMY REPRESENTATIONS

In keeping with the previous section, we consider the Fuchsian differential equation
(resp. Fuchsian system) of order two (resp. rank two) of SL type with four regular
singular points t1, t2, t3, t4 ∈ P1. We fix a base point b ∈ P1 \ {t1, t2, t3, t4} and
take (+1)-loops γ1, γ2, γ3, γ4 as illustrated in Figure 1. Then the fundamental group
π1(P1 \ {t1, t2, t3, t4}, b) is generated by γ1, γ2, γ3 and γ4 with a relation

γ1γ2γ3γ4 = 1.
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Fig. 1. Singular points and (+1)-loops

By taking a fundamental system of solutions in a neighborhood of b, we obtain
the monodromy representation

ρ : π1(P1 \ {t1, t2, t3, t4}, b) → SL(2,C).

We set
ρ(γi) = Mi (i = 1, 2, 3, 4). (2.1)

Then the monodromy group is generated by M1,M2,M3,M4 and the relation

M4M3M2M1 = I. (2.2)

Note that the each matrix Mi determines the local monodromy at ti (i = 1, 2, 3, 4).
Thanks to (2.2), we may identify the representation ρ with the triple (M1,M2,M3),
and hence sometimes write ρ = (M1,M2,M3).

To show that the monodromy representation ρ = (M1,M2,M3) has an invariant
Hermitian form, it is sufficient to show the existence of a Hermitian matrix such that

M̄T
i HMi = H (i = 1, 2, 3), (2.3)

where M̄T denotes the complex conjugate of transpose of M . Indeed, if the equations
(2.3) holds, then (1.1) holds from the relations (2.1) and (2.2).

As stated in the previous section, the monodromy representation depends on the
choice of the fundamental system of solutions. Indeed, if we change the fundamental
system of solutions, the monodromy representation ρ is transformed to Ad(P )(ρ)
defined by

(Ad(P )(ρ)) (γ) = Pρ(γ)P−1 (γ ∈ π1(P1 \ {t1, t2, t3, t4}, b))

with some P ∈ SL(2,C). The monodromy of the differential equation is defined as the
equivalence class [ρ] by the equivalence relation

ρ ∼ Ad(P )(ρ) (P ∈ SL(2,C)).
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For the monodromy representation ρ = (M1,M2,M3), the monodromy [ρ] is given by
the equivalence class [(M1,M2,M3)] by the equivalence relation

(M1,M2,M3) ∼ (PM1P
−1, PM2P

−1, PM3P
−1) (P ∈ SL(2,C)). (2.4)

If ρ = (M1,M2,M3) has an invariant Hermitian form with a Hermitian matrix H,
then any equivalent representation

Ad(P )(ρ) = (PM1P
−1, PM2P

−1, PM3P
−1)

also has an invariant Hermitian form by the Hermitian matrix (P̄−1)THP−1. Therefore
in studying our problem, it is natural to consider the moduli space of monodromy
representations.

We shall consider the moduli space of monodromy representations prescribed local
monodromies. Let C = (C1, C2, C3, C4) be a quartet of conjugacy classes of SL(2,C),
which represents the quartet of the local monodromies at (t1, t2, t3, t4). Note that
taking the local monodromy Ci is nothing but fixing the spectral type (Jordan canonical
form) at the singularity ti. Then we set the moduli space of monodromy representations
prescribed local monodromies as

MC = {(M1,M2,M3) ∈ C1 × C2 × C3 ; (M3M2M1)−1 ∈ C4}/ ∼ .

This space is easy to see the correspondence with differential equations, but it does not
have good topological properties in general. In fact, this space is nether Hausdorff, nor
an algebraic variety. Therefore we use more lough equivalence relation and quotient
space, that is, GIT quotient. We set the parameter a = (a1, a2, a3, a4) ∈ C4 by

ai = tr Ci (i = 1, 2, 3, 4)

and define
O(ai) = {M ∈ SL(2,C) ; trM = ai}.

Now we define the moduli space of monodromy representations as

M(a) = {(M1,M2,M3) ∈ O(a1) × O(a2) × O(a3) ;
(M3M2M1)−1 ∈ O(a4)}// SL(2,C).

(2.5)

Here the quotient // denotes GIT quotient by the diagonal adjoint action of
SL(2,C). We remark that the condition (M3M2M1)−1 ∈ O(a4) is equivalent to
M3M2M1 ∈ O(a4).

We sometimes write (M1,M2,M3) ∈ M(a) to represent [(M1,M2,M3)] ∈ M(a)
if there is no confuse to write as like this.

The space M(a) is an algebraic variety and complex manifold of rank two. Moreover,
M(a) is homeomorphic to certain affine cubic surface for general parameters a ∈ C4.
We shall explain this in the following section.

Finally, we introduce the notion of irreducibility. A triple (M1,M2,M3) ∈ SL(2,C)3

or an element [(M1,M2,M3)] ∈ MC is called irreducible if M1,M2 and M3 have
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no common invariant subspace except trivial subspaces {0} and C2. An element
[(M1,M2,M3)] ∈ M(a) is called irreducible if the any triple of matrices belonging
to [(M1,M2,M3)] is irreducible. It is known that any triple in the irreducible ele-
ment [(M1,M2,M3)] ∈ M(a) is equivalent in the sense of (2.4). In other words, any
irreducible element [(M1,M2,M3)] ∈ M(a) is also the equivalence classes in MC .

3. AFFINE CUBIC SURFACE AND BIG OPENS

We explain the relation between the moduli space M(a) and affine cubic surface
in C3, referring Iwasaki’s work [12, 13]. Hereafter, we denote by (i, j, k) any cyclic
permutation of (1, 2, 3). For a = (a1, a2, a3, a4) ∈ C4, we set

θi(a) = ajak + aia4 (i = 1, 2, 3),
θ4(a) = a1a2a3a4 + a2

1 + a2
2 + a2

3 + a2
4 − 4.

(3.1)

and define the affine cubic polynomial in x = (x1, x2, x3) ∈ C3 by

fa(x) = x1x2x3 + x2
1 + x2

2 + x2
3 − θ1(a)x1 − θ2(a)x2 − θ3(a)x3 + θ4(a). (3.2)

Using this, we define the cubic surface

S(a) = {x ∈ C3 ; fa(x) = 0}. (3.3)

In [12], the geometric structure of the surface S(a) was investigated.

Theorem 3.1 ([12, Theorem 1]). Let w(a) be a polynomial of a = (a1, a2, a3, a4)
defined by

w(a) =
∏

ε1ε2ε3=1
(ε1a1 + ε2a2 + ε3a3 + a4) −

3∏

i=1
(aia4 − ajak), (3.4)

where the first product on the right-hand side is taken over all triples (ε1, ε2, ε3) ∈ {±1}3

satisfying ε1ε2ε3 = 1. Then the affine cubic surface S(a) has singular points if and
only if

w(a)
4∏

i=1
(a2

i − 4) = 0. (3.5)

We shall explain the relation between the moduli space M(a) and the cubic
surface S(a). For the element [(M1,M2,M3)] ∈ M(a), we set x = (x1, x2, x3) by

xi = tr(MjMk) (i = 1, 2, 3). (3.6)

Note that the value of x = (x1, x2, x3) is invariant for the choice of the representative
of [(M1,M2,M3)]. We see that that fa(x) = 0 holds, which implies that the mapping
(3.6) : M(a) → S(a) is well-defined (Jimbo [14], Boalch [4]). Conversely, the conjugacy
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classes of M(a) are parametrized by the coordinate of S(a) for a generic a ∈ C4.
To explain this, we introduce some important notions defined in [13].

Any polynomial p = p(x) of x may be thought as a function on S(a) if x is
regarded as the coordinates of S(a), and as a function on M(a) if x is regarded
as the invariants in M(a). Hence we can define the open subset of S(a) and M(a) by
the same polynomial p = p(x);

S(a)[p] = S(a) ∩ {p ̸= 0}, M(a)[p] = M(a) ∩ {p ̸= 0}.

Next we introduce the polynomial

piν(x) =
{

(x2
i − 4)ψ(xi, ai, a4) (ν = 1),

(x2
i − 4)ψ(xi, aj , ak) (ν = 2),

(3.7)

where the polynomial ψ(s, t, u) is defined by

ψ(s, t, u) = s2 + t2 + u2 − stu− 4. (3.8)

Using this we define the open subsets (charts)

Siν(a) = S(a)[piν ], Miν(a) = M(a)[piν ] (i = 1, 2, 3, ν = 1, 2). (3.9)

We fix a square root of x2
i − 4 and put

ri =
√
x2

i − 4, λ±
i = xi ± ri

2 . (3.10)

Under these preparation, a good parametrization of the space M(a) is given.
Proposition 3.2 ([13, Definition 3.3 and Lemma 3.4]). We fix a = (a1, a2, a3, a4) ∈ C4.
For i = 1, 2, 3 and ν = 1, 2, let

φiν : Siν(a) → Miν(a) (3.11)

be the map associating to each x ∈ Siν(a) the conjugacy class of the triple
(M1,M2,M3) ∈ Miν(a) defined as in Tables 1 (for ν = 1) and 2 (for ν = 2),
where (i, j, k) denotes any cyclic permutation of (1, 2, 3) and

yi = ∂fa

∂xi
= 2xi + xjxk − θi(a) (i = 1, 2, 3). (3.12)

Then the map φiν is well-defined, that is, it does not depend on the choice of the branch
in (3.10).

We would like to obtain a global parametrization of M(a). Let us set

S◦(a) =
3⋃

i=1

2⋃

ν=1
Siν(a), M◦(a) =

3⋃

i=1

2⋃

ν=1
Miν(a) (3.13)

and call them big opens. The reason of such naming will be cleared later. Now we give
the global parametrization theorem.
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Table 1
(M1,M2,M3) ∈ Miν(a) with ν = 1

Mi =




a4 − aiλ
−
i

ri
−ψ(xi, ai, a4)

x2
i − 4

1 −a4 − aiλ
+
i

ri




Mj =




−ak − ajλ
+
i

ri
−yk − yjλ

−
i

x2
i − 4

yk − yjλ
+
i

ψ(xi, ai, a4)
ak − ajλ

−
i

ri




Mk =




−aj − akλ
+
i

ri
−yj − ykλ

+
i

x2
i − 4

yj − ykλ
−
i

ψ(xi, ai, a4)
aj − akλ

−
i

ri




Table 2
(M1,M2,M3) ∈ Miν(a) with ν = 2

Mi =




a4 − aiλ
−
i

ri
−yk − yjλ

+
i

x2
i − 4

yk − yjλ
−
i

ψ(xi, aj , ak)
−a4 − aiλ

+
i

ri




Mj =




−ak − ajλ
+
i

ri
−ψ(xi, aj , ak)

x2
i − 4

1
ak − ajλ

−
i

ri




Mk =




−aj − akλ
+
i

ri

λ+
i ψ(xi, aj , ak)

x2
i − 4

−λ−
i

aj − akλ
−
i

ri




Theorem 3.3 ([13, Theorem 3.6]). We take a parameter a ∈ C4. For each i = 1, 2, 3,
ν = 1, 2, the map φiν : Siν(a) → Miν(a) in (3.9) is a homeomorphism. These six local
homeomorphism are patched together to yield a global homeomorphism between the big
opens,

φ : S◦(a) → M◦(a). (3.14)
For generic a ∈ C4, the big open S◦(a) is nothing but the entire surface S(a).

Namely, the following theorem holds.
Theorem 3.4 ([13, Theorem 4.1]). For any a ∈ C4, we set

v(a) =
∏

ε∈{±1}3

fa(2ε),

where ε = (ε1, ε2, ε3) and the polynomial fa(x) is defined in (3.2) . Then we have
S◦(a) = S(a) if and only if

v(a)w(a) ̸= 0, (3.15)
where w(a) is the polynomial defined (3.4).
Remark 3.5. Iwasaki pointed out that, the set S(a) \ S◦(a) contains at most 64
points for any a ∈ C in [13, Lemma 4.2].

The open set M◦(a) is also big open set of M(a). In fact, for generic a ∈ C4

it holds that M(a) = M◦(a), and the generality is given by (3.15).
Proposition 3.6. If the parameter a ∈ C4 satisfies the condition (3.15), it holds that
M◦(a) = M(a).

Thanks to this proposition, any element in M◦(a) can be identified with the
monodromy in MC. Proposition 3.6 can be shown in a same manner as the proof
of Theorem 3.4. But the statement itself of this proposition was not stated in [13].
Hence we shall prove this proposition without being afraid of duplication.
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Proof. We assume M(a) \ M◦(a) is non-empty and then show v(a)w(a) = 0.
Let us take (M1,M2,M3) ∈ M(a) \ M◦(a) and set x = (x1, x2, x3) by
xi = tr(MjMk). Then we have piν(x) = 0 for all (i, ν).

If (x1, x2, x3) = (2ε1, 2ε2, 2ε3) for some εi ∈ {±1}, then we have v(a) = 0 immedi-
ately.

Next we consider the case that xi ̸= ±2 for some i = 1, 2, 3. Then the condition
piν(x) = 0 implies

{
ψ(xi, ai, a4) = x2

i + a2
i + a2

4 − xiaia4 − 4 = 0,
ψ(xi, aj , ak) = x2

i + a2
j + a2

k − xiajak − 4 = 0.
(3.16)

We consider these equations divided into two cases.
Case 1. aia4 − ajak ≠ 0. Subtracting above two equations we find that the common
root xi must be

zi =
a2

i − a2
j − a2

k + a2
4

aia4 − ajak
.

By putting this into ψ(xi, ai, a4) and ψ(xi, aj , ak), we obtain

ψ(zi, ai, a4) = ψ(zi, aj , ak) = w(a)
(aia4 − ajak)2 .

Since (3.16) holds now, we have w(a) = 0.
Case 2. aia4 − ajak = 0. In this case the two equations in (3.16) has a common root
xi if and only if the two equations are identical. This means that

aia4 = ajak, a2
i + a2

4 = a2
j + a2

k.

This is the case if and only if either
{
aj = εai,

ak = εa4
or

{
aj = εa4,

ak = εai

holds for some ε ∈ {±1}. In either case, there exists ε1, ε2, ε3 ∈ {±1} such that
ε1ε2ε3 = 1 and

ε1a1 + ε2a2 + ε3a3 + a4 = 0.

Combining this and aia4 − ajak = 0, we have w(a) = 0.

If the monodromy of the second order differential equation is reducible, then the
corresponding differential equation can be reduced into the first order differential
equation and solved elementary. Hence we are interested in irreducible monodromies.
We find that the big open M◦(a) which introduced in the previous section gives
a criterion for the irreducibility, that is, the following lemma holds.
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Lemma 3.7. Let us fix a parameter a = (a1, a2, a3, a4) ∈ C4. Then any element
in M◦(a) is irreducible.

Proof. Assume that [(M1,M2,M3)] ∈ M(a) is reducible. Then by considering the
conjugation by some P ∈ SL(2,C), we may take a representative of the form

M1 =
(
ξ1 p1
0 ξ−1

1

)
, M2 =

(
ξ2 p2
0 ξ−1

2

)
, M3 =

(
ξ3 p3
0 ξ−1

3

)
, (3.17)

where pi ∈ C and ξi are the non-zero complex numbers such that

ξi + ξ−1
i = ai, a4 = ξ1ξ2ξ3 + 1

ξ1ξ2ξ3
.

Regarding x as an invariant of M(a) by (3.6), we find that ψ(xi, ai, a4) =
ψ(xi, aj , ak) = 0 for all i = 1, 2, 3, which implies piν(x) = 0 for all (i, ν). This
means that [(M1,M2,M3)] /∈ M◦(a) for all (i, ν), and complete the proof.

As mentioned in proposition 3.6, it holds that M(a) = M◦(a) for generic a ∈ C.
As a consequence of this fact and Lemma 3.7, we obtain the following.

Proposition 3.8. If the parameter a = (a1, a2, a3, a4) ∈ C4 satisfies (3.15), then any
element in M(a) is irreducible.

4. MONODROMY INVARIANT HERMITIAN FORMS

We give some basic facts about monodromy invariant Hermitian forms. The following
lemma states that the monodromy invariant Hermitian forms give a simple criterion
for the irreducible monodromies.

Lemma 4.1. Let (M1,M2,M3) be a triple of matrices in SL(n,C) and assume that
there is a non-zero Hermitian matrix H satisfying

M̄T
1 HM1 = H, M̄T

2 HM2 = H, M̄T
3 HM3 = H.

If detH = 0, then the triple (M1,M2,M3) is reducible.

Since this lemma is proved in a more general case in [2], we omit the proof
here. Thanks to this lemma, we see that any invariant Hermitian form of irreducible
monodromy is non-degenerate. Therefore we consider non-degenerate Hermitian forms
mainly. Next we find the existence of non-degenerate invariant Hermitian form imposes
certain constraints on the eigenvalues of monodromies.

Lemma 4.2. Let M be a matrix in SL(2,C). We denote by {ξ, 1/ξ} the eigenvalues
of M . If there is a non-degenerate Hermitian matrix H satisfying

M̄THM = H, (4.1)

we have {ξ̄, 1/ξ̄} = {ξ, 1/ξ}.
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Proof. We denote by σ(X) the set of eigenvalues of X. From the assumption
σ(M) = {ξ, 1/ξ}, we have

σ(M−1) = {ξ, 1/ξ}, σ(M̄T ) = σ(M̄) = {ξ̄, 1/ξ̄}.

On the other hand, from (4.1) we have

M̄T = H(HM)−1 = HM−1H−1.

This implies that σ(M̄T ) = σ(M−1) and completes the proof.

We remark that Lemma 4.2 can be generalized to the case of M ∈ GL(n,C) (see
[2, Lemma 3.2]). The following corollary is very important for the characterization of
the existence of monodromy invariant non-degenerate Hermitian forms.

Corollary 4.3. Let M be a matrix in SL(2,C). If there is a non-degenerate Hermitian
matrix H satisfying (4.1), we have trM ∈ R.

Proof. We set σ(M) = {ξ, 1/ξ}. Then we have

trM = ξ + 1
ξ
.

On the other hand, from Lemma 4.2 we have

{ξ̄, 1/ξ̄} = {ξ, 1/ξ}.

Hence we obtain
ξ + 1

ξ
= ξ̄ + 1

ξ̄
= ξ + 1

ξ

which implies trM ∈ R.

By looking at this result, for the irreducible elements [(M1,M2,M3)] ∈ M(a),
we see that the assumption

ai = trMi ∈ R (i = 1, 2, 3, 4) (4.2)

is needed for the existence of invariant non-degenerate Hermitian forms. Here M4 is
determined by the relation (2.2). Therefore we assume (4.2) in the following sections.

5. INVARIANT HERMITIAN FORMS FOR MONODROMIES IN BIG OPEN

In this section, we characterize the existence condition of the invariant Hermitian
forms for the monodromies in big open.

Theorem 5.1. We take a ∈ R4 and fix the homeomorphism φ : S◦(a) → M◦(a)
by (3.14). Then the element φ(x) = [(M1,M2,M3)] ∈ M◦(a) has an invariant
non-degenerate Hermitian forms if and only if x ∈ S◦(a) ∩ R3.
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Remark 5.2. As seen in Section 3, if the parameter a ∈ R4 satisfies the condition
(3.15), the open sets S◦(a) and M◦(a) can be replaced to the entire surface S(a) and
the moduli space M(a), respectively. On the other hand, when the condition (3.15)
does not hold, the complements S(a) \ S◦(a) and M(a) \ M◦(a) are non-empty. As
seen in (3.17), we see that the several elements in M(a) \ M◦(a) correspond to the
one point of S(a) \ S◦(a), hence it is impossible to construct the homeomorphism as
like φ(x). The treatment of such case will be given in Section 6.

From the point of view of Fuchsian differential equations, Theorem 5.1 shows the
existence of the second order irreducible non-rigid Fuchsian differential equations of SL
type with four singularities having the monodromy invariant Hermitian forms.

5.1. PROOF OF NECESSITY

We show the necessity of Theorem 5.1, which is followed from the correspondence (3.6)
and Corollary 4.3. We take x ∈ S◦(a) and assume that

φ(x) = [(M1,M2,M3)] ∈ M◦(a)

has an invariant non-degenerate Hermitian form. Then for any representative
(M1,M2,M3) of φ(x), there exists a non-degenerate Hermitian matrix H such that

M̄T
i HMi = H (i = 1, 2, 3). (5.1)

Let (i, j, k) denotes any cyclic permutation of (1, 2, 3). Since (M1,M2,M3) ∈ SL(2,C)3,
we have MjMk ∈ SL(2,C) for i = 1, 2, 3. Moreover, from (5.1) we obtain

(MjMk)TH(MjMk) = H.

Hence from Corollary 4.3, we see tr(MjMk) = xi ∈ R and then x ∈ R3. This completes
the proof of necessity.

5.2. PROOF OF SUFFICIENCY

To show the sufficiency of Theorem 5.1, it is sufficient to prove the following proposition.

Proposition 5.3. Let a = (a1, a2, a3, a4) be an element in R4 and fix the home-
omorphism φiν : Siν(a) → Miν(a) by (3.14) for each i = 1, 2, 3, ν = 1, 2. For
x ∈ Siν(a) ∩ R3, we take a representative (Mi,Mj ,Mk) of the element φ(x) =
[(M1,M2,M3)] ∈ Miν(a) by Tables 1 or 2. Then the representative (Mi,Mj ,Mk)
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has an invariant non-degenerate Hermitian form and associate Hermitian matrix H is
given as follows.

H =





h

(
0

√
−1

−
√

−1 0

)
(x2

i > 4)

h




1 0

0 ψ(xi, ai, a4)
x2

i − 4


 (x2

i < 4)

(ν = 1),

H =





h

(
0

√
−1

−
√

−1 0

)
(x2

i > 4)

h




1 0

0 ψ(xi, aj , ak)
x2

i − 4


 (x2

i < 4)

(ν = 2),

(5.2)

where h is an arbitrary real number.
Proof. We shall only proof the case ν = 1; the other case ν = 2 can be shown in a same
manner. Let us take the matrices (Mi,Mj ,Mk) as in Table 1, and set the matrix H as

H =
(
h11 h12
h21 h22

)
.

We shall determine the entries hij by solving the algebraic equations

Ri := M̄T
i HMi −H = O,

Rj := M̄T
j HMj −H = O,

Rk := M̄T
k HMk −H = O.

(5.3)

Now we look at the entries of the matrices Mi,Mj ,Mk. Under the assumption a ∈ R4

and x ∈ R3, we see that
ψ(xi, ai, a4), yi, yj , yk ∈ R

always hold. On the other hand, ri =
√
x2

i − 4 is a real number only and only if x2
i > 4.

Therefore, in the following, we consider the equations (5.3) dividing into two cases.
First we consider the case of x2

i > 4. In this case we have M̄T
i = MT

i , M̄T
j = MT

j ,
and M̄T

k = MT
k . We denote R∗[s, t] by the (s, t)-entry of R∗. Let us consider the

equation Ri = O. By solving {
Ri[1, 1] = 0,
Ri[1, 2] = 0

with respect to h21 and h22, we obtain

h21 = −h11(2a4 − aixi) + h12ri

ri
, h22 = −h11ψ(xi, ai, a4)

x2
i − 4 , (5.4)

which implies Ri = O.
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Next we solve Rk = O. Now Rk[1, 2] is given by

Rk[1, 2] = −h11(−akxixj + aixi + ajxj − akxk + a4a
2
k − 2a4)

ri
.

By solving Rk[1, 2] = 0 with respect to h11, we have

h11 = 0, (5.5)

and then we find that Rk = Rj = O hold. Substituting (5.5) into (5.4), we obtain
h21 = −h12 and h22 = 0. Therefore we obtain

H =
(

0 h12
−h12 0

)
.

Since h12 can be taken arbitrary, we set h12 = h
√

−1 and obtain the assertion
for x2

i > 4.
Next we consider the case of x2

i < 4. Noting that r̄i = −ri and hence λ±
i = λ∓

i

in this case, we have

M̄T
i =




−a4 − aiλ
+
i

ri
1

−ψ(xi, ai, a4)
x2

i − 4
a4 − aiλ

−
i

ri


 ,

M̄T
j =




ak − ajλ
−
i

ri

yk − yjλ
−
i

ψ(xi, ai, a4)

−yk − yjλ
+
i

x2
i − 4 −ak − ajλ

+
i

ri


 ,

M̄T
k =




aj − akλ
−
i

ri

yj − ykλ
+
i

ψ(xi, ai, a4)

−yj − ykλ
−
i

x2
i − 4 −aj − akλ

+
i

ri


 .

Let us consider the equations {
Ri[1, 1] = 0,
Ri[1, 2] = 0.

By solving these equations with respect to h21, h22, we obtain

h21 = −h12,

h22 =
h11riψ(xi, ai, a4) + h12

(
x2

i − 4
)

(2a4 − aixi)
ri(x2

i − 4)
(5.6)

which implies Ri = O. Next we solve Rk = O. Now Rk[2, 2] is given by

Rk[2, 2] = −h12(akxixj + akxk − aixi − ajxj − a4a
2
k + 2a4)

ri
.
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We solve Rk[2, 2] = 0 with respect to h12 to obtain

h12 = 0, (5.7)

and then we find that Rk = Rj = O hold. Substituting (5.7) into (5.6), we obtain
h21 = 0 and h22 = h11ψ(xi, ai, a4)/(x2

i − 4). Therefore we obtain

H = h11




1 0

0 ψ(xi, ai, a4)
x2

i − 4


 .

Since h11 can be taken arbitrary, we set h11 = h and obtain the assertion for x2
i < 4.

Remark 5.4. From the way of the proof, we see that invariant Hermitian matrix is
only the form of (5.2). That is, the space of the invariant Hermitian forms for the
each monodromy is real one-dimensional. This is the same phenomena with the case of
rigid Fuchsian differential equations (see Haraoka [8, 9]) and some non-rigid Fuchsian
differential equations [2].

6. OUTSIDE OF BIG OPEN

When the condition (3.15) does not hold, there exists an irreducible element
[(M1,M2,M3)] ∈ M \ M◦(a). For such elements, from the definition of big open,
we have piν(x) = 0 for all (i, ν), where x = (x1, x2, x3) is given by (3.6) and the
polynomial piν(x) is given by (3.7) and (3.8). Now we consider the elements dividing
into the following two cases:

(I) x2
i = 4 for all i = 1, 2, 3,

(II) at least one of x2
i ̸= 4.

In the following, we first consider a parametrization for the irreducible elements
in M(a) \ M◦(a). After that, we show the existence of invariant non-degenerate
Hermitian forms and give the explicit forms of associate Hermitian matrices. Here
we remark that the strategy of our parametrization is inspired by Iwasaki [13] and
Calligaris–Mazzocco [5].

6.1. CASE (I)

We consider the case (I), that is, we assume v(a)w(a) = 0 and (M1,M2,M3) ∈
M(a) \ M◦(a) satisfies

x2
i = (tr(MjMk))2 = 4 (i = 1, 2, 3). (6.1)

First of all, we consider the case that at least one of the local monodromies is
diagonalizable and similar with scalar matrix.
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Proposition 6.1. Take an irreducible element [(M1,M2,M3)] ∈ M(a) satisfying
(6.1) and set x = (x1, x2, x3) = (2ε1, 2ε2, 2ε3) by using ε = (ε1, ε2, ε3) ∈ {±1}3.
If the matrix Mi in the representative (M1,M2,M3) is identical to the scaler matrix
ξiI (ξi ∈ {±1}), then we have

(ai, aj , ak, a4) = (2ξi, 2ξiεk, 2ξiεj , 2ξiεi) (6.2)

and can take a representative (Mi,Mj ,Mk) as

Mi =
(
ξi 0
0 ξi

)
, Mj =

(
εkξi 2(εi − εjεk)

0 εkξi

)
, Mk =

(
εjξi 0

1 εjξi

)
. (6.3)

We see εiεjεk = 1 if and only if (Mi,Mj ,Mk) is reducible.

Proof. The last assertion is seen easily from the representative (6.3). Hence we show
only the first and second assertions. We take a representative (M1,M2,M3) ∈ M(a)
such that Mi = ξiI. Then we see that ai = trMi = 2ξi and

2εk = xk = tr(MjMi) = ξi trMj = ξiaj .

From this and ξ2
i = 1, we obtain aj = 2ξiεk. Similarly we can get ak = 2ξiεj . Lastly,

a4 = tr(MkMjMi) = ξi tr(MkMj) = ξixi = 2ξiεi

and we obtain (6.2). Now we note that aj = 2εkξi and ak = 2εjξi imply aj , ak ∈ {±2},
respectively. This means

σ(Mj) = {εkξi, εkξi}, σ(Mk) = {εjξi, εjξi}.

Next we shall show the assertion (6.3). If Mj ∼ εkξiI (resp. Mk ∼ εjξiI) holds,
then the triple (Mi,Mj ,Mk) is reducible. Indeed, the eigenspace of Mk (resp. Mj) is
a non-trivial common invariant subspace. Hence we have

Mj ∼
(
εkξi 1

0 εkξi

)
, Mk ∼

(
εjξi 1

0 εjξi

)
.

In this case, by considering the suitable conjugation, we can set

Mj =
(
εkξi p

0 εkξi

)
, Mk =

(
εjξi 0
q εjξi

)
.

Now we have pq ̸= 0 from the irreducibility. Then by considering the further conjugation
by the suitable diagonal matrix we can take q = 1. The condition tr(MjMk) = xi = 2εi

yield
2εjεk + p = 2εi.

By solving this equation with respect to p, we obtain p = 2(εi − εjεk).
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In the same way as Proposition 5.3, we can show the following proposition.

Proposition 6.2. In addition to the assumptions as in Proposition 6.1, we assume
εiεjεk ̸= 1. Then the representative (6.3) of the element [(M1,M2,M3)] ∈ M(a) has
an invariant non-degenerate Hermitian form and associate Hermitian matrix H is
given by

H = h

(
0

√
−1

−
√

−1 0

)
,

where h is an arbitrary real number.

Next we consider the case at least one of the local monodromy is diagonalizable
and has distinct eigenvalues.

Proposition 6.3. Take an irreducible element [(M1,M2,M3)] ∈ M(a) satisfying
(6.1) and set x = (x1, x2, x3) = (2ε1, 2ε2, 2ε3) by using ε = (ε1, ε2, ε3) ∈ {±1}3. If the
matrix Mi in the representative (M1,M2,M3) has distinct eigenvalues, then we can
take a representative (Mi,Mj ,Mk) as follows.

(i) If ai ̸= εkaj, then

Mi =



ai + si

2 0

0 ai − si

2


 ,

Mj =




aj(si − ai) + 4εk

2si
− (ai − εkaj)2

a2
i − 4

1 aj(si + ai) − 4εk

2si


 ,

Mk =



ak(si − ai) + 4εj

2si
w12

w21
ak(si + ai) − 4εj

2si


 ,

(6.4)

where the branch of

si =
√
a2

i − 4 (6.5)

is fixed and

w12 = 4{a4 − εi(ai − si)}si − {4εj − ak(ai − si)}{4εk − aj(ai − si)}
4(a2

i − 4) ,

w21 = 4{a4 − εi(ai + si)}si + {4εj − ak(ai + si)}{4εk − aj(ai + si)}
4(ai − εkaj)2 .

(6.6)

This representative does not depend on the choice of the branch in (6.5).
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(ii) If ai = εkaj and ai ̸= εjak, then

Mi =



ai + si

2 0

0 ai − si

2


 ,

Mj =



εk(ai − si)

2 v12

v21
εk(ai + si)

2


 ,

Mk =




ak(si − ai) + 4εj

2si
− (ai − εjak)2

a2
i − 4

1 ak(si + ai) − 4εj

2si


 ,

(6.7)

where

v12 = −4{a4 − εi(ai + si)}si + {4εj − ak(ai + si)}{4εk − aj(ai + si)}
4(a2

i − 4) ,

v21 = −4{a4 − εi(ai − si)}si − {4εj − ak(ai − si)}{4εk − aj(ai − si)}
4(ai − εjak)2 .

(6.8)

This representative does not depend on the choice of the branch in (6.5).

(iii) If ai = ajεk and ai = εjak, then

a4 = aiεjεk + (ai + si){2εi − (a2
i − 2)εjεk}

2 (6.9)

and

Mi =



ai + si

2 0

0 ai − si

2


 ,

Mj =




(ai − si)εk

2 0

1 (ai + si)εk

2


 ,

Mk =




(ai − si)εj

2 2εi − (a2
i − 2)εjεk

0 (ai + si)εj

2




(6.10)

or

a4 = aiεjεk + (ai − si){2εi − (a2
i − 2)εjεk}

2 (6.11)
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and

Mi =



ai + si

2 0

0 ai − si

2


 ,

Mj =




(ai − si)εk

2 1

0 (ai + si)εk

2


 ,

Mk =




(ai − si)εj

2 0

2εi − (a2
i − 2)εjεk

(ai + si)εj

2


 .

(6.12)

Note that the triple (Mi,Mj ,Mk) is reducible only and only if

2εi − (a2
i − 2)εjεk = 0.

By taking the other branch in (6.5), the value (6.9) and the representative (6.10)
changed into the value (6.11) and the representative equivalent with (6.12) respectively,
and vice versa.

Proof. Take [(M1,M2,M3)] ∈ M(a) \ M◦(a) satisfying (6.1) and assume that
Mi has distinct eigenvalues ξ±

i . Note that this condition yields a2
i − 4 ̸= 0.

We may assume that Mi is already diagonalized;

Mi =
(
ξ+

i 0
0 ξ−

i

)
,

where
ξ+

i + ξ−
i = ai, ξ+

i ξ
−
i = 1.

Hence we can set
ξ±

i = ai ± si

2 , si =
√
a2

i − 4. (6.13)

Then we have

Mi =



ai + si

2 0

0 ai − si

2


 .

To make the expressions simple, we forget the relation (6.13) for a while. We set

Mj =
(
v11 v12
v21 v22

)
, Mk =

(
w11 w12
w21 w22

)
.

The conditions tr(MiMj) = xk = 2εk and trMj = aj leads to
{
ξ+

i v11 + ξ−
i v22 = 2εk,

v11 + v22 = aj .
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By solving these equations we have

v11 = 2εk − ajξ
−
i

si
, v22 = −2εk − ajξ

+
i

si
. (6.14)

Similarly the conditions tr(MkMi) = xj = 2εj and trMk = ak leads to
{
ξ+

i w11 + ξ−
i w22 = 2εj ,

w11 + w22 = ak,

and we obtain
w11 = 2εj − akξ

−
i

si
, w22 = −2εj − akξ

+
i

si
. (6.15)

Next we consider the conditions tr(MkMj) = xi = 2εi and tr(MkMjMi) = a4. They
lead to the equations

{
w11v11 + w12v21 + w21v12 + w22v22 = 2εi,

ξ+
i (w11v11 + w12v21) + ξ−

i (w21v12 + w22v22) = a4.

From these equations and (6.14) and (6.15), we have

w12v21 = (a4 − 2εiξ
−
i )si − (2εj − akξ

−
i )(2εk − ajξ

−
i )

a2
i − 4 , (6.16)

w21v12 = − (a4 − 2εiξ
+
i )si + (2εj − akξ

+
i )(2εk − ajξ

+
i )

a2
i − 4 . (6.17)

On the other hand, the conditions detMj = detMk = 1 yield
{
v11v22 − v12v21 = 1,
w11w22 − w12w21 = 1.

Substituting (6.14) and (6.15) into them, we obtain

v12v21 = − (ai − εkaj)2

a2
i − 4 , (6.18)

w12w21 = − (ai − εjak)2

a2
i − 4 . (6.19)

We would like to determine the unknowns v12, v21, w12, w21 so that (6.16), (6.17),
(6.18) and (6.19) hold. Now we find the following lemma holds.

Lemma 6.4. We assume (x1, x2, x3) = (2ε1, 2ε2, 2ε3) for εi ∈ {±1} and fa(x) = 0.
Then it holds that

{(a4 − 2εiξ
−
i )si − (2εj − akξ

−
i )(2εk − ajξ

−
i )}

× {(a4 − 2εiξ
+
i )si + (2εj − akξ

+
i )(2εk − ajξ

+
i )}

= −(ai − εjak)2(ai − εkaj)2.

(6.20)
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This lemma can be shown by a direct calculation. The relation (6.20) guarantees
that if the variables v12, v21, w12, w21 satisfy the three of (6.16), (6.17), (6.18) and
(6.19), then the remaining one is also satisfied.

In the following we divide the situation into three cases.
Case (i). The case of ai ̸= εkaj .

In this case, the condition (6.18) implies v12v21 ≠ 0. Considering the conjugation
by the suitable diagonal matrix, we can assume

v21 = 1.

Then we obtain

w12 = (a4 − 2εiξ
−
i )si − (2εj − akξ

−
i )(2εk − ajξ

−
i )

a2
i − 4 , (6.21)

v12 = − (ai − εkaj)2

a2
i − 4 (6.22)

from (6.16) and (6.18) respectively. Substituting (6.21) into (6.19) we have

w21 = − (ai − εjak)2

(a4 − 2εiξ
−
i )si − (2εj − akξ

−
i )(2εk − ajξ

−
i )
.

Using (6.20), this can be rewritten

w21 = (a4 − 2εiξ
+
i )si + (2εj − akξ

+
i )(2εk − ajξ

+
i )

(ai − εkaj)2 . (6.23)

Lastly, by substituting (6.13) into (6.21), (6.22) and (6.23), we obtain (6.4)
and (6.6).

Taking the other branch in (6.13) has the effect that si ↔ −si, which results in
a change of the representative (6.4). But this change is canceled by taking conjugation
by a matrix (

0 α
−α−1 0

)
such that α2 = (ai − εkaj)2

a2
i − 4 .

Case (ii). The case of ai = εkaj and ai ̸= εjak.
In this case we have v12v21 = 0 and w12w21 ̸= 0 from (6.18) and (6.19). Considering

the conjugation by a suitable diagonal matrix, we take

w21 = 1.

Then we have

v12 = − (a4 − 2εiξ
+
i )si + (2εj − akξ

+
i )(2εk − ajξ

+
i )

a2
i − 4 , (6.24)

w12 = − (ai − εjak)2

a2
i − 4 , (6.25)
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from (6.17) and (6.19) respectively. Substituting (6.25) into (6.16) we get

v21 = − (a4 − 2εiξ
−
i )si − (2εj − akξ

−
i )(2εk − ajξ

−
i )

(ai − εjak)2 . (6.26)

By substituting aj = ε−1
k ai and (6.13), we have (6.7) and (6.8). Here we note that

from the assumption ai = εkaj and (6.20), at least one of (6.24) and (6.26) vanishes.
The independency on the choice of the branch in (6.13) can be checked in a same
manner in Case (i).
Case (iii). The case of ai = εkaj = εjak.

In this case, the conditions (6.18) and (6.19) imply that v12v21 = 0 and
w12w21 = 0. Note that in this case, if any of the conditions
(a) v12 = w12 = 0,
(b) v21 = w21 = 0,
(c) v12 = v21 = 0,
(d) w12 = w21 = 0
is satisfied, then the triple (Mi,Mj ,Mk) is reducible. Hence we assume that the all
above four conditions do not hold. Under this assumption, we see that one of v12 and
v21 is non-zero and the other is zero.

Now we consider the case of v21 ≠ 0 and v12 = 0. Then, we have w12 ̸= 0 from the
irreducibility, which implies w21 = 0. By considering the conjugation by the suitable
diagonal matrix, we can send

v21 = 1.
On the other hand, the condition aj = ε−1

j ak = εjak yields

v11 = 2εk − εkaiξ
−
i

si
.

Since ai = trMi = ξ+
i + ξ−

i , we have

v11 = 2εk − εk(ξ+
i + ξ−

i )ξ−
i

si
= εk(ξ+

i − ξ−
i )ξ−

i

si
= εk(ξ+

i − ξ−
i )ξ−

i

ξ+
i − ξ−

i

= εkξ
−
i .

We can calculate the other variables v22, w11, w22 in the same manner. Eventually we
obtain

Mj =
(
εkξ

−
i 0

1 εkξ
+
i

)
, Mk =

(
εjξ

−
i w12

0 εjξ
+
i

)
. (6.27)

The condition tr(MkMj) = xi = 2εi and tr(MkMjMi) = a4 leads to
{
εkεj{(ξ+

i )2 + (ξ−
i )2} + w12 = 2εi,

εjεk(ξ+
i + ξ−

i ) + ξ+
i w12 = a4.

Since (ξ+
i )2 + (ξ−

i )2 = (ξ+
i + ξ−

i )2 − 2 = a2
i − 2, the first equation yields

w12 = 2εi − (a2
i − 2)εjεk.
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Substituting this and (6.13) into the second equation, we have (6.9). Lastly,
by substituting (6.13) into (6.27), we obtain the representative (6.10).

The other case v21 = 0 and v12 ̸= 0 can be treated in a similar manner and
we have (6.11) and (6.12).

When a1, a2, a3, a4 ∈ R, in the same way as Proposition 5.3, we can show that each
irreducible element treated in Proposition 6.3 has invariant non-degenerate Hermitian
forms.

Proposition 6.5. In addition to the assumptions as in Proposition 6.3, we assume
a1, a2, a3, a4 ∈ R. Then the each representatives (6.4), (6.7), (6.10) or (6.12) of the
element [(M1,M2,M3)] ∈ M(a) has an invariant non-degenerate Hermitian form and
associate Hermitian matrix H is given as follows.

(i) If ai ̸= εkaj and (Mi,Mj ,Mk) is given by (6.4), then

H =





h

(
0

√
−1

−
√

−1 0

)
(a2

i > 4),

h




1 0

0 (ai − εkaj)2

a2
i − 4


 (a2

i < 4),

(6.28)

where h is an arbitrary real number.

(ii) If ai = εkaj, ai ̸= εjak and (Mi,Mj ,Mk) is given by (6.7), then

H =





h

(
0

√
−1

−
√

−1 0

)
(a2

i > 4),

h




1 0

0 (ai − εjak)2

a2
i − 4


 (a2

i < 4),

(6.29)

where h is an arbitrary real number.

(iii) If ai = εkaj = εjak and (Mi,Mj ,Mk) is given by (6.10) or (6.12), then

H = h

(
0

√
−1

−
√

−1 0

)
, (6.30)

where h is an arbitrary real number.

Remark 6.6. In case (iii), a4 is given by (6.9). In order to make it real number while
keeping irreducibility, we have to take si ∈ R, that is a2

i > 4.

Next we consider the case that (M1,M2,M3) ∈ M(a) satisfies the assumption (I)
and all the local monodromies are not diagonalizable.



384 Shunya Adachi

Proposition 6.7. Take an irreducible element [(M1,M2,M3)] ∈ M(a) satisfying (6.1)
and set x = (x1, x2, x3) = (2ε1, 2ε2, 2ε3) by using ε = (ε1, ε2, ε3) ∈ {±1}3. If none of
the matrices M1,M2,M3 is diagonalizable, then

a2
1 = a2

2 = a2
3 = 4 (6.31)

and there exists i ∈ {1, 2, 3} such that

aiaj − 4εk ̸= 0. (6.32)

and can take a representative (Mi,Mj ,Mk) of the form

Mi =




ai

2 0

1 ai

2


 , Mj =




aj

2 −aiaj − 4εk

2

0 aj

2


 ,

Mk =




−4a4 − ai(ajak − 4εi) + 4ajεj

2(aiaj − 4εk) −akai − 4εj

2
ajak − 4εi

aiaj − 4εk
ak + 4a4 + ai(ajak − 4εi) − 4ajεj

2(aiaj − 4εk)


 .

(6.33)

Proof. The matrices (Mi,Mj ,Mk) are all similar with Jordan block of size 2;

Mi ∼
(
ξi 1

ξi

)
, (ξ2

i = 1, i = 1, 2, 3). (6.34)

From the condition ai = tr(Mi) yields ai = 2ξi and then we have

ξi = ai

2 , (i = 1, 2, 3).

The condition ξ2
i = 1 leads to (6.31).

Next we show the assertion (6.32). We first assume that all i ∈ {1, 2, 3} satisfies

aiaj − 4εk = 0. (6.35)

By considering similar transformation, we can make Mi and Mj into the lower trian-
gular and triangular matrix, respectively. That is, we can take

Mi =



ai

2
u21

ai

2


 , Mj =



aj

2 v12

v21
aj

2


 , Mk =

(
w11 w12
w21 w22

)

where v12v21 = 0. From (6.34), the matrix Mi is not a diagonal matrix. Hence we have
u21 ̸= 0 and then can normalize

u21 = 1
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by considering the conjugation by the suitable diagonal matrix. The condition
tr(MjMi) = xk = 2εk yields

aiaj

2 + v12 = 2εk. (6.36)

Since we assume (6.35) holds, then we have v12 = 0. Since we assume that the matrix
Mj is not a diagonal matrix now, we obtain

v21 ̸= 0. (6.37)

Next we consider the conditions trMk = ak and tr(MjMk) = xi = 2εi, which yield
{
w11 + w22 = ak,
aj

2 (w11 + w22) + v21w12 = 2εi.

From these equation we have

ajak

2 + v21w12 = 2εi.

The assumption (6.35) yields v21w12 = 0. Then we obtain w12 = 0 from (6.37). But
it makes (Mi,Mj ,Mk) reducible, which leads to a contradiction. Hence we see that
there exists some i ∈ {1, 2, 3} such that (6.32) holds.

We shall show the assertion (6.33). We return to (6.36) and obtain

v12 = −aiaj − 4εk

2 . (6.38)

From the conditions trMk = ak and tr(MkMi) = xj = 2εj , we have
{
w11 + w22 = ak,
ai

2 (w11 + w22) + w12 = 2εj .
(6.39)

Then we obtain
w12 = −akai − 4εj

2 , w22 = ak − w11. (6.40)

On the other hand, the conditions tr(MjMkMi) = a4 and tr(MkMj) = xi = 2εi yields




aiaj

4 (w11 + w22) + v12w11 + aj

2 w12 + ai

2 v12w21 = a4,

ai

2 (w11 + w22) + w21v12 = 2εi.

(6.41)

Substituting (6.38) and (6.40) into the second equation, we have

w21 = ajak − 4εi

aiaj − 4εk
. (6.42)
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Next by substituting (6.38), (6.40) and (6.42) into the first equation and solving with
respect to w11, we have

w11 = −4a4 − ai(ajak − 4εi) + 4ajεj

2(aiaj − 4εk)

and complete the proof.

Adding the assumption a4 ∈ R, in the same way as Proposition 5.3, we can show
that any irreducible elements treated in Proposition 6.7 has an invariant non-degenerate
Hermitian form.

Proposition 6.8. In addition to the assumptions in Proposition 6.7, we assume
a4 ∈ R. Then the representative (6.33) of the element [(M1,M2,M3)] ∈ M(a) has
an invariant non-degenerate Hermitian form and associate Hermitian matrix H is
given by

H = h

(
0

√
−1

−
√

−1 0

)
, (6.43)

where h is an arbitrary real number.

6.2. CASE (II)

We consider the case (II), that is, we assume v(a)w(a) = 0 and there exists i ∈ {1, 2, 3}
such that x2

i ̸= 4 for (M1,M2,M3) ∈ M(a) \ M◦(a). In this case it holds that

{
ψ(xi, ai, a4) = x2

i + a2
i + a2

4 − xiaia4 − 4 = 0,
ψ(xi, aj , ak) = x2

i + a2
j + a2

k − xiajak − 4 = 0.
(6.44)

We shall give a parametrization of (M1,M2,M3).

Proposition 6.9. Take an irreducible element [(M1,M2,M3)] ∈ M(a) \ M◦(a)
satisfying x2

i ̸= 4 and (6.44). Then it holds that

xj = (aja4 + akai)(x2
i − rixi − 4) + 2(aka4 + aiaj)ri + (ri − xi)(x2

i − 4)xk

2(x2
i − 4) , (6.45)
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where ri =
√
x2

i − 4. Moreover, we can take a representative of the element
[(Mi,Mj ,Mk)] either one of

Mi =




a4 − aiλ
−
i

ri
xk + 2(aka4 + aiaj) − (aja4 + akai)xi

x2
i − 4

0 −a4 − aiλ
+
i

ri


 ,

Mj =




−ak − ajλ
+
i

ri
0

1 ak − ajλ
−
i

ri


 ,

Mk =




−aj − akλ
+
i

ri
0

−λ−
i

aj − akλ
−
i

ri




(6.46)

or

Mi =




a4 − aiλ
−
i

ri
0

xk + 2(aka4 + aiaj) − (aja4 + akai)xi

x2
i − 4 −a4 − aiλ

+
i

ri


 ,

Mj =




−ak − ajλ
+
i

ri
1

0 ak − ajλ
−
i

ri


 ,

Mk =




−aj − akλ
+
i

ri
−λ+

i

0 aj − akλ
−
i

ri


 ,

(6.47)

where λ±
i = (xi ±ri)/2. By taking the other branch in ri =

√
x2

i − 4, the representative
(6.46) changed into the representative equivalent with (6.47), and vice versa.

Proof. Since xi = tr(MkMj) ̸= ±2, the matrix MkMj has distinct eigenvalues λ±
i . By

considering a similar transformation, we may assume MkMj is already diagonalized;

MkMj =
(
λ+

i

λ−
i

)
, (6.48)

where
λ+

i + λ−
i = ai, λ+

i λ
−
i = 1.

Hence we can put
λ±

i = xi ± ri

2 , ri =
√
x2

i − 4.
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Next we set

Mi =
(
u11 u12
u21 u22

)
, Mj =

(
v11 v12
v21 v22

)
, Mk =

(
w11 w12
w21 w22

)
. (6.49)

From the conditions trMi = ai and tr(MkMjMi) = a4 we have
{
u11 + u22 = ai,

λ+
i u11 + λ−

i u22 = a4.

By solving these equations we get

u11 = a4 − aiλ
−
i

ri
, u22 = −a4 − aiλ

+
i

ri
. (6.50)

Condition MkMj = diag{λ+
i , λ

−
i } or equivalently Mk = diag{λ+

i , λ
−
i }M−1

j yields




w11 = λ+
i v22,

w12 = −λ+
i v12,

w21 = −λ−
i v21,

w22 = λ−
i v11.

(6.51)

Therefore, from the conditions trMj = aj and trMk = ak, we obtain
{
v11 + v22 = aj ,

λ−
i v11 + λ+

i v22 = ak.

By solving these equations we get

v11 = −ak − ajλ
+
i

ri
, v22 = ak − ajλ

−
i

ri
. (6.52)

Substituting these into (6.51), we obtain

w11 = −aj − akλ
+
i

ri
, w22 = aj − akλ

−
i

ri
. (6.53)

The condition detMi = 1 yields

u11u22 − u12u21 = 1.

Substituting (6.50) into this equation, we have

u12u21 = −ψ(xi, ai, a4)
x2

i − 4 = 0. (6.54)

Similarly, from the condition detMj = 1 and (6.52), we obtain

v12v21 = −ψ(xi, aj , ak)
x2

i − 4 = 0. (6.55)
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Clearly, the assumptions

(a) u12 = u21 = 0,
(b) v12 = v21 = 0,
(c) u12 = v12 = 0,
(d) u21 = v21 = 0

make our representative (Mi,Mj ,Mk) reducible. Hence we assume that the all above
four conditions do not hold. Then we see that one of v12 and v21 in non-zero and the
other is zero.

Now we consider the case v21 ̸= 0 and v12 = 0. Then considering the conjugation
by the suitable diagonal matrix, we can take

v21 = 1.

From the irreducibility we have u12 ̸= 0, which implies u21 = 0.
Next the conditions tr(MjMi) = xk and tr(MiMk) = xj lead to

{
u11v11 + u12 + u22v22 = xk,

λ+
i u11v22 − λ−

i u12 + λiv11u22 = xj .

By solving these equations with respect to u12 and xj taking (6.52) and (6.53) into
account, we obtain (6.45) and

u12 = xk + 2(aka4 + aiaj) − (aja4 + akai)xi

x2
i − 4 . (6.56)

Hence we have the desired representative (6.46).
The other case v12 = 0 and v21 ̸= 0 can be treated in a similar manner and we have

the representation (6.47).

Before considering the invariant non-degenerate Hermitian form, we give a lemma
concerning the irreducibility of (6.46) and (6.47).

Lemma 6.10. We set xj as (6.45) and assume that a1, a2, a3, a4, xk, xi ∈ R4 with
x2

i < 4. Then the triple (6.46) and (6.47) is reducible if and only if xj ∈ R.

Proof. We show the assertion for the triple (6.46); the other case for (6.47) can be
shown in a similar manner. Under the assumption x2

i < 4, we have

ri =
√
x2

i − 4 ∈
√

−1R

which implies r̄i = −ri. Hence we have

xj − x̄j = ri{(aja4 + akai)xi − 2(aka4 + aiaj) − (x2
i − 4)xk}

x2
i − 4 .

From this and (6.56), we see that xj = x̄j if and only if u12 = 0, which means that
the triple (6.46) is reducible.
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From Lemma 6.10, we see that x2
i > 4 is necessary for the irreducibility of (6.46)

and (6.47). Under this condition we give a proposition for the existence of invariant
Hermitian forms, which can be shown in a similar way with Proposition 5.3.
Proposition 6.11. In addition to the assumptions in Proposition 6.9, we assume
a1, a2, a3, a4, xk, xi ∈ R and x2

i > 4. Then the each representatives (6.46) or (6.47) of
the element [(M1,M2,M3)] ∈ M(a) has an invariant non-degenerate Hermitian form
and associate Hermitian matrix H is given by

H = h

(
0

√
−1

−
√

−1 0

)
, (6.57)

where h is an arbitrary real number.
Combining Corollary 4.3, Propositions 5.3, 6.2, 6.5, 6.8 and 6.11, we obtain the

following.
Theorem 6.12. Let a = (a1, a2, a3, a4) be an element in R4 and we set
x = (x1, x2, x3) for the irreducible element [(M1,M2,M3)] ∈ M(a) by (3.6). Then
[(M1,M2,M3)] has an invariant non-degenerate Hermitian form if and only if
x ∈ S(a) ∩ R3 holds.
Remark 6.13. Summing up the Propositions 5.3, 6.2, 6.5, 6.8 and 6.11, we see that
the space of the invariant Hermitian forms for each irreducible monodromy is real
one-dimensional.

7. FINAL NOTE

After the acceptance of this paper, the author noticed the article [1], in which Miguel
Acosta studied the SL(n,C)-character variety M of a finitely generated group Γ, and
characterized the points of M corresponding to the representations taking values
in SL(n,R), SL(n/2,H) or SU(p, q).

Our problem we studied in the present paper falls into the particular case where
n = 2 and Γ = π1(P1 \ {t1, t2, t3, t4}, b). In this case, Acosta’s result can be stated
as follows: An irreducible ρ = (M1,M2,M3) has an invariant Hermitian form if and
only if

trM ∈ R for all M ∈ ⟨M1,M2,M3⟩.
On the other hand, in our paper the criterion is refined to a finite number of conditions

trMi, tr(MjMk), tr(M3M2M1) ∈ R,

where {i, j, k} = {1, 2, 3}. Moreover, we showed the existence of such ρ, which seems
not to be considered in Acosta’s paper.

Acknowledgements
The author would like to express his gratitude to Professor Yoshishige Haraoka
for many valuable comments and suggestions for this study and manuscript.
He also thanks to Professor Hiroshi Ogawara for fruitful discussions.



Monodromy invariant Hermitian forms. . . 391

REFERENCES

[1] M. Acosta, Character varieties for real forms, Geometriae Dedicata 203 (2019), 257–277.
[2] S. Adachi, Y. Haraoka, Monodromy invariant Hermitian forms for non-rigid Fuchsian

differential equations of order three, submitted.
[3] F. Beukers, G. Heckman, Monodromy for the hypergeometric function nFn−1, Invent.

Math. 95 (1989), 325–354.
[4] P. Boalch, From Klein to Painlevé via Fourier, Laplace and Jimbo, Proc. London Math.

Soc. (3) 90 (2005), 167–208.
[5] P. Calligaris, M. Mazzocco, Finite orbits of the pure braid group on the monodromy of

the 2-variable Garnier system, J. Integrable Syst. 3 (2018), no. 1, xyy005.
[6] V.S. Dotsenko, V.A. Fateev, Conformal algebra and multipoint correlation function in

2D statistical models, Nuclear Phys. B 240 (1984), 312–348.
[7] O. Gamayun, N. Iorgov, O. Lisovyy, Conformal field theory of Painlevé VI, J. High

Energy Phys. 10 (2012), 038.
[8] Y. Haraoka, Finite monodromy of Pochhammer equation, Ann. Inst. Fourier. 44 (1994),

767–810.
[9] Y. Haraoka, Monodromy representations of systems of differential equations free from

accessory parameters, SIAM J. Math. Anal. 25 (1994), 1595–1621.
[10] Y. Haraoka, S. Hamaguchi, Topological theory for Selberg type integral associated with

rigid Fuchsian systems, Math. Ann. 353 (2012), 1239–1271.
[11] N. Iorgov, O. Lisovyy, J. Teschner, Isomonodromic tau-functions from Liouville conformal

blocks, Comm. Math. Phys. 336 (2015), 671–694.
[12] K. Iwasaki, A modular group action on cubic surfaces and the monodromy of the Painlevé

VI equation, Proc. Japan Acad. 78, Ser. A (2002), 131–135.
[13] K. Iwasaki, An area-preserving action of the modular group on cubic surfaces and the

Painlevé VI equation, Commun. Math. Phys. 242 (2003), 185–219.
[14] M. Jimbo, Monodromy problem and the boundary condition for some Painlevé equations,

Publ. Res. Inst. Math. Sci. 18 (1982), 1137–1161.
[15] M. Kita, M. Yoshida, Intersection theory for twisted cycles, Math. Nachr. 166 (1994),

287–304.

Shunya Adachi
200d7101@st.kumamoto-u.ac.jp
s.adachi0324@icloud.com

Kumamoto University
Graduate School of Science and Technology
2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

Received: December 17, 2021.
Accepted: January 23, 2022.


