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UNIQUENESS OF SERIES IN THE FRANKLIN SYSTEM
AND THE GEVORKYAN PROBLEMS

Zygmunt Wronicz
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Abstract. In 1870 G. Cantor proved that if limy_, o ZQJ:_N cne™® = 0, ¢n = c¢n, then
cn, = 0 for n € Z. In 2004 G. Gevorkyan raised the issue that if Cantor’s result extends
to the Franklin system. He solved this conjecture in 2015. In 2014 Z. Wronicz proved that
there exists a Franklin series for which a subsequence of its partial sums converges to zero,
where not all coefficients of the series are zero. In the present paper we show that to the
uniqueness of the Franklin system lim,,_ o EZOZO an fr it suffices to prove the convergence
its subsequence saon to zero by the condition a, = o(y/n). It is a solution of the Gevorkyan
problem formulated in 2016.
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1. INTRODUCTION

In 1870 G. Cantor ([2]) proved the following result.

Theorem 1.1. If limy_, Zi\]:—N cne™® = 0 for every real number x, where ¢, = cn,
then ¢, =0 forn € Z.

By the Gram—Schmidt process to the Schauder basis Ph. Franklin constructed an
orthonormal system of continuous piecewise linear functions with dyadic knots ([4]). It
is an orthonormal Schauder basis in the space C[0, 1], and also in the space L?[0,1]. In
1963 Z. Ciesielski ([3]) proved exponential type estimates for the Franklin functions.
Since then, it has been studied by many authors from different points of view. In 2004
G. Gevorkyan ([5]) raised the issue if Cantor’s result extends to the Franklin system.
He solved this problem in 2015 (see [6,7]). In 2014 the author proved the following
theorem.
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Theorem 1.2 ([9]). There exists a nontrivial series in the Franklin system

> anfalx) (1.1)
n=0

for which
ov
Vlgrgozoanfn(:c) =0, z€l0,1]. (1.2)

The purpose of the paper is to prove the ensuing result.

Theorem 1.3. Let the coefficients of the series (1.1) satisfy the condition
a, = o(v/n)

and let (1.2) hold. Then all the coefficients of this series vanish.

It is a solution of a problem of G. Gevorkyan given in [7].

2. PRELIMINARIES

In this section we present some properties of the Franklin system and the Egorov
theorem which play the fundamental role in the proof of Theorem 1.3.

Consider the following sequence {A,}52; of dyadic partitions of the interval
I = [0, 1] An = {Sn,i}?:()v 5170 = O, 5171 = 17

sier, fori=0,1,...,2v
J— 2u+1 ’ ) )
Sni { SE, fori=2w41,...,n (2.1)

forn=2"4+v, u=0,1,...,v=1,2,...,2M,
We can obtain the Franklin system by means of cubic splines. We put

fo=1, fi=V32z-1).

Let g, be a cubic spline with respect to the partition A,, i.e. g, € C%(I) and
it is a polynomial of degree at most 3 in each interval [s, ;_1, S, ;]. We assume that
gn(Sn—1,) =0for j =0,1,...,n—1 and gn(sp ) = 1 for sp s = A, \ A, 1 with
g5,(0) = g},(1) = 0. The spline g, is unique. For the proof we refer to [1]. Integrating
by parts, we check that the system {f,}5°,, where

1

g//
AL /[g;xx)Fdx, n=2.3....
" 0

is orthonormal in the interval I (see [1,10,11]).
In the sequel we shall need the Ciesielski inequality and the Egorov theorem.
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Theorem 2.1 ([3]). Let {fn}>2, be the Franklin system defined by means (2.1),
A, ={zo,z1,...,Tn}, Tn = An \ Ap_1. There exist constants M >0 and 0 < r < 1
such that

|fo ()] < M /mprle=en]
for everyx €I andn =0,1,...

Theorem 2.2 ([8]). Let {f.} be a sequence of measurable functions w.r.t. the Lebesgue
measure on the interval I. Assume that f, — [ pointwise. Then for any § > 0, there
exists a measurable set Es of I such that m(Es) > |I| —§ and f, — [ uniformly
on I\ Es.

3. PROOF OF THEOREM 1.3

Let Fo(z) = 222 Then F//(z) = fu(z). We define

[

sn(®) =Y aifa(z), Saulx) = aiFy(x).
1=0 i

Then S/ (z) = sp(z).

We assume that (1.2) holds for the series (1.1). We apply the Egorov theorem
to the sequence {san}>2 . Let E be a set of points « € I such that « € I\ Es for
all 6 > 0. By the Egorov theorem, for all 1,22 € E there exists 2 € I \ E such
that 1 < z < x2. By the continuity of the functions s,,, we prove that the points of
the set E are isolated or they are accumulation points.

Let a and 8 be two consecutive points of F. Then the sequence s,, is convergent
uniformly on every closed interval F' C («, 8). S, is a cubic spline with respect to the
partition

Ap={zp}io={0=to<t;1 <...<t, =1},

Sp(zj) = Sk(x;) for z; € Ag, k < n. Let t;,t; € Ay for some k, [¢;,t;] C (o, 8). Then
Ve > 03ngVn > no Ve € [t;, t;] : |sp(2)] <e.

Further, for any n > ny,

Sn (tj) B Sn(ti)

— =S5/ (¢,) = C = const

for some ¢, € (;,t;), n > k. This follows from the fact that S, (t;) = Sk(t;) for n > k
and t; € A. Hence

i) = $,(6) + [ sut (3.1)
¢

and the sequence {s,} is uniformly convergent to the constant C' = S/, ((,) in the
interval [t;,t;]. Repeating this reasoning, we prove that the sequence {S,,} is uniformly
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convergent to the function S, (¢;) + C(z —t;) in the interval [¢;,¢;]. Applying the Rolle
theorem to the functions F,,, and (3.1) with Theorem 2.1 we obtain the following
inequalities:

M M.
‘F{l(xﬂ < 7%7ﬂn|a:7$n| and |Fn($)‘ < ﬁrnhﬂrn ,
where M, and My are constants.
Let
Cp, = max M7 n>0. (3.2)
i>n /i
Hence

m+1

> arFi(x)
k=m

where 2 < m < m +1 < 2iH7,
Let

m+l

Z erVEF, (2)
k=m

o
C
< <My Y el
n

n=27%

Agit1 ={0 =ty <ty <...<tgj+1 =1},
Then

thar — th = 2]71“ k=0,1,...,277 — 1.
Hence for = € [ty tyt1)

9i+1 0i+1

1 1 gip g-i-1 » 1 1
§ S on|z—z,| § =27k, 277 § i
n = n' - 2i-1 (vVr)' = 2011 —\/r’

n=27+1 n=27+1 =0

where 0 < k, < 27+ K, # k,,, for n # m.
By summation over j, we obtain

m+l

2M
¥m,leN: > VE|F(z)| < 2
k=m

1—r

Proceeding as in the proof of the Dirichlet criterion and applying the fact that the
sequence (3.2) is diminishing, we prove that the sequence {S,,} is uniformly convergent
to the continuous function S. Hence the function S is a broken line with knots in the
set E. We shall prove that the set F is empty.

We assume that «, 8 and ~y are consecutive points of the set E. Then the function
S(x) = limy, 00 Sp(z) is linear in the intervals [«, 5] and [8, 7]

Let to, =t;, € (o, 8), ty =11, € (B,7) and B € [tk,,tk,+1). Later we shall written
j instead of j, and [ instead of [,,. Since an addition a linear function to the function
S does not change its second derivative, we may assume that S(z) =0 for z € [«, J]
and S(z) = ax + b for x € [5,7], where a and b are some constants.
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Let S'(to) = o, and S’(ty) = 7. The cubic spline S, is defined in the interval
[ta,ty] by the following conditions:

Sn(tl) = S(ti) =0 fort; € A, N [ta,ﬁ],
Sn(t;) = S(t;) =0 fort; € A, N[B,t,],
S;L(ta) = Qp, S’;L(t'}/) = Tn-
We define the cubic spline S,, by the following system of equations (see [1]):
AM; + M,y = 2d;,
M; 4 +4M'L+Ml+1:2dla Z:J+177l_17 (33)
M;_1 +4M; = 2d;,

where M; = S"(t;),i=4,7+1,...,1,

6 Sn(t 1) — Sn t')
dj = . ( . ) ( e Qn | = SZ(&TLJ)? gn,j € (tj7tj+1)a
tit1—t; tit1—t;
6 Sp(t) — Sy (ti—
dj = ——— |7 — (t) (o) =850(&n1),  Enyg € (ti—1,tr),
by —t-1 ty—t—1
Sn(ti+1)_sn(ti) _ Sn(ti)_sn(tifl)
tit1—t; ti—ti—1 . .
d;i =6 - n =8 (&ni)s  &ni € (tim1,tiv1),j <i<l
it1 — ti—1

The function S,, interpolate the function S at the points t;, j < i < [. Since the
sequences {S/} and {S!'} are uniformly convergent in the intervals [z1, 23] C («, )
and [z3,z4] C (8,7), tj € [#1,22], t; € [23,24], we conclude that

lim a, = lim Sg(fnﬂ) =0, €n,j € (tj’tj+1)

n—oo n—oo

and
lim ('Yn - a) = lim S;(ﬁn,l) = 07 fnJ S (tlflatl)-

n—oo n—oo

We may write the system (3.3) as follows:

A, M, = D,. (3.4)
Further,
Sn = Fn + Hna
where the cubic splines F),, and H, are defined by the following conditions:
F, (tz) :S(tz) :0 fOr tz eAnﬂ[tQa/B]v
Fn(tj) = S(tj) for tj e A, N [ ,t,y],

Fi(ta) =0, Fo(ty) =a
and
H,(t;) =0 for t; € A, N [ta,ty],
Hvlz( a) = Qp, Hrlz(t“/) = Tn-
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Note that
At = Hy(Coj)s  dr,,, = Hy (Gup)-

Since
lim H, (¢n ;) = lim H, (Coy) =0,
n—oo

n—00

then the function H,, is convergent uniformly to 0 on the interval [to,t,]. Hence,
it suffices to prove that

. % .
Jim [F/(B)] = oc.
The function F, is determined by the system (3.4) with
D, =[0,...,2dy,2dp,1,0,...,0]T.

Let )
B=ty+th, h=tiy1—-t;i=—, 0<t<1,i=0,1,...,n—1.
n

Then

a(l—1t)
h

t
2d), = 6 : 2dk+1:6%, 20; =0 forj<i<li#kk+1.  (3.5)

We write the system (3.3) for the function F), as follows:
AnMn = DF,na (36)

where
Dp, =10,...,0,2dg, 2d4 1,0, ...,0]T.

We may write the determinant detA,, in the form

4100...0 0 0 0 0..0000
0a;10... 0 0 0 0 0..0000
00asl... 0 0 0 0 0..0000
0000..ap, 1 0 0 0..0000

10000, 0 a 1 0 0..0000

detdn =100 00... 0 1larrys 0O 0..0000
0000... 0 0 1 a5p20...0000
0000.. 0 0 0 0 0..00,00
0000... 0 0 0 0 0..01a,0
0000... 0 0 0 0 0..0014

:4a1a2~...-ak,l(akal,k,l)al,k,g-...-a2a1 47

where oy = %,aiﬂ :4—(%_,@':1,2,...
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We have
3<Oli+1<0éi<4, 1=1,2,...,

and 5
lim am:2+\/§> 3

m— o0

By the Cramer formula for the system (3.6) and (3.5), we obtain

M, = 12an[al_k_1 — (al—k—l + l)t]

apag_p_1—1

and
12an[(ag + 1)t — 1]

apop g1 — 1

My =
Further, we have

t
SI(t) = Mg(1 —t) + Myyat, te[0,1], B=tr+ —

n
and
1 12an
Sp(t) = ————{[lu—r-1— (_p—1 + )tJ(1 —t) + [(o + 1)t — 1]t}
apag_p_1—1
12an
= ————gn(t),
QRO _g—1
9n(t) = (g + ag_p—1 + 2)t* — 2(q_g—1 + Dt + g1,
A= 4(1 — akal_k_l) <0,
n(0) = ay_p_1.
Hence

lim_|s,(8)] = lim_|S7/(8)] = oo

n—oo

and it is a contradiction to the assumption that lim,_,o |$,(5)| = 0. Hence § ¢ E.
In the same way we prove that each knot of the broken line S does not belong to the
set ¥ and we have proved that S is a linear function.

Thus S}/ = S” = 0. Because of the fact that the Franklin system is the Schauder
basis in the space C[0, 1], we conclude that all the coefficients of the series (1.1) vanish
and we have proved the theorem.
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