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Abstract. There are completely described all VB, »-gauge-natural operators C which, like to
the Dorfman—Courant bracket, send closed linear 3-forms H € 1"115_(:105(/\3 T*E) on a smooth
(C*) vector bundle F into R-bilinear operators

Cu :TY(TE®T*E) x Ty (TE® T*E) —» I'y(TE ® T*E)

transforming pairs of linear sections of TE®T*E — FE into linear sections of TE®T*FE — E.
Then all such C' which also, like to the twisted Dorfman—Courant bracket, satisfy both some
“restricted” condition and the Jacobi identity in Leibniz form are extracted.
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1. INTRODUCTION

All manifolds considered in the paper are assumed to be Hausdorff, second countable,
finite dimensional, without boundary, and smooth (of class C*°). Maps between
manifolds are assumed to be C*.

In [3], the authors described all bilinear operators on sections of the Whitney sum
TN ®T*N — N of the tangent and cotangent bundles (for N a smooth manifold),
which are M f,,,-natural, i.e. invariant under the morphisms in the category M f,, of
m-~dimensional manifolds and their submersions. The Courant bracket is an example
of such operators and it is of particular interest, because it involves in the concepts of
Dirac and generalized complex structures on N, see [2,4,5].

In [9], we described all M f,,-natural operators A which send closed 3-forms H
on N into bilinear operators Ag on sections of TN & T*N — N (for N a smooth
manifold). The twisted (or H-twisted) Courant bracket is an example of such operators
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and it is of particular interest, because its properties were used in [8,11] to define the
concept of exact Courant algebroid.

In [10], we described all bilinear operators on linear sections of TE @ T*E — E
(for E — M a smooth vector bundle), which are VB, ,-gauge-natural, i.e. in-
variant under the morphisms in the category VB, , of rank-n vector bundles
over m-dimensional bases and their vector bundle isomorphisms onto images. The
Dorfman—Courant bracket is an example of such operators and it is of particular
interest, because (TE @ T*E; E,TM @ E*; M) is the standard VB-Courant algebroid
and the Dorfman—Courant bracket is the part of this structure. The Dorfman—Courant
bracket is the restriction of the Courant bracket to linear sections of TE ® T*E — E,
see [6]. The Dorfman—Courant bracket can be also interpreted as the bracket of the
Omni-Lie algebroid Der(E*) & J!(E*), studied in [1].

In the present article, we describe all VB, ,-gauge-natural (i.e. invariant under
the morphisms in the category VB,, ) operators

3
C: FHIOS(/\ T*) ~ LingTYT @ T*) x T{T & T*),TY(T ® T*))

which, like the twisted Dorfman—Courant bracket, transform closed linear 3-forms
H e I‘gdos(/\3 T*E) on E into bilinear operators

Cy:TH(TE@T*'E)xTY(TE® T*E) - T (TE & T*E)

(for E a smooth vector bundle), where T',(TE @ T*E) is the space of linear sections
of TE® T*E — FE (i.e. couples X @ w of a linear vector field X on F and a linear
1-form w on E). Thus the main result of the paper is the following

Theorem 1.1. Let m > 3 and n > 1 be fized integers. Any VB, n-gauge-natural
operator

3
C: TSN\ T*) ~ Ling(T(T & T*) x THT @ T*),THT & T*))
is of the form
Cu(p*,p?) = a[ X, X2 @ (b1 Lx1w? + b Lx2w" + bydix1w?

+ b4diX20J1 + b5£X1diLw2 + bﬁﬁxzdlj,wl +crixiix2 H (1.1)

+ eoipixedixiH 4 cgipixidix2 H + cqipdix2ix1 H}
for arbitrary (uniquely determined by C') real numbers a, by, ba, bz, ba, bs, bg, c1, C2, C3, C4,
where p' = X' ®w' € TL(TE® T*E), H € I’ﬁgdos(/\3 T*E), and where [—,—] is
the usual bracket on vector fields, L is the Lie derivative, d is the exterior derivative,
1 is the insertion derivative and L is the Euler vector field.

The problem of extracting of all operators C' of the form (1.1) which, like the
twisted Dorfman Courant bracket, satisfy the Jacobi identity in Leibniz form is rather
technically complicated. In the last section, we solve this problem in the case of all
C of the form (1.1) which, like the twisted Dorfman Courant bracket, satisfy the
“restricted” condition co = ¢3 = ¢4 = 0. Namely, we prove the following result.
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Theorem 1.2. Letm > 2 andn > 1. Let C be a VB, »-gauge natural operator of the
form (1.1) with ca = c3 = ¢4 = 0. Then C satisfies the Jacobi identity in Leibniz form
(i.e. the condition Cp(p*, Cr(p® p*)) = Cu(Cu(p', p?), p°) + Cu(p?, Cu(p', p*)) for
any p* € TY.(TE ® T*E) fori=1,2,3 and any H € Fﬁg_dos(/\3 T*E)) if and only if
(a,b1,ba,b3,b4,b5,b6,c1) is from the following list of 8-tuples:

(¢,0,0,0,0,¢,0,0), (c0,0,0,0,c,—c,0),
(¢,¢,0,0,0,—¢,0,0), (¢,¢,—c¢,0,0,—c,¢,0),
(¢,0,0,0,0,0,0,0), (c¢c,0,0,0,0,0,0), (12)
(¢,c,0,0,0,0,—c¢,0), (c,c,—c¢,0,0,0,0,0),

(¢,c,—c,0,c— A, 0,A,0), (0,0,0, A\, t, —A, —p1,0),
(¢,¢,—¢,0,¢,0,0,v), (0,0,0,0,0,0,0,v),

where ¢, \, u, v are arbitrary real numbers with ¢ # 0 and v # 0.

The concept of (gauge) natural operators can be found in [7]. However, our operators
from Theorem 1.1 are probably unusual, because we do not know whether their domain
is Whitney’s extendible.

From now on, let R™" be the trivial vector bundle over R™ with the standard
fibre R™ and let z',...,2™, %%, ...,9y" be the usual coordinates on R™".

2. THE DORFMAN-COURANT LIKE BRACKETS

Let E = (E — M) be a vector bundle.
A vector field X on F is called linear if it has expression

X:ZX’(zl,...,:cm)axi + Z ley(x17.'.xm)y37k

in any local vector bundle trivialization z!,...,2™,...,y™ on E. The Euler vector
field L on E is an example of a linear vector field. (The coordinate expression of L is
L= Z?Zl y’ %) Equivalently, a vector field X on FE is linear iff £;, X = 0, where £
denotes the Lie derivative.

A 1-form w on FE is called linear if it has expression

m n n
w= ZZwij(xl,...,mm)yjdxi +ij(x1,...,xm)dyj
j=1

i=1 j=1

in any local vector bundle trivialization z!,...,z™,...,y™ on E. Equivalently, a 1-form

w on E is linear iff Lrw = w, where L is the Euler vector field on FE.
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We have the following definition being modification of the general one from [7].
Definition 2.1. A VB, ,-gauge-natural bilinear operator
AT ToT)xTHT & T*) ~THT & T*)

is a VB,, n-invariant family of R-bilinear operators

A:TY(TEQT*E)x Ty (TE®T*E) - TW(TE ® T*E)
for all VB, ,-objects E, where I',(TE & T*E) is the vector space of linear sections
of TE ® T*F (couples X @ w of linear vector fields X and linear 1-forms w on E).
Remark 2.2. The VB, ,-invariance of A means that if

X'owh X?0w) eTL(TE®T*E) x T (TE & T*E)
and

X'eo', X?ed?) eI (TE®TE) xTL(TE & T*E))
are p-related by an VB, ,-map ¢ : £ — E (i.e. X'op =Tpo X" and &'op = T*pow’
for i = 1,2), then so are A(X' @ w!, X2 ®w?) and A(X! @ @t, X2 @ @?).
Remark 2.3. The Dorfman—Courant bracket

[X!'owh X?aw?] =X, X% & (Lx1w? —ixedw!)
is an example of a VB,, ,-gauge-natural bilinear operator
TTeoT)xTH{T & T*) ~T{T & T").
Theorem 2.4 ([10]). Let m > 2 and n > 1. Any VB, n-gauge-natural bilinear
operator A : THT @ T*) x TYT & T*) ~ TYT & T*) is of the form
AXT oW, X2 @ w?) =a[ X, X @ {hLx1w? + baLxow!
+ badix1w? + bydixow! (2.1)
+ bsLxrdipw?® + bgLxadipw'}

for arbitrary (uniquely determined by A) real numbers a,by, by, bs, by, bs,bg, where

[—, —] is the usual bracket on vector fields, L is the Lie derivative, d is the exterior

derivative, i is the insertion derivative and L is the Euler vector field.

Moreover, such A satisfies the Jacobi identity in Leibniz form (i.e. the condition
AW, AW v3) = A(A(W, v2),v8) + A(W? A, v3)) for any vi € TL(TE & T*E)
fori=1,2,3) if and only if (a,by,ba, b3, by, bs,bg) is from the following list of 7-tuples:
¢, 0,0,0,0,¢,0), (¢0,0,0,0,c,—c),
¢0,0,0,—c,0), (¢,c,—c,0,0,—c,c),
¢,0,0,0,0,0,0), (¢¢c,0,0,0,0,0), (2.2)
¢ 0,0,0,0,—c), (¢,¢ —c,0,0,0,0),

(¢,e,—c,0,c— X, 0,A), (0,0,0,\, , =\, —p),

P

where ¢, \, i are arbitrary real numbers with ¢ # 0. In particular, the Dorfman—Courant
bracket satisfies the Jacobi identity in Leibniz form.
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3. THE RESTRICTED TWISTED DORFMAN-COURANT LIKE BRACKETS

A p-form Q on E is called linear if £;Q = Q, where L is the Euler vector field on E.
Equivalently, a p-form 2 on F is linear iff it has expression

Q= ZQil ..... i (@)Y dz™ AL A dat
Y Q@)Y Adatt AL A e

in any local vector bundle trivialization z!,...,z2™,...,y

r=(zt,...,a™).

" on F, where

Definition 3.1. A VB, ,-gauge-natural operator

2
B:TYN\T*) ~ LingT(T & T*) x T{T & T*), T T & T*))
sending linear 2-forms F € 'y, (A\* T*E) on VB, n-objects E into R-bilinear operators
Bp T (TE®T*E) x Ty (TE®T*E) - T'5(TE ® T*E)

is a VB, n-invariant family of regular operators (functions)

2
B:Ty(/\T"E) — Liny(T'y(TE & T*E) x I'y(TE © T*E), T (TE & T*E))

for all VB, n-objects E, where Ling(U x V, W) denotes the vector space of all bilinear
over R) functions U x V' — W for any real vector spaces U, V, W.
( ) y p Vi
Remark 3.2. The invariance of B means that if F € TIkL(A*T*E) and
N L A2 ' ~
F eT'-(N\"T"E) are p-related by a VB, ,-map ¢ : £ — E and

X'eow, X?0w?) eTL(TE® T*E) x Ty (TE © T*E)
and 3 ) 3 . 3 }

(X'@a', X?00”) eTL(TE®T*E) x T (TE ® T*E)

are also ¢-related, then so are Bp(X' @ w', X2 @ w?) and Bp(X' @ &', X% © @?).
The regularity of B means that it transforms smoothly parametrized families
(Fy, X} @ w}, X? ® w?) into smoothly ones Br, (X} @ w}, X7 ® w?).

Definition 3.3. A VB3, ,-gauge-natural operator B in the sense of Definition 3.1 is
of order s if the following implication

(JoF = j3F ., jop" = jip', jsp® = jip®) = Br(p',0*) ik, = Bp(p'. )|k,

holds for any F,F € T (A’ T*E) and any p',p%, 5!, 52 € T',(TE & T*E) and any
VB, n-object E — M and any x € M.
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Definition 3.4. A VB, ,-gauge-natural operator B in the sense of Definition 3.1 is
admissible if

BF+dF/ = Br (31)

for any linear 2-form F' € FZE(/\2 T*E) and any linear 1-form F’ € I',(T*E) and any
VB, n-object E.

Remark 3.5. The restricted twisted Dorfman—Courant bracket
[X'®w!, X2 @ w?ar = [ X1, X% @ (Lx1w? —ixedw! +ix,ix,dF)

is an example of an admissible VB, ,-gauge-natural operator in the sense of
Definition 3.1

We are going to prove the following theorem.

Theorem 3.6. Let B be an admissible V1B, ,-gauge-natural operator in the sense
of Definitions 3.1 and 3.4. Assume that m > 3 and n > 1. Then there exist uniquely
determined real numbers a, by, ba, b3, bs, bs, bg, c1, ca, 3, c4 such that

BF(pl,pQ) = a[Xl,Xz] &) {b1£X1w2 + b2£X2w1 + b3diX1w2
+ badix2w! + bs Lx1dipw? + b L x2dipw®
+ crixiix2dF + coipixedix1dF
+ esipixidix2dF + cqipdixix1dF}

(3.2)

for any F € I‘IE(/\2 T*E) and any p*,p* € T (TE @ T*E) and any VB, n-object E,
where p' = X' @ w! and p? = X? @ w?.

Proof. Operator By, where 0 is the zero linear 2-form, can be treated as the
VB, n-gauge-natural bilinear operator in the sense of Definition 2.1. Then By is
described in Theorem 2.4. So, replacing B by B — By, we can assume By = 0.

By the VB,, ,-invariance of B, such B is determined by the values

Br(X'ow', X?®uw?), ¢ T.R™" & T/R™" (3.3)
for all F € T, (/\2 T*R™") and all X! @ w!, X2 @ w? € TL,...(TR™" @ T*R™")

and alle = (e!,...,e") e R" = {0} x R" = R{"".
By Corollary 19.9 of the non-linear Petree theorem in [7], we may assume

F, X' X2 w' w? are polynomial of degree not more than r € N. (3.4)

The proof of our Theorem 3.6 will be continued after proving several lemmas.

Lemma 3.7. The operator B is of order 2. The values Brp(X' @ w', X? @ w?)
are linear in F and independent of w' and w?. Moreover, the vector field part
of BR(X' @ wh, X% ® w?) is zero.
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Proof. Given p! = X'@w!, p* = X?@w? e = (e!,...,e") € Ry"" and F in question,
we can write

Br(p',p*)e
9 ki ok O kg i k (3:5)
= (Zai%eJerkle By e) @Z(cike dex Jerkdey ),
where a; = a;(F, X', X% w'w?) and b = b (F,X', X% w w?) and

cir = ci(F, X1, X2 wh w?) and fr = fi(F, X!, X2 w! w?) are the real numbers
depending smoothly on (F, X', X2 w! w?) and independent of e. Because of the
invariance of B with respect to (z',..., 2™, +y',..., ty™) (preserving X' and X? (as
X! and X? are linear) and sending F into tF (as F is linear) and sending w' and w?
into tw! and tw? (as w! and w? are linear)), we get the homogeneity conditions
a;(tF, X', X2 tw!, tw?
Vit (tF, XY X2 tw! tw?
ca(tF, X1, X2 tw!, tw?
fe(tF, X1 X2 tw! tw?

a;(F, X', X2 wh w?),
by (F, X1, X2 wh w?),
tea(F, X1 X2 w0 w?),
th(F, XY X2 Wl w?).

(3.6)

)
)
)
)

Then, by the homogeneous function theorem and (3.4), ¢;; and fi are linear in F' and
independent of w! and w?® because of the assumption Cy = 0. Moreover, a; and b}
are independent of F', and they are zero because of the assumption Cy = 0. So, the
last two sentences of the lemma are complete.

It remains to prove the order part of the lemma. Let
1 1
hy = (;xl,...,gxm,yl,...,y").

Then
(ht)*F = al(F)t + ...+ a7~+2(F)tr+2,

t(he) e Xt = bo(X1) + ... + by (X2 (3.7)
t(he)s X2 = bo(X?) 4 ... + by (X2t T2

The first above expression holds because of F' is a linear 2-form. By the invariance of
B with respect to h; we have the homogeneous conditions

Cin((he) o Fot(he) o X1t (he) o X?) = e (F, X1, X7)

1 2 2 1 2 (38)
fk((ht)*th(ht)*X 7t(ht)*X ):t fk(FvX X ) :

Then the homogeneous function theorem and the assumption By = 0 complete
the order part of the lemma. O

Given e € R" = {0} x R" = R{"", let T(R™ x R™) = R™* x R™* be the usual
identification. Let

B (X, X?), = the R™*-component of Bp(X' ® 0, X2 @ 0),,

(3.9)
B?> (X!, X?), = the R™*-component of Br(X* @0, X* @ 0)..
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Lemma 3.8. If m > 3, B is determined by the collection

qui:r:l/\dz (88.,1;7, ’ yk &fkl )

1d:1:1/\d12< (“)ykl axz)el’
) , (3.10)
el

1d:)(:l/\ol:v2 (

1dw1/\dﬂ” (x (’93&“ ’ Oxi

1dac1/\d;c2 81‘1 6$“)
foralliyiy =1,...,m and k,ky = 1,...,n, where e; = (1,0,...,0) € R" = Ry"".

Proof. By Lemma 3.7 and the assumption By = By = 0 (a consequence of the
admissibility of B), we derive that B is determined by the collection

Bi1(a)dp(m)rds? () (X @0, X% @ 0),,
B3 (2)o(y)dft (z)ndf2 () (X'®0,X%2®0)., (3.11)
B«P(y)dfl(z)Adﬂ(z)(Xl ©0,X%®0),

for all X!, X% € Tk,...(TR™") and all e € R® = {0} x R* € R™" and all maps
L2 2 R™ — R with £1(0) = £2(0) = £2(0) = 0 and all linear maps ¢ : R™ — R.

Of course, we can assume ¢(e) = 1 and the rank of (dof!,dof?,dof?) is maximal.

Then, using the VB,, ,-invariance of B, we can assume e = ey, ¢ = y!, f! = 2,

f?2 =22 f3 =23 (we use m > 3). Further, using the invariance of B with respect to
1 L we can see that the values

(xl,. . 2™yt a2ty )T
Bytasingz2 (X' ®0,X% @ 0),,
determine the values
By 4oy ndat nde2 (X © 0, X% @ 0)e,,

and then they determine the values

Buayrapinage2 (X' @0, X @ 0),,
So, the values Bysy1gzindz2 (X @0, X? @ 0), may be omitted. Moreover, since

Ba(ziytyadz? = —Ba(z2d(z1y1)) = —Bo =0

(because of the admissibility of B), then

Bt gyt adz? (Xl (&) O,X2 D 0)61 = —By1dz1 nda? (Xl ©® 0,X2 ) 0)61
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So, the values By1gyipaz2 (X! @0, X2 & 0).
the values

may be omitted. So, B is determined by

1

(1)
Byldzl/\de

& X ; (3.12)

B<%2ia:1 Adx? (X

for all o, 8,7,06 € (NU{0})™ and 4,47 = 1,...,m and j, k, jhkl =1,...,n, where

(X! =a%5% or X! = a:feyja 9-) and (X2 = :ﬂagl or X2 = zoyh a;kl)’ where (of

course) z := (z1)™ ... (z™)*n. We are going to study this collection (3.12).
(i) At first we study the case of B;ile/\dﬂ(Xl,Xg)el. We can see that if

Xt = g© ai'i and X2 = x"’aaq then by the invariance of B with respect to

hy ::(%xl,...,f Jyt Ly, we get

12+l + 1yl = 2B<1>

Dot nger (X1 X, =B L (X1, X,

and then BY

1d:cl/\dx2

(XY, X?%),, = 0if |a| + |y| # 1. Similarly, if X! = xaagi
and X? = 2%y 55 then B{) .\, ;. (X, XQ)el = 0 if |o| + [d] # 0. Similarly, if

x1 f:cByJ 2 and X2 = a5 9 then B! 1d$1/\dw (X1, X2),, = 0if |8 + || # 0.

210

Similarly, B ijl/\dw (X1, X2)81 = 0 in the rest sub-case.
Further, we can see that the values

1) o , 0
Byldml/\dz2 (%7 z O >€1

are determined by the values

B o magten (X1 (@), (@) X2 (x))e,

for all “constant” vector fields X' and X2 on R™ and all linear maps f,g,h : R™ — R.
Then (of course) we can assume that f, g, h are linearly independent (we use m > 3).
Then, using the invariance of B with respect to (o(z!,...,2™), 4yt ... y") for a linear
isomorphism ¢ : R™ — R™, we can assume f = 2!, g = 22 and h = :c3 Because
of the bi-linearity of By, we can else assume that X' = 821' and X2 = Quite
similarly, one can proceed with

89:‘1

(1) i o 0 )
Byidat nda (1: : Oxt’ Ozt / e

instead of

(1) 9 i, 0
Byldrll\d:c2 (%’ " Oxit )61

(X1, X%, If X! =292 and X2 =

(ii) Now, we pass to B<1>d:vl/\dm2

by the invariance of B Wlth respect to hy we get

24|l +]y[-2 5(2)
t B e nda2

(X", X?)., = B

ldzlAdzz(XlaX2)€1?
and then Bﬁle/\dxz(Xl,XQ)el = 0 if |a] + |y| # 0. Quite similarly, we get that

Bﬁzzlmﬁ (X1, X?),, =0 in the rest three sub-cases. O
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Lemma 3.9. All values B 1>da:1/\d:1:2(62'i’ 52 )es

two ones. The exceptional values satisfy

are zero except (eventually) of the

(2) O 0N a0
Bluctnans (Gt )., = 2t

2) 9 9N _ .. 1
Byldml/\dmz (@a @)61 - _ad€1y )

(3.13)

where @ is the real number (determined by B).

Proof. Let

@) 9
Byldatl/\d:t2 (012 oxi ) Z aulkde1y )
where a;;,; € R are the real numbers. Then by the invariance of B with respect to
1 1 1 m 1 n)
—x, .., —x "y,
<7'1 ™™ Y y

we get Tir2L }1 Qi k = Gk S0, aii ke = 0 if {i,41} # {1,2}. Further, by the

T

invariance of B with respect to (x!,..., 2™, y!, 1y2, ey %y") we get ajor = tajoy for
k=2,...,n. Then ajor, = 0 for k = 2,...,n. Further, by the invariance of B with
respect to the replacing ' by 2 (and vice—versa) we get a9, = —agyp fork=1,...,n.
The lemma is complete. O

Lemma 3.10. All values Bﬁzzlmmg(%,yk%%)el are zero except (eventually) of
the two ones. The exceptional values satisfy

(1) 9 9 _ = 2
B yldzl Adx? (81’1 7y ay > Cde1x (3 14)
B<1> 8 a _ éd 1 .
yldz! Adz? ((91'2 ) y 8y ) = —Cle, T,

where ¢ is the real number (determined by B).

Proof. Let

0
1
Bz</1>dz1/\dm2 (&Ei ’ y dyk ) Z Czkkudelx

where c;ir,; are the real numbers. By the invariance of B with respect to
(T%xl,...,Tm moylooyt) we get TlTQ%Cikklj = T/¢Cipk, ;. Then cipr,; = 0 if
{i,j} # {1,2}. Further, by the invariance of B with respect to replacing z' by
22 (and vice-versa) we get cixk,2 = —Cakk, 1. Further, by invariance of B with respect
to (x',...,a™, Lyt Lyt .., Zy") with 78 = 1, we get 7F - cigk,2 = Cigk,2. Then
Cikk,2 = 0 if k # k1. Further, if k € {2,...,n}, there exists a VB,,-map
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sending a%? into % + ykaiyk. Then, using the invariance of B with respect to ¥, from

0 0 -
B 1dx1/\d9c2(8 1 @0, Oz ) @0) o —O@Gdelyl,

where a is from Lemma 3.9, we get

0 0 i 0 _ 1
Byldml/\dﬂ(@xl@o (8 5 Ty 8yk) @0)61 =0&ade,y .

(That B<1>d$1Adl (%, %)el = 0, see the proof of Lemma 3.8.) Then

0 g 0
Byldxl/\dﬁ(@l@oy8k€90>1—0@0
for k = 2,...,n. The lemma is complete. O

Lemma 3.11. All values B:f;pdml/\er (ykay%, 2-)e, are zero except (eventually) of
the two ones. The exceptional values satisfy

(1) 1 9 0N _ o 2
ByldzlAdzz (y @7%)61 = éde,
X 9 9 (3.15)
B<1>d 1Ad 2(:‘/1777) :—éde Il,
yrawiAaw Oyl 022/ ey !
where € is the real number (determined by B).
Proof. In fact, this lemma is Lemma 3.10 for B°P instead of B, where
BP(X'ow', X?®w?) = Br(X? 0w, X' ouwh). O
Lemma 3.12. Let m > 3. All values B 1>dI1Adm (aii,lfg%%)el are equal to zero
except (eventually) of the four ones. The ea:ceptzonal values satisfy
1) 9 23 9 7 3
Byldasl/\dac2 (83;‘1 ’ 8l‘2> fde11'
(1) 9 39\ __f
Byldml/\dm2 (@7‘% %)61 fd61x ’
X 5 P (3.16)
B<1>d 1Ad. 2(7,.%37) :gde .,
yrarndzT\ a3’ Qa2 /ey !

(1) 9 30 _ = 2
Btiotnast (5507 51 ), = 0ers?

where f and § are the real numbers (determined by B).

Proof. Let

m 9
Byldacl/\dxz (8ml Y Y ) Z quljdelx



714 Wiodzimierz M. Mikulski

where ¢;;,; € R are the numbers. Then by the invariance of B with respect to
(Lot Zmamyt o y) we get T2 L g = TIqu, . Then g;,; = 0 if

{i,41,7} # {1,2,3}. Further, there exists a O-preserving embedding ¢ : R — R
sending (the germ at 0 of) a% into a% —&—xa%. Then, by the invariance of B with respect

1
to (mla x27 (p(x?,)’ PR ST yn)’ from B;(/l)dzl/\dmz(%’ %)el = 0 we get
(1) 9 0 3 0 _
Bzﬂdz%dﬂ(@v@ +x 953)e, = 0,
and then Bgipdzl/\dx?(%’ x3%)61 =0, i.e. g132 = 0. Then using the invariance of B
with respect to changing ! by x? (and vice-versa) we get that ga31 = —q132 = 0 and
q321 = —q312 and qi23 = —q213. We put f := g123 and g := g321- O

Lemma 3.13. Let m > 3. All values ngpdwl/\dm2 (x?’ag%, %)51 are zero except (even-

tually) of the four ones. The exceptional values satisfy

) 3 0 0N _5. .3
Byiaet naa2 (33 922 %)61 = hde, 2",
(1) o 0 3
B yiiet naas (5'33@’ @)el = —hde,2”,
0 L0 0 ) ) (3.17)
Bliosnaes (2 5,3 5y ), = R
(1 3 00 _ T 2
By wnae (7' x5 ), = R
where h and k are the real numbers (determined by B).
Proof. In fact, this lemma is Lemma 3.12 for B°P instead of B. O
Lemma 3.14. Let m > 3. We have
f=a+e¢ (3.18)

where a is the real number from Lemma 5.9 and ¢ is the real number from Lemma
8.10 and f is the number from Lemma 3.12.

Proof. Given 7 > 0,
2

,(/} ,_(1 €z 3 ™ yn)
= —_— Sy RN

x T
"1 47123’

preserves e; and % and sends yldx! A dz? into yldz! A d(z? + T2%23) and

% into ﬁ% On the other hand, by invariance of B with respect to
. 1
(%ml’ s %xm’yl7 ..., y™), we can easily see that B;lzwlAdIQ(% @0, % ®0)e, =0.

Then, by the invariance of B with respect to ., we get

B o 1 9N
yldzi Ad(z2+T2223) oxl’ 1+ 723 Ox2 e .
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Then by the order argument, we get

(1) 0 3 20,.3\2 9 —
ByldxlAd(ﬂ-s-m%f*)(%’(l — 712”4+ 71°(27) )@)el =0.

Then, comparing the coefficients on 7 of both sides of this equality, we get

(1) 9 30 () o 0
Byldacl/\dm2 (%’ T @)61 - ByldwlAd(x2x3) (%7 @) o . (319)
Further, by the invariance of B with respect to (z!,... 2™, H_%yl,yz, RN TN
from 5 5
_ ~ 1
Bylda)l/\dx2 (% %) O, @ D 0>€1 =0 D adely y
we get
B 0 0 = 0@ (ade,y" + ade,
(y'+z3yt)dat Adz? (@ ®0, ox2 D 0)61 =0 (a a1y T ade, T )7
and then P
(1) _ = 3
stylda:l/\de(%7 @)el = ad.,z”, (3.20)
where @ is the number from Lemma 3.9.
Further, by invariance of B with respect to (2!, %12, 23, ..M, ..., y"), we can
easily see that
B 0 0 _
yldzl Adz3 (% S5 O, @ D 0)81 =0®0.
Then, by the invariance of B with respect to (x!,..., 2™, ﬁyl, y2, .., y"), we get

0 0 T . 0
Byr 4 ro2y1)dat Ada <8x1 &0, (@ T 12 873/1) D 0> =080,

€1

and then (by the order argument and comparing the coefficients on 7) we get

(1) g 0 () g 4,0
B:myldazl/\dz?’ (%7 @)el = del/\dxl/\dz?’ (%,y aiyl e
Further, by the invariance of B with respect to (!, 2% + 23, 23,... 2™, ... y"), from

the first equality of (3.14), we get
(1) O 0N .. 4
ByldzlA(desz)(@ay aiyl)el = ¢de, (z° — 2°),

and then B;Bixl/\dﬂ(a%lv yl%)e1 = &d., x®, where & is the number from Lemma 3.10.
Then
(1) ( 0 0

z2yldz! Adx3 %7 @) = Ed61$3~ (321)
e1
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Now, from (3.16) and (3.19) and (3.20) and (3.21), since
wdytdet Ada? + 2?ytdat A ded = ytdat A d(2?2?),

we get
P _ g 9 9 .
fde,z? _'lgyldmlAdzz(Eiif’xggi;§>el = (@ + &)d.,a?,
as well. The lemma is complete. O

Lemma 3.15. Let m > 3. We have
h=—a+eé (3.22)

where a 1is the real number from Lemma 3.9 and € is the real number from Lemma 3.11
and h is the number from Lemma 3.13.

Proof. In fact, this lemma is Lemma 3.14 for B°P instead of B. O
Lemma 3.16. Let m > 3. We have

f+g+k+h=0 (3.23)

where f and § are the numbers from Lemma 3.12 and h and k are the numbers from
Lemma 3.13.

Proof. By the invariance of B with respect to (z + 723, 22,..., 2™, ..., y"), from the

third equality of (3.16) we get

B

yld(zl—Ta3)Adz?

<a 9 40

o~ 1 3
8 T T ), = B (! ),

and then considering the coefficients on 7 and using the first equation of (3.16) we
obtain

(1) 9 9 ; _ -
_ByldrS/\dx2 (@7%3@>61 + fd61x3 = _gd€1$3'

Then using (in particular) the invariance of B with replacing 23 by 2! (and vice-versa)

we get
B

0 0 L o=
ictnase (72" z),, = 0+ Pdea” (3.2

Quite similarly, using (3.17) instead of (3.16) we get

($14Q7 —Qf>61::(k4—hﬁ%1xl. (3.25)

B
Ox2’ Oxt

yldz! Adz?
(In fact, the equality (3.25) is the equality (3.24) for B°P instead of B.)
Further, by invariance of B with respect to

1

(2 + r(xh)? 2%, 2™ y"),



On the twisted Dorfman—Courant like brackets 717

(1) 9 0
from Byldzl/\daﬂ(w’ w)el = O, we get

B<1> + 27zt

yldz' Ad(z2—7(z1)2) (@ +2

1 _
T a2 ot =0

7).,

and then considering the coefficients on 7 we get

B

yldz! Adz?

(o' 8), * Blernas (2 33 3r),, =0 09

From (3.26) and (3.25) and (3.24) we obtain (3.23), as well. The lemma is complete. [

We are now in position to complete the proof of Theorem 3.6. By Lemmas 3.7-3.16,
any admissible VB3, ,-gauge-natural operator B with By = 0 is uniquely determined by

the corresponding 4-tuple (@, ¢, g, k). Further, one can easily directly compute the corre-
sponding 4-tuples of VB,, ,-gauge natural operators i x1ix2dF’ and ipix2dix:1dF and
irix1dix2dF and irdix2ix1dF. They are (—1,1,0,0) and (0,0,0,1) and (0,—1,1,0)
and (0,—1,0,0), respectively. The determinant of the matrix of the above vectors
is —1. So, the dimension argument complete the proof of our Theorem 3.6. O

4. THE TWISTED DORFMAN-COURANT LIKE BRACKETS
Definition 4.1. A VB, ,-gauge-natural operator

3
C: TSN\ T*) ~ Ling(T(T & T*) x THT @ T*),THT & T*))

sending closed linear 3-forms H € 1“59_0105(/\3 T*E) on VB,, n-objects E into R-bilinear
operators

Cy :TY(TE®T'E) x Ty (TE® T*FE) - I'y(TE ® T*E)

is a VB, p-invariant family of regular operators (functions)

C : Thelos( /3\ T*E) — Linog(TL(TE @ T*E) x Iy (TE @ T*E), T, (TE & T*E))
for all VB, ,-objects E.
Remark 4.2. The twisted Dorfman—Courant bracket
[(X'®w', X2 Wy =X, XY D (Lx1w? —ix2dw® +ix,ix,H)

is an example of a VB,, ,,-gauge-natural operator in the sense of Definition 4.1.

The main result of this paper is the following:
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Theorem 4.3. Let C be a VB, ,-gauge-natural operator in the sense of Definition 4.1.
Assume that m > 3 and n > 1. Then there exist uniquely determined real numbers
a, b17 an b37 b4a b5a b67 C1,C2,C3,C4 such that
Cu(p,p?) = a[X', X?] & {b1 Lx1w* + b L x2w" + bydix1w?
+ b4diX2w1 + b5£deiLw2 + b(;ﬁxzdiLwl (4.1)
+crixiix2 H 4+ coipixedix1 H ’
+c3ipixidix2 H + C4iLdiX2iX1H}
for any H € I‘ECIOS(/\3 T*E) and any p*, p* € TL(TE © T*E) and any VB, ,-object
E, where p* = X' @ w! and p> = X? & w?.

Proof. Using C, we define

B:T{N\T*) ~ Ly(TN(T & T*) x T{T & T*),THT & T*))

by Bp := Cyp. Clearly, B is admissible. So, by Theorem 3.6, there exist uniquely
determined real numbers a, by, ba, bs, by, b5, bg, 1, C2, ¢3, ¢4 such that we have (4.1) for
any exact linear 3-form H € ]."lbfdos(/\3 T*E) and any p', p? € I',(TE © T*E) and
any VB, n-object E, where p! = X! ® w! and p? = X? @ w?. Then, since C is (in
particular) local, we can write “closed” instead of “exact” because of the Poincaré
lemma. The theorem is complete. O

5. THE TWISTED DORFMAN-COURANT LIKE BRACKETS
SATISFYING THE JACOBI IDENTITY IN LEIBNIZ FORM
Let C be a VB,, ,-gauge-natural operator in the sense of Definition 4.1.
Definition 5.1. We say that C satisfies the Jacobi identity in Leibniz form if
Cu(p',Cu(p®,p°)) = Cu(Culp', p*),0°) + Cu(p*, Cu(p", p%)) (5.1)
for all H € T1°5(A® T*E) and all linear sections p' = X @ w' € Ty (TE ® T*E) for
i=1,2,3 and all VB,, ,-objects E.

Remark 5.2. It is well-known that the twisted Dorfman Courant bracket from
Remark 4.2 satisfies the Jacobi identity in Leibniz form.

Lemma 5.3. Let C be a VB, »-gauge-natural operator in the sense of Definition 4.1
of the form
Cu(X'owh X?puw?) = a[Xl, XZ] &) {b1£X1w2 + boLxrwt
+ bydix1w? + bydi x2w!
+ bsLx1dipw® 4 bgLyzdipw’
+cpixiix2H}

(5.2)
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for any H € TS (AP T*E) and any X' @ w', X2 @ w? € T (TE ® T*E) and any
VB, n-object E, where a,by,ba, b3, ba, bs, bg, c1 are real numbers. (It means, we assume
that co = ¢z = ¢4 = 0.) If C satisfies the Jacobi identity in Leibniz form, then the
following conditions (a) and (b) are satisfied:

(a) The T-tuple (a, by, ba, bs, by, bs, be) is from the following list of 7-tuples:

¢,0,0,0,0,c,0), (c0,0,0,0,c,—c),

¢, ¢,0,0,0,—c,0), (¢,¢,—¢,0,0,—c,c),

¢,0,0,0,0,0,0), (¢ ¢,0,0,0,0,0), (5.3)
¢ 0,0,0,0,—c), (¢,¢,—c,0,0,0,0),

(¢,e,—c,0,¢— X, 0,A), (0,0,0,\, p, =\, —p),

P

where ¢, A, i are arbitrary real numbers with ¢ # 0;
(b) It holds
biciLxrix2ixsH + bycrdixiix2ixs H
+bsc1Lxdipixaixs H + acrixvipxz xs)H
=boc1 Lxsixrix2 H 4+ bycidixsixiix2 H (5.4)
+bgcrLxadipixrix2H + acli[Xl,XﬂinH
+ b1 Lx2ixrixs H + bscidixzixiixs H

+bsciLxedipixiixsH + aclini[lexa]H

for any linear vector fields X', X2, X3 and any closed linear 3-form H on R™".

Proof. If C satisfies the Jacobi identity in Leibniz form, then Cj satisfies the Jacobi
identity in Leibniz form. Then we have the condition (a) because of Theorem 2.4.
Further, for any linear vector fields X!, X2, X3 on R™" and any closed linear 3-form
H on R™" we can write
Cu(X'®0,Cn(X*®0,X*00)) = a’[X", [X*, X*) 0 Q,
Cu(Cy(X'®0,X?30),X330) =d*[[X', X%, X3 @0,
Cu(X?®0,Cp (X' ©0,X°©0)) = a?[X* [X, X & T,

where
Q=0 Lx{crix2ixsH} + bsdix1{crix2ixsH}
+bsLxrdip{crix2ixs H} + crixiiqx2 x3H,
O = byLoys{crixrix2H} + badixa{crixiix=H}
+beLxadip{crixvixaH} + crigp xoixsH,
T = b1 L {crixrixs HY + bydixz{crixuixs H)
+bsLx>dip{crixrixs H} + crix2iqx1 x31H,

From the Jacobi identity in Leibniz form of C' it follows 2 = © + T, i.e. (5.4). O
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Theorem 5.4. Let m > 2 and n > 1. Let C be a VB, ,,-gauge-natural operator
in the sense of Definition 4.1 of the form (5.2) for any H € ngos(/\gT*E)
and any X' @ w', X% @ w? € FﬁE(TE ® T*E) and any VB, n-object E, where
a, by, ba, b3, by, by, be, c1 are real numbers. (It means, we assume that ca = c3 = ¢4 = 0.)
Then C satisfies the Jacobi identity in Leibniz form if and only if the 8-tuple
(a,b1,ba,bs,b4,bs,b6,¢1) is from the following list of 8-tuples:
(¢,0,0,0,0,¢,0,0), (c,0,0,0,0,¢,—c,0),
(¢,¢,0,0,0,—¢,0,0), (¢,¢,—c¢,0,0,—c,¢,0),
(¢,0,0,0,0,0,0,0), (cc,0,0,0,0,0,0), (5.5)
(¢,¢,0,0,0,0,—c¢,0), (c,c,—¢,0,0,0,0,0),
(¢,c,—c,0,¢— A,0,A,0), (0,0,0,\, , —A, —p1,0),
(¢,¢,—c,0,¢,0,0,v), (0,0,0,0,0,0,0,v),

where ¢, \, p, v are arbitrary real numbers with ¢ # 0 and v # 0.

Proof. At first we prove the implication =. For, assume that C in question satisfies
the Jacobi identity in Leibniz form. We will study the 8-tuple (a, by, b2, b3, by, b5, bg, ¢1)
of C. This 8-tuple satisfies Lemma 5.3. So, the 7-tuple (a, by, ba, b3, by, b5, bg) obtained
by restriction from our 8-tuple is from the list (5.3). More, we have (5.4).

Putting (linear vector fields) X! = % and X2 = % and X3 = ylaiy1 and (closed

linear 3-form) H = z'dy' A dz' A dz? into (5.4), we get

—brerytdat — byerd(atyt) +040
= —bycrxtdyt — bycrd(ztyt) — bgerd(ztyt) + 0+ 0+ bzerd(zty') 4+ 0+ 0,

i.e.

— biciytdrt — bzerd(2tyt)

5.6
= —bycrzldyt — bycrd(z'yt) — bgerd(xtyt) + bserd(xtyt). (5.6)

Let us consider several cases.
(I) Let (a, by, ba, b3, by, bs,b6) = (¢,¢,0,0,0,—c,0), ¢ # 0. Then from (5.6) we get

—cerytdat —0=—-0—-0—-0—0+0.

Then cc; = 0. Then ¢; = 0.
(IT) Let (a, by, ba, b3, by, b5, bs) = (¢, ¢,0,0,0,0,0), ¢ # 0. Then from (5.6) we get

—cerytdat —0=—-0—-0—0+0.

Then cc; = 0. Then ¢; = 0.
(III) Let (a, by, be, b3, by, bs,b) = (¢, ¢, —¢,0,0,0,0), ¢ # 0. Then from (5.6) we get

_Cclyldl‘l —0= cclxldyl —0—-0+0.
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Then cc; = 0. Then ¢; = 0.
(IV) Let (a, by, ba, b3, ba, b5, b6) = (¢,¢,0,0,0,0, —c), ¢ # 0. Then from (5.6) we get

—cclyld:cl —-0=-0-0+ ccld(xlyl) + 0.

Then cc; = 0. Then ¢; = 0.
(V) Let (a,by, ba, b3, by, bs,b) = (¢,0,0,0,0,¢,—c), ¢ # 0. Then from (5.6) we get

~0—0=—0—0+ cerd(z'y*) + 0.

Then cc; = 0. Then ¢; = 0.
Similarly, putting (linear vector fields) X! = % and X? = % and X3 = xQ%
and (closed linear 3-form) H = dy' A dz! A dz? into (5.4), we obtain

04+0+0—acidy'! =0+0+04+0—bicydy' +0 — bserdy* + 0,

i.e.
—acydy' = —bierdyt — bseqdy? (5.7)

Let us consider next cases.
(VI) Let (a,b1,ba,bs, bs, bs,b6) = (¢,0,0,0,0,0,0), ¢ # 0. Then from (5.7) we get

cerdyt = —0 — 0.

Then cc; = 0. Then ¢; = 0.
(VII) Let (a, by, ba, b3, by, bs,b6) = (¢,¢,—¢,0,0,—¢,¢), ¢ # 0. Then from (5.7) we
get
ccldy1 = —ccldy1 + ccldyl.

Then cc; = 0. Then ¢; = 0.

Similarly, putting (linear vector fields) X! =
field) and X3 = % and (closed linear 3-form) H
obtain

8%1 and X2 = L (the Euler vector
= dx? A dzt A dyt into (5.4), we

0 —bscrdy* +040 =0 — byerdy* + 0+ 0+ bycydy* + bzerdy + bserdy* +0,
i.e.
—b301dy1 = —b401dy1 + b1cldy1 + b301dy1 + b501dy1. (58)

Let us consider next cases.
(VIII) Let (CL, bl; an b3a b47 b57 bﬁ) = (03 07 Oa /\7 Hy 7>‘a 7/14) Assume A 7& 0or H 7é 0.
From (5.7), we get
—0=—0+ \erdy?,

i.e. Ac; = 0. Moreover, from (5.8), we get
“adyt = —perdyt + 0+ Aerdyt — Aerdy?,

i.e. (A — p)ep = 0. Consequently, ¢; = 0.
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(IX) Let (a7b17b27b37b4ab5ab6) = (6707()’070767 0)7 c 7é 0. Then from (58) we get
0=040+0+cerdy’.

Then cc; = 0. Then ¢; = 0.
(X) Let (a,by,bs,bs,bs,b5,b6) = (¢,c,—c,0,¢ — A\,0,A), ¢ £ 0, A\ # 0. Then from
(5.8) we get
0= —(c—Neidy' + cerdy' +0+0.

Then A¢; = 0. Then ¢; = 0.

So, we have considered all possibilities for the 7-tuple (a, b1, ba, bs, bs, b5, bg). Hence
we have proved that the 8-tuple (a, b1, ba, bs, ba, b5, bs, ¢1) is from the list presented in
the theorem, i.e. the implication = is complete.

Conversely, if (a, by, ba, b3, bs, bs, bg, ¢1) is from the list of the theorem and ¢; = 0,
then the corresponding operator C' is independent of H, and then C satisfies the
Jacobi identity in Leibniz form because of Theorem 2.4. If ¢; # 0 and a # 0, then
C' is “proportional” to the twisted Dorfman—Courant bracket, i.e. satisfies (as it is
well-known) the Jacobi identity in Leibniz form for closed linear 3-forms. Then putting
a — 0, we complete the case (0,0,0,0,0,0,0,c¢1), too. Theorem 5.4 is complete. [
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