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Abstract. There are completely described all VBm,n-gauge-natural operators C which, like to
the Dorfman–Courant bracket, send closed linear 3-forms H ∈ Γl−clos

E (
∧3

T ∗E) on a smooth
(C∞) vector bundle E into R-bilinear operators

CH : Γl
E(T E ⊕ T ∗E)× Γl

E(T E ⊕ T ∗E)→ Γl
E(T E ⊕ T ∗E)

transforming pairs of linear sections of T E⊕T ∗E → E into linear sections of T E⊕T ∗E → E.
Then all such C which also, like to the twisted Dorfman–Courant bracket, satisfy both some
“restricted” condition and the Jacobi identity in Leibniz form are extracted.

Keywords: natural operator, linear vector field, linear form, (twisted) Dorfman-Courant
bracket, Jacobi identity in Leibniz form.
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1. INTRODUCTION

All manifolds considered in the paper are assumed to be Hausdorff, second countable,
finite dimensional, without boundary, and smooth (of class C∞). Maps between
manifolds are assumed to be C∞.

In [3], the authors described all bilinear operators on sections of the Whitney sum
TN ⊕ T ∗N → N of the tangent and cotangent bundles (for N a smooth manifold),
which areMfm-natural, i.e. invariant under the morphisms in the categoryMfm of
m-dimensional manifolds and their submersions. The Courant bracket is an example
of such operators and it is of particular interest, because it involves in the concepts of
Dirac and generalized complex structures on N , see [2, 4, 5].

In [9], we described all Mfm-natural operators A which send closed 3-forms H
on N into bilinear operators AH on sections of TN ⊕ T ∗N → N (for N a smooth
manifold). The twisted (or H-twisted) Courant bracket is an example of such operators
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and it is of particular interest, because its properties were used in [8, 11] to define the
concept of exact Courant algebroid.

In [10], we described all bilinear operators on linear sections of TE ⊕ T ∗E → E
(for E → M a smooth vector bundle), which are VBm,n-gauge-natural, i.e. in-
variant under the morphisms in the category VBm,n of rank-n vector bundles
over m-dimensional bases and their vector bundle isomorphisms onto images. The
Dorfman–Courant bracket is an example of such operators and it is of particular
interest, because (TE ⊕ T ∗E;E, TM ⊕ E∗;M) is the standard VB-Courant algebroid
and the Dorfman–Courant bracket is the part of this structure. The Dorfman–Courant
bracket is the restriction of the Courant bracket to linear sections of TE ⊕ T ∗E → E,
see [6]. The Dorfman–Courant bracket can be also interpreted as the bracket of the
Omni–Lie algebroid Der(E∗)⊕ J1(E∗), studied in [1].

In the present article, we describe all VBm,n-gauge-natural (i.e. invariant under
the morphisms in the category VBm,n) operators

C : Γl−clos(
3∧
T ∗) Lin2(Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗),Γl(T ⊕ T ∗))

which, like the twisted Dorfman–Courant bracket, transform closed linear 3-forms
H ∈ Γl−clos

E (
∧3

T ∗E) on E into bilinear operators

CH : ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)→ ΓlE(TE ⊕ T ∗E)

(for E a smooth vector bundle), where ΓlE(TE ⊕ T ∗E) is the space of linear sections
of TE ⊕ T ∗E → E (i.e. couples X ⊕ ω of a linear vector field X on E and a linear
1-form ω on E). Thus the main result of the paper is the following
Theorem 1.1. Let m ≥ 3 and n ≥ 1 be fixed integers. Any VBm,n-gauge-natural
operator

C : Γl−clos(
3∧
T ∗) Lin2(Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗),Γl(T ⊕ T ∗))

is of the form

CH(ρ1, ρ2) = a[X1, X2]⊕ {b1LX1ω2 + b2LX2ω1 + b3diX1ω2

+ b4diX2ω1 + b5LX1diLω
2 + b6LX2diLω

1 + c1iX1iX2H

+ c2iLiX2diX1H + c3iLiX1diX2H + c4iLdiX2iX1H}
(1.1)

for arbitrary (uniquely determined by C) real numbers a, b1, b2, b3, b4, b5, b6, c1, c2, c3, c4,
where ρi = Xi ⊕ ωi ∈ ΓlE(TE ⊕ T ∗E), H ∈ Γl−clos

E (
∧3

T ∗E), and where [−,−] is
the usual bracket on vector fields, L is the Lie derivative, d is the exterior derivative,
i is the insertion derivative and L is the Euler vector field.

The problem of extracting of all operators C of the form (1.1) which, like the
twisted Dorfman Courant bracket, satisfy the Jacobi identity in Leibniz form is rather
technically complicated. In the last section, we solve this problem in the case of all
C of the form (1.1) which, like the twisted Dorfman Courant bracket, satisfy the
“restricted” condition c2 = c3 = c4 = 0. Namely, we prove the following result.
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Theorem 1.2. Let m ≥ 2 and n ≥ 1. Let C be a VBm,n-gauge natural operator of the
form (1.1) with c2 = c3 = c4 = 0. Then C satisfies the Jacobi identity in Leibniz form
(i.e. the condition CH(ρ1, CH(ρ2, ρ3)) = CH(CH(ρ1, ρ2), ρ3) + CH(ρ2, CH(ρ1, ρ3)) for
any ρi ∈ ΓlE(TE ⊕ T ∗E) for i = 1, 2, 3 and any H ∈ Γl−clos

E (
∧3

T ∗E)) if and only if
(a, b1, b2, b3, b4, b5, b6, c1) is from the following list of 8-tuples:

(c, 0, 0, 0, 0, c, 0, 0), (c, 0, 0, 0, 0, c,−c, 0),
(c, c, 0, 0, 0,−c, 0, 0), (c, c,−c, 0, 0,−c, c, 0),
(c, 0, 0, 0, 0, 0, 0, 0), (c, c, 0, 0, 0, 0, 0, 0),
(c, c, 0, 0, 0, 0,−c, 0), (c, c,−c, 0, 0, 0, 0, 0),
(c, c,−c, 0, c− λ, 0, λ, 0), (0, 0, 0, λ, µ,−λ,−µ, 0),
(c, c,−c, 0, c, 0, 0, ν), (0, 0, 0, 0, 0, 0, 0, ν),

(1.2)

where c, λ, µ, ν are arbitrary real numbers with c 6= 0 and ν 6= 0.

The concept of (gauge) natural operators can be found in [7]. However, our operators
from Theorem 1.1 are probably unusual, because we do not know whether their domain
is Whitney’s extendible.

From now on, let Rm,n be the trivial vector bundle over Rm with the standard
fibre Rn and let x1, . . . , xm, y1, . . . , yn be the usual coordinates on Rm,n.

2. THE DORFMAN–COURANT LIKE BRACKETS

Let E = (E →M) be a vector bundle.
A vector field X on E is called linear if it has expression

X =
m∑

i=1
Xi(x1, . . . , xm) ∂

∂xi
+

n∑

j,k=1
Xk
j (x1, . . . xm)yj ∂

∂yk

in any local vector bundle trivialization x1, . . . , xm, . . . , yn on E. The Euler vector
field L on E is an example of a linear vector field. (The coordinate expression of L is
L =

∑n
j=1 y

j ∂
∂yj .) Equivalently, a vector field X on E is linear iff LLX = 0, where L

denotes the Lie derivative.
A 1-form ω on E is called linear if it has expression

ω =
m∑

i=1

n∑

j=1
ωij(x1, . . . , xm)yjdxi +

n∑

j=1
ωj(x1, . . . , xm)dyj

in any local vector bundle trivialization x1, . . . , xm, . . . , yn on E. Equivalently, a 1-form
ω on E is linear iff LLω = ω, where L is the Euler vector field on E.
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We have the following definition being modification of the general one from [7].
Definition 2.1. A VBm,n-gauge-natural bilinear operator

A : Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗) Γl(T ⊕ T ∗)
is a VBm,n-invariant family of R-bilinear operators

A : ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)→ ΓlE(TE ⊕ T ∗E)

for all VBm,n-objects E, where ΓlE(TE ⊕ T ∗E) is the vector space of linear sections
of TE ⊕ T ∗E (couples X ⊕ ω of linear vector fields X and linear 1-forms ω on E).
Remark 2.2. The VBm,n-invariance of A means that if

(X1 ⊕ ω1, X2 ⊕ ω2) ∈ ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)

and
(X̃1 ⊕ ω̃1, X̃2 ⊕ ω̃2) ∈ Γl

Ẽ
(TẼ ⊕ T ∗Ẽ)× Γl

Ẽ
(TẼ ⊕ T ∗Ẽ))

are ϕ-related by an VBm,n-map ϕ : E → Ẽ (i.e. X̃i◦ϕ = Tϕ◦Xi and ω̃i◦ϕ = T ∗ϕ◦ωi
for i = 1, 2), then so are A(X1 ⊕ ω1, X2 ⊕ ω2) and A(X̃1 ⊕ ω̃1, X̃2 ⊕ ω̃2).
Remark 2.3. The Dorfman–Courant bracket

[[X1 ⊕ ω1, X2 ⊕ ω2]] := [X1, X2]⊕ (LX1ω2 − iX2dω1)

is an example of a VBm,n-gauge-natural bilinear operator
Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗) Γl(T ⊕ T ∗).

Theorem 2.4 ([10]). Let m ≥ 2 and n ≥ 1. Any VBm,n-gauge-natural bilinear
operator A : Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗) Γl(T ⊕ T ∗) is of the form

A(X1 ⊕ ω1, X2 ⊕ ω2) = a[X1, X2]⊕ {b1LX1ω2 + b2LX2ω1

+ b3diX1ω2 + b4diX2ω1

+ b5LX1diLω
2 + b6LX2diLω

1}
(2.1)

for arbitrary (uniquely determined by A) real numbers a, b1, b2, b3, b4, b5, b6, where
[−,−] is the usual bracket on vector fields, L is the Lie derivative, d is the exterior
derivative, i is the insertion derivative and L is the Euler vector field.

Moreover, such A satisfies the Jacobi identity in Leibniz form (i.e. the condition
A(ν1, A(ν2, ν3)) = A(A(ν1, ν2), ν3) + A(ν2, A(ν1, ν3)) for any νi ∈ ΓlE(TE ⊕ T ∗E)
for i = 1, 2, 3) if and only if (a, b1, b2, b3, b4, b5, b6) is from the following list of 7-tuples:

(c, 0, 0, 0, 0, c, 0), (c, 0, 0, 0, 0, c,−c),
(c, c, 0, 0, 0,−c, 0), (c, c,−c, 0, 0,−c, c),
(c, 0, 0, 0, 0, 0, 0), (c, c, 0, 0, 0, 0, 0),
(c, c, 0, 0, 0, 0,−c), (c, c,−c, 0, 0, 0, 0),
(c, c,−c, 0, c− λ, 0, λ), (0, 0, 0, λ, µ,−λ,−µ),

(2.2)

where c, λ, µ are arbitrary real numbers with c 6= 0. In particular, the Dorfman–Courant
bracket satisfies the Jacobi identity in Leibniz form.
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3. THE RESTRICTED TWISTED DORFMAN–COURANT LIKE BRACKETS

A p-form Ω on E is called linear if LLΩ = Ω, where L is the Euler vector field on E.
Equivalently, a p-form Ω on E is linear iff it has expression

Ω =
∑

Ωi1,...,ip,j(x)yjdxi1 ∧ . . . ∧ dxip

+
∑

Ωi1,...,ip−1,j(x)dyj ∧ dxi1 ∧ . . . ∧ dxip−1

in any local vector bundle trivialization x1, . . . , xm, . . . , yn on E, where
x = (x1, . . . , xm).

Definition 3.1. A VBm,n-gauge-natural operator

B : Γl(
2∧
T ∗) Lin2(Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗),Γl(T ⊕ T ∗))

sending linear 2-forms F ∈ ΓlE(
∧2

T ∗E) on VBm,n-objects E into R-bilinear operators

BF : ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)→ ΓlE(TE ⊕ T ∗E)

is a VBm,n-invariant family of regular operators (functions)

B : ΓlE(
2∧
T ∗E)→ Lin2(ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E),ΓlE(TE ⊕ T ∗E))

for all VBm,n-objects E, where Lin2(U ×V,W ) denotes the vector space of all bilinear
(over R) functions U × V →W for any real vector spaces U, V,W .

Remark 3.2. The invariance of B means that if F ∈ ΓlE(
∧2

T ∗E) and
F̃ ∈ Γl

Ẽ
(
∧2

T ∗Ẽ) are ϕ-related by a VBm,n-map ϕ : E → Ẽ and

(X1 ⊕ ω1, X2 ⊕ ω2) ∈ ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)

and
(X̃1 ⊕ ω̃1, X̃2 ⊕ ω̃2) ∈ Γl

Ẽ
(TẼ ⊕ T ∗Ẽ)× Γl

Ẽ
(TẼ ⊕ T ∗Ẽ)

are also ϕ-related, then so are BF (X1 ⊕ ω1, X2 ⊕ ω2) and BF̃ (X̃1 ⊕ ω̃1, X̃2 ⊕ ω̃2).
The regularity of B means that it transforms smoothly parametrized families
(Ft, X1

t ⊕ ω1
t , X

2
t ⊕ ω2

t ) into smoothly ones BFt
(X1

t ⊕ ω1
t , X

2
t ⊕ ω2

t ).

Definition 3.3. A VBm,n-gauge-natural operator B in the sense of Definition 3.1 is
of order s if the following implication

(jsxF = jsxF̃ , j
s
xρ

1 = jsxρ̃
1, jsxρ

2 = jsxρ̃
2)⇒ BF (ρ1, ρ2)|Ex

= BF̃ (ρ̃1, ρ̃2)|Ex

holds for any F, F̃ ∈ ΓlE(
∧2

T ∗E) and any ρ1, ρ2, ρ̃1, ρ̃2 ∈ ΓlE(TE ⊕ T ∗E) and any
VBm,n-object E →M and any x ∈M .
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Definition 3.4. A VBm,n-gauge-natural operator B in the sense of Definition 3.1 is
admissible if

BF+dF ′ = BF (3.1)

for any linear 2-form F ∈ ΓlE(
∧2

T ∗E) and any linear 1-form F ′ ∈ ΓlE(T ∗E) and any
VBm,n-object E.

Remark 3.5. The restricted twisted Dorfman–Courant bracket

[[X1 ⊕ ω1, X2 ⊕ ω2]]dF := [X1, X2]⊕ (LX1ω2 − iX2dω1 + iX1iX2dF )

is an example of an admissible VBm,n-gauge-natural operator in the sense of
Definition 3.1

We are going to prove the following theorem.

Theorem 3.6. Let B be an admissible VBm,n-gauge-natural operator in the sense
of Definitions 3.1 and 3.4. Assume that m ≥ 3 and n ≥ 1. Then there exist uniquely
determined real numbers a, b1, b2, b3, b4, b5, b6, c1, c2, c3, c4 such that

BF (ρ1, ρ2) = a[X1, X2]⊕ {b1LX1ω2 + b2LX2ω1 + b3diX1ω2

+ b4diX2ω1 + b5LX1diLω
2 + b6LX2diLω

1

+ c1iX1iX2dF + c2iLiX2diX1dF

+ c3iLiX1diX2dF + c4iLdiX2iX1dF}

(3.2)

for any F ∈ ΓlE(
∧2

T ∗E) and any ρ1, ρ2 ∈ ΓlE(TE ⊕ T ∗E) and any VBm,n-object E,
where ρ1 = X1 ⊕ ω1 and ρ2 = X2 ⊕ ω2.

Proof. Operator B0, where 0 is the zero linear 2-form, can be treated as the
VBm,n-gauge-natural bilinear operator in the sense of Definition 2.1. Then B0 is
described in Theorem 2.4. So, replacing B by B −B0, we can assume B0 = 0.

By the VBm,n-invariance of B, such B is determined by the values

BF (X1 ⊕ ω1, X2 ⊕ ω2)e ∈ TeRm,n ⊕ T ∗e Rm,n (3.3)

for all F ∈ ΓlRm,n(
∧2

T ∗Rm,n) and all X1 ⊕ ω1, X2 ⊕ ω2 ∈ ΓlRm,n(TRm,n ⊕ T ∗Rm,n)
and all e = (e1, . . . , en) ∈ Rn = {0} ×Rn = Rm,n

0 .
By Corollary 19.9 of the non-linear Petree theorem in [7], we may assume

F,X1, X2, ω1, ω2 are polynomial of degree not more than r ∈ N. (3.4)

The proof of our Theorem 3.6 will be continued after proving several lemmas.

Lemma 3.7. The operator B is of order 2. The values BF (X1 ⊕ ω1, X2 ⊕ ω2)
are linear in F and independent of ω1 and ω2. Moreover, the vector field part
of BF (X1 ⊕ ω1, X2 ⊕ ω2) is zero.
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Proof. Given ρ1 = X1⊕ω1, ρ2 = X2⊕ω2, e = (e1, . . . , en) ∈ Rm,n
0 and F in question,

we can write

BF (ρ1, ρ2)e

=
(∑

ai
∂

∂xi e
+
∑

bk1
k e

k ∂

∂yk1
e

)
⊕
∑

(cikekdexi +
∑

fkdey
k),

(3.5)

where ai = ai(F,X1, X2, ω1, ω2) and bk1
k = bk1

k (F,X1, X2, ω1, ω2) and
cik = cik(F, X1, X2, ω1, ω2) and fk = fk(F,X1, X2, ω1, ω2) are the real numbers
depending smoothly on (F,X1, X2, ω1, ω2) and independent of e. Because of the
invariance of B with respect to (x1, . . . , xm, 1

t y
1, . . . , 1

t y
n) (preserving X1 and X2 (as

X1 and X2 are linear) and sending F into tF (as F is linear) and sending ω1 and ω2

into tω1 and tω2 (as ω1 and ω2 are linear)), we get the homogeneity conditions

ai(tF,X1, X2, tω1, tω2) = ai(F,X1, X2, ω1, ω2),
bk1
k (tF,X1, X2, tω1, tω2) = bk1

k (F,X1, X2, ω1, ω2),
cik(tF,X1, X2, tω1, tω2) = tcik(F,X1, X2, ω1, ω2),
fk(tF,X1, X2, tω1, tω2) = tfk(F,X1, X2, ω1, ω2).

(3.6)

Then, by the homogeneous function theorem and (3.4), cik and fk are linear in F and
independent of ω1 and ω2 because of the assumption C0 = 0. Moreover, ai and bk1

k

are independent of F , and they are zero because of the assumption C0 = 0. So, the
last two sentences of the lemma are complete.

It remains to prove the order part of the lemma. Let

ht =
(1
t
x1, . . . ,

1
t
xm, y1, . . . , yn

)
.

Then
(ht)∗F = a1(F )t+ . . .+ ar+2(F )tr+2,

t(ht)∗X1 = b0(X1) + . . .+ br+2(X1)tr+2,

t(ht)∗X2 = b0(X2) + . . .+ br+1(X2)tr+2.

(3.7)

The first above expression holds because of F is a linear 2-form. By the invariance of
B with respect to ht we have the homogeneous conditions

cik((ht)∗F, t(ht)∗X1, t(ht)∗X2) = t3cik(F,X1, X2) ,
fk((ht)∗F, t(ht)∗X1, t(ht)∗X2) = t2fk(F,X1, X2) .

(3.8)

Then the homogeneous function theorem and the assumption B0 = 0 complete
the order part of the lemma.

Given e ∈ Rn = {0} ×Rn = Rm,n
0 , let T ∗e (Rm ×Rn) = Rm∗ ×Rn∗ be the usual

identification. Let

B
〈1〉
F (X1, X2)e = the Rm∗-component of BF (X1 ⊕ 0, X2 ⊕ 0)e,

B
〈2〉
F (X1, X2)e = the Rn∗-component of BF (X1 ⊕ 0, X2 ⊕ 0)e.

(3.9)
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Lemma 3.8. If m ≥ 3, B is determined by the collection

B
〈1〉
y1dx1∧dx2

( ∂

∂xi
, yk

∂

∂yk1

)
e1
,

B
〈1〉
y1dx1∧dx2

(
yk

∂

∂yk1
,
∂

∂xi

)
e1
,

B
〈1〉
y1dx1∧dx2

( ∂

∂xi
, x3 ∂

∂xi1

)
e1
,

B
〈1〉
y1dx1∧dx2

(
x3 ∂

∂xi1
,
∂

∂xi

)
e1
,

B
〈2〉
y1dx1∧dx2

( ∂

∂xi
,
∂

∂xi1

)
e1

(3.10)

for all i, i1 = 1, . . . ,m and k, k1 = 1, . . . , n, where e1 = (1, 0, . . . , 0) ∈ Rn = Rm,n
0 .

Proof. By Lemma 3.7 and the assumption BdF ′ = B0 = 0 (a consequence of the
admissibility of B), we derive that B is determined by the collection

Bf1(x)dϕ(y)∧df2(x)(X1 ⊕ 0, X2 ⊕ 0)e,
Bf3(x)ϕ(y)df1(x)∧df2(x)(X1 ⊕ 0, X2 ⊕ 0)e,
Bϕ(y)df1(x)∧df2(x)(X1 ⊕ 0, X2 ⊕ 0)e

(3.11)

for all X1, X2 ∈ ΓlRm,n(TRm,n) and all e ∈ Rn = {0} ×Rn ⊂ Rm,n and all maps
f1, f2, f3 : Rm → R with f1(0) = f2(0) = f3(0) = 0 and all linear maps ϕ : Rm → R.
Of course, we can assume ϕ(e) = 1 and the rank of (d0f

1, d0f
2, d0f

3) is maximal.
Then, using the VBm,n-invariance of B, we can assume e = e1, ϕ = y1, f1 = x1,
f2 = x2, f3 = x3 (we use m ≥ 3). Further, using the invariance of B with respect to
(x1, . . . , xm, y1 + x3y1, . . . , yn)−1, we can see that the values

By1dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1

determine the values

B(y1+x3y1)∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 ,

and then they determine the values

Bx3y1dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 .

So, the values Bx3y1dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 may be omitted. Moreover, since

Bd(x1y1)∧dx2 = −Bd(x2d(x1y1)) = −B0 = 0

(because of the admissibility of B), then

Bx1dy1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 = −By1dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 .
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So, the values Bx1dy1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 may be omitted. So, B is determined by
the values

B
〈1〉
y1dx1∧dx2(X1, X2)e1 ,

B
〈2〉
y1dx1∧dx2(X1, X2)e1

(3.12)

for all α, β, γ, δ ∈ (N ∪ {0})m and i, i1 = 1, . . . ,m and j, k, j1, k1 = 1, . . . , n, where
(X1 = xα ∂

∂xi or X1 = xβyj ∂
∂yk ) and (X2 = xγ ∂

∂xi1 or X2 = xδyj1 ∂
∂yk1 ), where (of

course) xα := (x1)α1 . . . (xm)αm . We are going to study this collection (3.12).
(i) At first we study the case of B〈1〉y1dx1∧dx2(X1, X2)e1 . We can see that if

X1 = xα ∂
∂xi and X2 = xγ ∂

∂xi1 then by the invariance of B with respect to
ht := ( 1

tx
1, . . . , 1

tx
m, y1, . . . , yn), we get

t2+|α|+|γ|−2B
〈1〉
y1dx1∧dx2(X1, X2)e1 = tB

〈1〉
y1dx1∧dx2(X1, X2)e1 ,

and then B
〈1〉
y1dx1∧dx2(X1, X2)e1 = 0 if |α| + |γ| 6= 1. Similarly, if X1 = xα ∂

∂xi

and X2 = xδyj1 ∂
∂yk1 then B

〈1〉
y1dx1∧dx2(X1, X2)e1 = 0 if |α| + |δ| 6= 0. Similarly, if

X1 = xβyj ∂
∂yk and X2 = xγ ∂

∂xi1 , then B
〈1〉
y1dx1∧dx2(X1, X2)e1 = 0 if |β| + |γ| 6= 0.

Similarly, B〈1〉y1dx1∧dx2(X1, X2)e1 = 0 in the rest sub-case.
Further, we can see that the values

B
〈1〉
y1dx1∧dx2

( ∂

∂xi
, xi2

∂

∂xi1

)
e1

are determined by the values

B
〈1〉
y1df(x)∧dg(x))(X

1(x), h(x)X2(x))e1

for all “constant” vector fields X1 and X2 on Rm and all linear maps f, g, h : Rm → R.
Then (of course) we can assume that f , g, h are linearly independent (we use m ≥ 3).
Then, using the invariance of B with respect to (ϕ(x1, . . . , xm), y1, . . . , yn) for a linear
isomorphism ϕ : Rm → Rm, we can assume f = x1, g = x2 and h = x3. Because
of the bi-linearity of BF , we can else assume that X1 = ∂

∂xi and X2 = ∂
∂xi1 . Quite

similarly, one can proceed with

B
〈1〉
y1dx1∧dx2

(
xi2

∂

∂xi1
,
∂

∂xi

)
e1

instead of
B
〈1〉
y1dx1∧dx2

( ∂

∂xi
, xi2

∂

∂xi1

)
e1
.

(ii) Now, we pass to B〈2〉y1dx1∧dx2(X1, X2)e1 . If X1 = xα ∂
∂xi and X2 = xγ ∂

∂xi1 then
by the invariance of B with respect to ht we get

t2+|α|+|γ|−2B
〈2〉
y1dx1∧dx2(X1, X2)e1 = B

〈2〉
y1dx1∧dx2(X1, X2)e1 ,

and then B
〈2〉
y1dx1∧dx2(X1, X2)e1 = 0 if |α| + |γ| 6= 0. Quite similarly, we get that

B
〈2〉
y1dx1∧dx2(X1, X2)e1 = 0 in the rest three sub-cases.
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Lemma 3.9. All values B〈2〉y1dx1∧dx2( ∂
∂xi ,

∂
∂xi1 )e1 are zero except (eventually) of the

two ones. The exceptional values satisfy

B
〈2〉
y1dx1∧dx2

( ∂

∂x1 ,
∂

∂x2

)
e1

= ãde1y
1,

B
〈2〉
y1dx1∧dx2

( ∂

∂x2 ,
∂

∂x1

)
e1

= −ãde1y
1,

(3.13)

where ã is the real number (determined by B).

Proof. Let

B
〈2〉
y1dx1∧dx2

( ∂

∂xi
,
∂

∂xi1

)
e1

=
n∑

k=1
aii1kde1y

k,

where aii1k ∈ R are the real numbers. Then by the invariance of B with respect to
( 1
τ1x

1, . . . ,
1
τm

xm, y1, . . . , yn
)

we get τ1τ2 1
τ i

1
τ i1 aii1k = aii1k. So, aii1k = 0 if {i, i1} 6= {1, 2}. Further, by the

invariance of B with respect to (x1, . . . , xm, y1, 1
t y

2, . . . , 1
t y
n) we get a12k = ta12k for

k = 2, . . . , n. Then a12k = 0 for k = 2, . . . , n. Further, by the invariance of B with
respect to the replacing x1 by x2 (and vice-versa) we get a12k = −a21k for k = 1, . . . , n.
The lemma is complete.

Lemma 3.10. All values B〈1〉y1dx1∧dx2( ∂
∂xi , y

k ∂
∂yk1 )e1 are zero except (eventually) of

the two ones. The exceptional values satisfy

B
〈1〉
y1dx1∧dx2

( ∂

∂x1 , y
1 ∂

∂y1

)
e1

= c̃de1x
2

B
〈1〉
y1dx1∧dx2

( ∂

∂x2 , y
1 ∂

∂y1

)
e1

= −c̃de1x
1,

(3.14)

where c̃ is the real number (determined by B).

Proof. Let

B
〈1〉
y1dx1∧dx2

( ∂

∂xi
, yk

∂

∂yk1

)
e1

=
m∑

j=1
cikk1jde1x

j ,

where cikk1j are the real numbers. By the invariance of B with respect to
( 1
τ1x

1, . . . , 1
τmx

m, y1, . . . , yn) we get τ1τ2 1
τ i cikk1j = τ jcikk1j . Then cikk1j = 0 if

{i, j} 6= {1, 2}. Further, by the invariance of B with respect to replacing x1 by
x2 (and vice-versa) we get c1kk12 = −c2kk11. Further, by invariance of B with respect
to (x1, . . . , xm, 1

τ1 y
1, 1
τ2 y

2, . . . , 1
τn y

n) with τ1 = 1, we get τk 1
τk1 c1kk12 = c1kk12. Then

c1kk12 = 0 if k 6= k1. Further, if k ∈ {2, . . . , n}, there exists a VBm-map

ψ = (x1, . . . , xm, y1, ψ̃(x2, . . . , xm, y2 . . . , yn))
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sending ∂
∂x2 into ∂

∂x2 + yk ∂
∂yk . Then, using the invariance of B with respect to ψ, from

By1dx1∧dx2

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= 0⊕ ãde1y
1,

where ã is from Lemma 3.9, we get

By1dx1∧dx2

(
∂

∂x1 ⊕ 0,
( ∂

∂x2 + yk
∂

∂yk

)
⊕ 0
)

e1

= 0⊕ ãde1y
1.

(That B〈1〉y1dx1∧dx2( ∂
∂x1 ,

∂
∂x2 )e1 = 0, see the proof of Lemma 3.8.) Then

By1dx1∧dx2

( ∂

∂x1 ⊕ 0, yk ∂

∂yk
⊕ 0
)
e1

= 0⊕ 0

for k = 2, . . . , n. The lemma is complete.

Lemma 3.11. All values B〈1〉y1dx1∧dx2(yk ∂
∂yk1 ,

∂
∂xi )e1 are zero except (eventually) of

the two ones. The exceptional values satisfy

B
〈1〉
y1dx1∧dx2

(
y1 ∂

∂y1 ,
∂

∂x1

)
e1

= ẽde1x
2

B
〈1〉
y1dx1∧dx2

(
y1 ∂

∂y1 ,
∂

∂x2

)
e1

= −ẽde1x
1,

(3.15)

where ẽ is the real number (determined by B).

Proof. In fact, this lemma is Lemma 3.10 for Bop instead of B, where

Bop
F (X1 ⊕ ω1, X2 ⊕ ω2) := BF (X2 ⊕ ω2, X1 ⊕ ω1).

Lemma 3.12. Let m ≥ 3. All values B〈1〉y1dx1∧dx2( ∂
∂xi , x

3 ∂
∂xi1 )e1 are equal to zero

except (eventually) of the four ones. The exceptional values satisfy

B
〈1〉
y1dx1∧dx2

( ∂

∂x1 , x
3 ∂

∂x2

)
e1

= f̃de1x
3 ,

B
〈1〉
y1dx1∧dx2

( ∂

∂x2 , x
3 ∂

∂x1

)
e1

= −f̃de1x
3 ,

B
〈1〉
y1dx1∧dx2

( ∂

∂x3 , x
3 ∂

∂x2

)
e1

= g̃de1x
1 ,

B
〈1〉
y1dx1∧dx2

( ∂

∂x3 , x
3 ∂

∂x1

)
e1

= −g̃de1x
2 ,

(3.16)

where f̃ and g̃ are the real numbers (determined by B).

Proof. Let

B
〈1〉
y1dx1∧dx2

( ∂

∂xi
, x3 ∂

∂xi1

)
e1

=
m∑

j=1
qii1jde1x

j ,
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where qii1j ∈ R are the numbers. Then by the invariance of B with respect to
( 1
τ1x

1, . . . , 1
τmx

m, y1, . . . , yn) we get τ1τ2τ3 1
τ i

1
τ i1 qii1j = τ jqii1j . Then qii1j = 0 if

{i, i1, j} 6= {1, 2, 3}. Further, there exists a 0-preserving embedding ϕ : R → R
sending (the germ at 0 of) ∂

∂x into ∂
∂x +x ∂

∂x . Then, by the invariance of B with respect
to (x1, x2, ϕ(x3), . . . , xm, . . . , yn), from B

〈1〉
y1dx1∧dx2( ∂

∂x1 ,
∂
∂x3 )e1 = 0 we get

B
〈1〉
y1dx1∧dx2

( ∂

∂x1 ,
∂

∂x3 + x3 ∂

∂x3

)
e1

= 0,

and then B〈1〉y1dx1∧dx2( ∂
∂x1 , x

3 ∂
∂x3 )e1 = 0, i.e. q132 = 0. Then using the invariance of B

with respect to changing x1 by x2 (and vice-versa) we get that q231 = −q132 = 0 and
q321 = −q312 and q123 = −q213. We put f̃ := q123 and g̃ := q321.

Lemma 3.13. Let m ≥ 3. All values B〈1〉y1dx1∧dx2(x3 ∂
∂xi1 ,

∂
∂xi )e1 are zero except (even-

tually) of the four ones. The exceptional values satisfy

B
〈1〉
y1dx1∧dx2

(
x3 ∂

∂x2 ,
∂

∂x1

)
e1

= h̃de1x
3,

B
〈1〉
y1dx1∧dx2

(
x3 ∂

∂x1 ,
∂

∂x2

)
e1

= −h̃de1x
3,

B
〈1〉
y1dx1∧dx2

(
x3 ∂

∂x2 ,
∂

∂x3

)
e1

= k̃de1x
1,

B
〈1〉
y1dx1∧dx2

(
x3 ∂

∂x1 ,
∂

∂x3

)
e1

= −k̃de1x
2,

(3.17)

where h̃ and k̃ are the real numbers (determined by B).

Proof. In fact, this lemma is Lemma 3.12 for Bop instead of B.

Lemma 3.14. Let m ≥ 3. We have

f̃ = ã+ c̃ (3.18)

where ã is the real number from Lemma 3.9 and c̃ is the real number from Lemma
3.10 and f̃ is the number from Lemma 3.12.

Proof. Given τ > 0,

ψτ :=
(
x1,

x2

1 + τx3 , x
3, . . . , xm, . . . , yn

)

preserves e1 and ∂
∂x1 and sends y1dx1 ∧ dx2 into y1dx1 ∧ d(x2 + τx2x3) and

∂
∂x2 into 1

1+τx3
∂
∂x2 . On the other hand, by invariance of B with respect to

( 1
tx

1, , . . . , 1
tx
m, y1, . . . , yn), we can easily see that B〈1〉y1dx1∧dx2( ∂

∂x1 ⊕ 0, ∂
∂x2 ⊕ 0)e1 = 0.

Then, by the invariance of B with respect to ψτ , we get

B
〈1〉
y1dx1∧d(x2+τx2x3)

( ∂

∂x1 ,
1

1 + τx3
∂

∂x2

)
e1

= 0.
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Then by the order argument, we get

B
〈1〉
y1dx1∧d(x2+τx2x3)

( ∂

∂x1 , (1− τx
3 + τ2(x3)2) ∂

∂x2

)
e1

= 0.

Then, comparing the coefficients on τ of both sides of this equality, we get

B
〈1〉
y1dx1∧dx2

( ∂

∂x1 , x
3 ∂

∂x2

)
e1

= B
〈1〉
y1dx1∧d(x2x3)

( ∂

∂x1 ,
∂

∂x2

)
e1
. (3.19)

Further, by the invariance of B with respect to (x1, . . . , xm, 1
1+x3 y

1, y2, . . . , yn),
from

By1dx1∧dx2

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= 0⊕ ãde1y
1,

we get

B(y1+x3y1)dx1∧dx2

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= 0⊕ (ãde1y
1 + ãde1x

3),

and then
B
〈1〉
x3y1dx1∧dx2

( ∂

∂x1 ,
∂

∂x2

)
e1

= ãde1x
3, (3.20)

where ã is the number from Lemma 3.9.
Further, by invariance of B with respect to (x1, 1

tx
2, x3, . . . , xm, . . . , yn), we can

easily see that
By1dx1∧dx3

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= 0⊕ 0.

Then, by the invariance of B with respect to (x1, . . . , xm, 1
1+τx2 y

1, y2, . . . , yn), we get

B(y1+τx2y1)dx1∧dx3

(
∂

∂x1 ⊕ 0,
( ∂

∂x2 −
τ

1 + τx2 y
1 ∂

∂y1

)
⊕ 0
)

e1

= 0⊕ 0,

and then (by the order argument and comparing the coefficients on τ) we get

B
〈1〉
x2y1dx1∧dx3

( ∂

∂x1 ,
∂

∂x2

)
e1

= B
〈1〉
dy1∧dx1∧dx3

( ∂

∂x1 , y
1 ∂

∂y1

)
e1
,

Further, by the invariance of B with respect to (x1, x2 + x3, x3, . . . , xm, . . . , yn), from
the first equality of (3.14), we get

B
〈1〉
y1dx1∧(dx2−dx3)

( ∂

∂x1 , y
1 ∂

∂y1

)
e1

= c̃de1(x2 − x3),

and then B〈1〉y1dx1∧dx3( ∂
∂x1 , y

1 ∂
∂y1 )e1 = c̃de1x

3, where c̃ is the number from Lemma 3.10.
Then

B
〈1〉
x2y1dx1∧dx3

( ∂

∂x1 ,
∂

∂x2

)
e1

= c̃de1x
3. (3.21)
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Now, from (3.16) and (3.19) and (3.20) and (3.21), since

x3y1dx1 ∧ dx2 + x2y1dx1 ∧ dx3 = y1dx1 ∧ d(x2x3),

we get
f̃de1x

3 = B
〈1〉
y1dx1∧dx2

( ∂

∂x1 , x
3 ∂

∂x2

)
e1

= (ã+ c̃)de1x
3,

as well. The lemma is complete.

Lemma 3.15. Let m ≥ 3. We have

h̃ = −ã+ ẽ (3.22)

where ã is the real number from Lemma 3.9 and ẽ is the real number from Lemma 3.11
and h̃ is the number from Lemma 3.13.

Proof. In fact, this lemma is Lemma 3.14 for Bop instead of B.

Lemma 3.16. Let m ≥ 3. We have

f̃ + g̃ + k̃ + h̃ = 0 (3.23)

where f̃ and g̃ are the numbers from Lemma 3.12 and h̃ and k̃ are the numbers from
Lemma 3.13.

Proof. By the invariance of B with respect to (x1 + τx3, x2, . . . , xm, . . . , yn), from the
third equality of (3.16) we get

B
〈1〉
y1d(x1−τx3)∧dx2

( ∂

∂x3 + τ
∂

∂x1 , x
3 ∂

∂x2

)
e1

= g̃de1(x1 − τx3),

and then considering the coefficients on τ and using the first equation of (3.16) we
obtain

−B〈1〉y1dx3∧dx2

( ∂

∂x3 , x
3 ∂

∂x2

)
e1

+ f̃de1x
3 = −g̃de1x

3.

Then using (in particular) the invariance of B with replacing x3 by x1 (and vice-versa)
we get

B
〈1〉
y1dx1∧dx2

( ∂

∂x1 , x
1 ∂

∂x2

)
e1

= (g̃ + f̃)de1x
1. (3.24)

Quite similarly, using (3.17) instead of (3.16) we get

B
〈1〉
y1dx1∧dx2

(
x1 ∂

∂x2 ,
∂

∂x1

)
e1

= (k̃ + h̃)de1x
1. (3.25)

(In fact, the equality (3.25) is the equality (3.24) for Bop instead of B.)
Further, by invariance of B with respect to

(x1, x2 + τ(x1)2, x3, . . . , xm, . . . , yn),
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from B
〈1〉
y1dx1∧dx2( ∂

∂x1 ,
∂
∂x1 )e1 = 0, we get

B
〈1〉
y1dx1∧d(x2−τ(x1)2)

( ∂

∂x1 + 2τx1 ∂

∂x2 ,
∂

∂x1 + 2τx1 ∂

∂x2

)
e1

= 0,

and then considering the coefficients on τ we get

B
〈1〉
y1dx1∧dx2

( ∂

∂x1 , x
1 ∂

∂x2

)
e1

+B
〈1〉
y1dx1∧dx2

(
x1 ∂

∂x2 ,
∂

∂x1

)
e1

= 0. (3.26)

From (3.26) and (3.25) and (3.24) we obtain (3.23), as well. The lemma is complete.

We are now in position to complete the proof of Theorem 3.6. By Lemmas 3.7–3.16,
any admissible VBm,n-gauge-natural operator B with B0 = 0 is uniquely determined by
the corresponding 4-tuple (ã, c̃, g̃, k̃). Further, one can easily directly compute the corre-
sponding 4-tuples of VBm,n-gauge natural operators iX1iX2dF and iLiX2diX1dF and
iLiX1diX2dF and iLdiX2iX1dF . They are (−1, 1, 0, 0) and (0, 0, 0, 1) and (0,−1, 1, 0)
and (0,−1, 0, 0), respectively. The determinant of the matrix of the above vectors
is −1. So, the dimension argument complete the proof of our Theorem 3.6.

4. THE TWISTED DORFMAN–COURANT LIKE BRACKETS

Definition 4.1. A VBm,n-gauge-natural operator

C : Γl−clos(
3∧
T ∗) Lin2(Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗),Γl(T ⊕ T ∗))

sending closed linear 3-forms H ∈ Γl−clos
E (

∧3
T ∗E) on VBm,n-objects E into R-bilinear

operators

CH : ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)→ ΓlE(TE ⊕ T ∗E)

is a VBm,n-invariant family of regular operators (functions)

C : Γl−clos
E (

3∧
T ∗E)→ Lin2(ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E),ΓlE(TE ⊕ T ∗E))

for all VBm,n-objects E.

Remark 4.2. The twisted Dorfman–Courant bracket

[[X1 ⊕ ω1, X2 ⊕ ω2]]H := [X1, X2]⊕ (LX1ω2 − iX2dω1 + iX1iX2H)

is an example of a VBm,n-gauge-natural operator in the sense of Definition 4.1.

The main result of this paper is the following:
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Theorem 4.3. Let C be a VBm,n-gauge-natural operator in the sense of Definition 4.1.
Assume that m ≥ 3 and n ≥ 1. Then there exist uniquely determined real numbers
a, b1, b2, b3, b4, b5, b6, c1, c2, c3, c4 such that

CH(ρ1, ρ2) = a[X1, X2]⊕
{
b1LX1ω2 + b2LX2ω1 + b3diX1ω2

+ b4diX2ω1 + b5LX1diLω
2 + b6LX2diLω

1

+ c1iX1iX2H + c2iLiX2diX1H

+ c3iLiX1diX2H + c4iLdiX2iX1H
}

(4.1)

for any H ∈ Γl−clos
E (

∧3
T ∗E) and any ρ1, ρ2 ∈ ΓlE(TE ⊕ T ∗E) and any VBm,n-object

E, where ρ1 = X1 ⊕ ω1 and ρ2 = X2 ⊕ ω2.

Proof. Using C, we define

B : Γl(
2∧
T ∗) L2

(
Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗),Γl(T ⊕ T ∗)

)

by BF := CdF . Clearly, B is admissible. So, by Theorem 3.6, there exist uniquely
determined real numbers a, b1, b2, b3, b4, b5, b6, c1, c2, c3, c4 such that we have (4.1) for
any exact linear 3-form H ∈ Γl−clos

E (
∧3

T ∗E) and any ρ1, ρ2 ∈ ΓlE(TE ⊕ T ∗E) and
any VBm,n-object E, where ρ1 = X1 ⊕ ω1 and ρ2 = X2 ⊕ ω2. Then, since C is (in
particular) local, we can write “closed” instead of “exact” because of the Poincaré
lemma. The theorem is complete.

5. THE TWISTED DORFMAN–COURANT LIKE BRACKETS
SATISFYING THE JACOBI IDENTITY IN LEIBNIZ FORM

Let C be a VBm,n-gauge-natural operator in the sense of Definition 4.1.

Definition 5.1. We say that C satisfies the Jacobi identity in Leibniz form if

CH(ρ1, CH(ρ2, ρ3)) = CH(CH(ρ1, ρ2), ρ3) + CH(ρ2, CH(ρ1, ρ3)) (5.1)

for all H ∈ Γl−clos
E (

∧3
T ∗E) and all linear sections ρi = Xi ⊕ ωi ∈ ΓlE(TE ⊕ T ∗E) for

i = 1, 2, 3 and all VBm,n-objects E.

Remark 5.2. It is well-known that the twisted Dorfman Courant bracket from
Remark 4.2 satisfies the Jacobi identity in Leibniz form.

Lemma 5.3. Let C be a VBm,n-gauge-natural operator in the sense of Definition 4.1
of the form

CH(X1 ⊕ ω1, X2 ⊕ ω2) = a[X1, X2]⊕ {b1LX1ω2 + b2LX2ω1

+ b3diX1ω2 + b4diX2ω1

+ b5LX1diLω
2 + b6LX2diLω

1

+ c1iX1iX2H}

(5.2)
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for any H ∈ Γl−clos
E (

∧3
T ∗E) and any X1 ⊕ ω1, X2 ⊕ ω2 ∈ ΓlE(TE ⊕ T ∗E) and any

VBm,n-object E, where a, b1, b2, b3, b4, b5, b6, c1 are real numbers. (It means, we assume
that c2 = c3 = c4 = 0.) If C satisfies the Jacobi identity in Leibniz form, then the
following conditions (a) and (b) are satisfied:

(a) The 7-tuple (a, b1, b2, b3, b4, b5, b6) is from the following list of 7-tuples:

(c, 0, 0, 0, 0, c, 0), (c, 0, 0, 0, 0, c,−c),
(c, c, 0, 0, 0,−c, 0), (c, c,−c, 0, 0,−c, c),
(c, 0, 0, 0, 0, 0, 0), (c, c, 0, 0, 0, 0, 0),
(c, c, 0, 0, 0, 0,−c), (c, c,−c, 0, 0, 0, 0),
(c, c,−c, 0, c− λ, 0, λ), (0, 0, 0, λ, µ,−λ,−µ),

(5.3)

where c, λ, µ are arbitrary real numbers with c 6= 0;
(b) It holds

b1c1LX1iX2iX3H + b3c1diX1iX2iX3H

+ b5c1LX1diLiX2iX3H + ac1iX1i[X2,X3]H

= b2c1LX3iX1iX2H + b4c1diX3iX1iX2H

+ b6c1LX3diLiX1iX2H + ac1i[X1,X2]iX3H

+ b1c1LX2iX1iX3H + b3c1diX2iX1iX3H

+ b5c1LX2diLiX1iX3H + ac1iX2i[X1,X3]H

(5.4)

for any linear vector fields X1, X2, X3 and any closed linear 3-form H on Rm,n.

Proof. If C satisfies the Jacobi identity in Leibniz form, then C0 satisfies the Jacobi
identity in Leibniz form. Then we have the condition (a) because of Theorem 2.4.
Further, for any linear vector fields X1, X2, X3 on Rm,n and any closed linear 3-form
H on Rm,n, we can write

CH(X1 ⊕ 0, CH(X2 ⊕ 0, X3 ⊕ 0)) = a2[X1, [X2, X3]]⊕ Ω,
CH(CH(X1 ⊕ 0, X2 ⊕ 0), X3 ⊕ 0) = a2[[X1, X2], X3]⊕Θ,
CH(X2 ⊕ 0, CH(X1 ⊕ 0, X3 ⊕ 0)) = a2[X2, [X1, X3]]⊕ T ,

where

Ω = b1LX1{c1iX2iX3H}+ b3diX1{c1iX2iX3H}
+ b5LX1diL{c1iX2iX3H}+ c1iX1ia[X2,X3]H,

Θ = b2LX3{c1iX1iX2H}+ b4diX3{c1iX1iX2H}
+ b6LX3diL{c1iX1iX2H}+ c1ia[X1,X2]iX3H,

T = b1LX2{c1iX1iX3H}+ b3diX2{c1iX1iX3H}
+ b5LX2diL{c1iX1iX3H}+ c1iX2ia[X1,X3]H,

From the Jacobi identity in Leibniz form of C it follows Ω = Θ + T , i.e. (5.4).
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Theorem 5.4. Let m ≥ 2 and n ≥ 1. Let C be a VBm,n-gauge-natural operator
in the sense of Definition 4.1 of the form (5.2) for any H ∈ Γl−clos

E (
∧3

T ∗E)
and any X1 ⊕ ω1, X2 ⊕ ω2 ∈ ΓlE(TE ⊕ T ∗E) and any VBm,n-object E, where
a, b1, b2, b3, b4, b5, b6, c1 are real numbers. (It means, we assume that c2 = c3 = c4 = 0.)
Then C satisfies the Jacobi identity in Leibniz form if and only if the 8-tuple
(a, b1, b2, b3, b4, b5, b6, c1) is from the following list of 8-tuples:

(c, 0, 0, 0, 0, c, 0, 0), (c, 0, 0, 0, 0, c,−c, 0),
(c, c, 0, 0, 0,−c, 0, 0), (c, c,−c, 0, 0,−c, c, 0),
(c, 0, 0, 0, 0, 0, 0, 0), (c, c, 0, 0, 0, 0, 0, 0),
(c, c, 0, 0, 0, 0,−c, 0), (c, c,−c, 0, 0, 0, 0, 0),
(c, c,−c, 0, c− λ, 0, λ, 0), (0, 0, 0, λ, µ,−λ,−µ, 0),
(c, c,−c, 0, c, 0, 0, ν), (0, 0, 0, 0, 0, 0, 0, ν),

(5.5)

where c, λ, µ, ν are arbitrary real numbers with c 6= 0 and ν 6= 0.

Proof. At first we prove the implication ⇒. For, assume that C in question satisfies
the Jacobi identity in Leibniz form. We will study the 8-tuple (a, b1, b2, b3, b4, b5, b6, c1)
of C. This 8-tuple satisfies Lemma 5.3. So, the 7-tuple (a, b1, b2, b3, b4, b5, b6) obtained
by restriction from our 8-tuple is from the list (5.3). More, we have (5.4).

Putting (linear vector fields) X1 = ∂
∂x1 and X2 = ∂

∂x2 and X3 = y1 ∂
∂y1 and (closed

linear 3-form) H = x1dy1 ∧ dx1 ∧ dx2 into (5.4), we get

− b1c1y
1dx1 − b3c1d(x1y1) + 0 + 0

= −b2c1x
1dy1 − b4c1d(x1y1)− b6c1d(x1y1) + 0 + 0 + b3c1d(x1y1) + 0 + 0,

i.e.

− b1c
1
1y

1dx1 − b3c1d(x1y1)
= −b2c1x

1dy1 − b4c1d(x1y1)− b6c1d(x1y1) + b3c1d(x1y1).
(5.6)

Let us consider several cases.
(I) Let (a, b1, b2, b3, b4, b5, b6) = (c, c, 0, 0, 0,−c, 0), c 6= 0. Then from (5.6) we get

−cc1y
1dx1 − 0 = −0− 0− 0− 0 + 0.

Then cc1 = 0. Then c1 = 0.
(II) Let (a, b1, b2, b3, b4, b5, b6) = (c, c, 0, 0, 0, 0, 0), c 6= 0. Then from (5.6) we get

−cc1y
1dx1 − 0 = −0− 0− 0 + 0.

Then cc1 = 0. Then c1 = 0.
(III) Let (a, b1, b2, b3, b4, b5, b6) = (c, c,−c, 0, 0, 0, 0), c 6= 0. Then from (5.6) we get

−cc1y
1dx1 − 0 = cc1x

1dy1 − 0− 0 + 0.
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Then cc1 = 0. Then c1 = 0.
(IV) Let (a, b1, b2, b3, b4, b5, b6) = (c, c, 0, 0, 0, 0,−c), c 6= 0. Then from (5.6) we get

−cc1y
1dx1 − 0 = −0− 0 + cc1d(x1y1) + 0.

Then cc1 = 0. Then c1 = 0.
(V) Let (a, b1, b2, b3, b4, b5, b6) = (c, 0, 0, 0, 0, c,−c), c 6= 0. Then from (5.6) we get

−0− 0 = −0− 0 + cc1d(x1y1) + 0.

Then cc1 = 0. Then c1 = 0.
Similarly, putting (linear vector fields) X1 = ∂

∂x1 and X2 = ∂
∂x2 and X3 = x2 ∂

∂x2

and (closed linear 3-form) H = dy1 ∧ dx1 ∧ dx2 into (5.4), we obtain

0 + 0 + 0− ac1dy
1 = 0 + 0 + 0 + 0− b1c1dy

1 + 0− b5c1dy
1 + 0,

i.e.
−ac1dy

1 = −b1c1dy
1 − b5c1dy

1 (5.7)

Let us consider next cases.
(VI) Let (a, b1, b2, b3, b4, b5, b6) = (c, 0, 0, 0, 0, 0, 0), c 6= 0. Then from (5.7) we get

cc1dy
1 = −0− 0.

Then cc1 = 0. Then c1 = 0.
(VII) Let (a, b1, b2, b3, b4, b5, b6) = (c, c,−c, 0, 0,−c, c), c 6= 0. Then from (5.7) we

get
cc1dy

1 = −cc1dy
1 + cc1dy

1.

Then cc1 = 0. Then c1 = 0.
Similarly, putting (linear vector fields) X1 = ∂

∂x1 and X2 = L (the Euler vector
field) and X3 = ∂

∂x2 and (closed linear 3-form) H = dx2 ∧ dx1 ∧ dy1 into (5.4), we
obtain

0− b3c1dy
1 + 0 + 0 = 0− b4c1dy

1 + 0 + 0 + b1c1dy
1 + b3c1dy

1 + b5c1dy
1 + 0,

i.e.
−b3c1dy

1 = −b4c1dy
1 + b1c1dy

1 + b3c1dy
1 + b5c1dy

1. (5.8)

Let us consider next cases.
(VIII) Let (a, b1, b2, b3, b4, b5, b6) = (0, 0, 0, λ, µ,−λ,−µ). Assume λ 6= 0 or µ 6= 0.

From (5.7), we get
−0 = −0 + λc1dy

1,

i.e. λc1 = 0. Moreover, from (5.8), we get

−λc1dy
1 = −µc1dy

1 + 0 + λc1dy
1 − λc1dy

1,

i.e. (λ− µ)c1 = 0. Consequently, c1 = 0.
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(IX) Let (a, b1, b2, b3, b4, b5, b6) = (c, 0, 0, 0, 0, c, 0), c 6= 0. Then from (5.8) we get

0 = 0 + 0 + 0 + cc1dy
1.

Then cc1 = 0. Then c1 = 0.
(X) Let (a, b1, b2, b3, b4, b5, b6) = (c, c,−c, 0, c − λ, 0, λ), c 6= 0, λ 6= 0. Then from

(5.8) we get
0 = −(c− λ)c1dy

1 + cc1dy
1 + 0 + 0.

Then λc1 = 0. Then c1 = 0.
So, we have considered all possibilities for the 7-tuple (a, b1, b2, b3, b4, b5, b6). Hence

we have proved that the 8-tuple (a, b1, b2, b3, b4, b5, b6, c1) is from the list presented in
the theorem, i.e. the implication ⇒ is complete.

Conversely, if (a, b1, b2, b3, b4, b5, b6, c1) is from the list of the theorem and c1 = 0,
then the corresponding operator C is independent of H, and then C satisfies the
Jacobi identity in Leibniz form because of Theorem 2.4. If c1 6= 0 and a 6= 0, then
C is “proportional” to the twisted Dorfman–Courant bracket, i.e. satisfies (as it is
well-known) the Jacobi identity in Leibniz form for closed linear 3-forms. Then putting
a→ 0, we complete the case (0, 0, 0, 0, 0, 0, 0, c1), too. Theorem 5.4 is complete.
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