
Opuscula Math. 40, no. 5 (2020), 537–548
https://doi.org/10.7494/OpMath.2020.40.5.537 Opuscula Mathematica

EXISTENCE RESULTS
FOR A SUBLINEAR SECOND ORDER

DIRICHLET BOUNDARY VALUE PROBLEM
ON THE HALF-LINE

Dahmane Bouafia and Toufik Moussaoui

Communicated by Binlin Zhang

Abstract. In this paper we study the existence of nontrivial solutions for a boundary value
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1. INTRODUCTION

We consider the problem
{
−(p(x)u′(x))′ = λq(x)f(x, u(x)), x ∈ [0,+∞),
u(0) = u(+∞) = 0,

(1.1)

where f : [0,+∞)× R −→ R is a continuous function and λ is a positive parameter.
Boundary value problems with Dirichlet conditions are an area of the fast developing

differential equations theory. Problems of this type arise in various fields of physics,
biology, biotechnology etc. Thus, existence and multiplicity of solutions to boundary
value problems on the half-line were studied by many authors. These results were
obtained using upper and lower solution techniques, fixed point theory and topological
degree theory, see for example, [6–9,14] and [13,16,18,19]. However, as far as we know,
the study of solutions for second order boundary value problems, possibly singular
on the infinite intervals via variational methods has received considerably less attention.
For example, see [5] and [1, 2, 4, 12, 15]. We are interested here in the existence of
solutions for a second order boundary value problem with the Sturm–Liouville operator
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on the half-line. We take as a model a Dirichlet problem. Our results are obtained by
applying Ekeland’s variational principle technique, and under sublinear condition of
the nonlinearity f ∈ C([0,+∞)×R;R), with a positive parameter, the weighted q has
a constant sign on the whole half-line, with q > 0 for x ≥ 0. We give some new criteria
to guarantee that the problem (1.1) has at least one classical solution. Moreover,
we assume that the following conditions are satisfied:

(H1) there exist constants a, b ∈ R+ \ {0} and r ∈ (0, 1) such that

∀x ∈ R+∀u ∈ R : |f(x, u)| ≤ a|u|r + b,

(H2) p : [0,+∞) −→ (0,+∞) is continuously differentiable, q : [0,+∞) −→ (0,+∞)
with 1

p , q ∈ L1(0,+∞), and

M1 =




+∞∫

0

( +∞∫

x

ds

p(s)

)
dx




1
r+1

< +∞,

M2 =




+∞∫

0

q(x)
( +∞∫

x

ds

p(s)

) r+1
2
dx




1
r+1

< +∞,

(H3) f(x, 0) = 0 and lim
u→0+

f(x,u)
ur = +∞, uniformly for x ∈ [0,+∞).

Let the space H1
0,p(0,+∞) defined by

H1
0,p(0,+∞) =

{
u ∈ AC([0,+∞),R) : √pu′ ∈ L2(0,+∞), u(0) = u(+∞) = 0

}

be endowed with its natural norm

‖u‖p =




+∞∫

0

u2(x)dx+
+∞∫

0

p(x)u′2(x)dx




1
2

.

H1
0,p(0,+∞) is a Hilbert space with the following inner product

∀u, v ∈ H1
0,p(0,+∞) : (u, v) =

+∞∫

0

u(x)v(x)dx+
+∞∫

0

p(x)u′(x)v′(x)dx.

We define the weighted Lebesgue space

Lr+1
q (0,+∞) =



u : (0,+∞)→ R

∣∣∣u is measurable and
+∞∫

0

q(x)|u(x)|r+1dx < +∞




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equipped with the usual norm

‖u‖r+1,q =




+∞∫

0

q(x)|u(x)|r+1dx




1
r+1

.

Consider also the space

C0[0,+∞) =
{
u ∈ C([0,+∞),R) : lim

x→+∞
u(x) = 0

}

endowed with the norm

‖u‖∞ = sup
x∈[0,+∞)

|u(x)|.

In our considerations we shall need the following corollary and lemmas.

Lemma 1.1 ([5]). On H1
0,p(0,+∞) the quantity ‖u‖ =

( ∫ +∞
0 p(x)u′2(x)dx

) 1
2

is a norm which is equivalent to the norm ‖u‖p, i.e.

∀u ∈ H1
0,p(0,+∞) : ‖u‖ ≤ ‖u‖p ≤

√
1 +M1‖u‖.

Lemma 1.2 ([5]). H1
0,p(0,+∞) is a reflexive Banach space.

Lemma 1.3 ([5]). H1
0,p(0,+∞) embeds continuously in C0[0,+∞) with

‖u‖∞ ≤
√∥∥∥1

p

∥∥∥
L1
‖u‖.

Corollary 1.4 ([5]). H1
0,p(0,+∞) is compactly embedded in C0[0,+∞).

Further we will also use the following lemmas and corollaries.

Lemma 1.5. C0[0,+∞) is continuously embedded in Lr+1
q (0,+∞).

Proof. For any u ∈ C0[0,+∞), we have

‖u‖r+1
r+1,q =

+∞∫

0

q(x)|u(x)|r+1dx ≤ sup
x∈[0,+∞)

|u(x)|r+1
+∞∫

0

q(x)dx.

Consequently, we obtain ‖u‖r+1,q ≤ C‖u‖∞, where C = ‖q‖
1
r+1
L1 .
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Lemma 1.6. H1
0,p(0,+∞) embeds continuously in Lr+1

q [0,+∞).
Proof. For all u ∈ H1

0,p(0,+∞), we get

|u(x)|r+1 =
∣∣∣u(+∞)− u(x)

∣∣∣
r+1

=
∣∣∣∣∣

+∞∫

x

u′(s)ds
∣∣∣∣∣

r+1

=
∣∣∣∣∣

+∞∫

x

√
p(s)u′(s) 1√

p(s)
ds

∣∣∣∣∣

r+1

≤




+∞∫

x

p(s)u′2(s)ds




r+1
2



+∞∫

x

1
p(s)ds




r+1
2

.

Therefore, we obtain

+∞∫

0

q(x)|u(x)|r+1dx ≤




+∞∫

0

p(s)u′2(s)ds




r+1
2



+∞∫

0

q(x)
( +∞∫

x

1
p(s)ds

) r+1
2
dx


 .

Thus, we have
‖u‖r+1,q ≤M2‖u‖

which finishes the proof.

Corollary 1.7. H1
0,p(0,+∞) is compactly embedded in Lr+1

q (0,+∞), namely

H1
0,p ↪→↪→ C0 ↪→ Lr+1

q .

We are now concerned in the principal eigenvalue λ1 of the nonlinear problem
{
−(p(x)u′(x))′ = λq(x)|u(x)|r, x ≥ 0,
u(0) = u(+∞) = 0,

(1.2)

namely

λ1 = inf





+∞∫

0

p(x)u′(x)2dx : u ∈ H1
0,p \ {0},

+∞∫

0

q(x)|u(x)|r+1dx = 1



 .

Arguing as in [17, Proposition 3.2], one can easily establish the following lemma.
Lemma 1.8. The value λ1 is positive and is achieved for some positive function
ϕ1 ∈ H1

0,p(0,+∞) \ {0}.
We need the following technique to prove our main result.

Theorem 1.9 (The weak Ekeland variational principle, [10]). Let (E, d) be a complete
metric space and let J : E → R a functional that is lower semi-continuous, bounded
from below. Then, for each ε > 0, there exists uε ∈ E with

J(uε) ≤ inf
E
J + ε,

and whenever w ∈ E with w 6= uε, then

J(uε) < J(w) + εd(uε, w).
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2. MAIN RESULT

To get the existence of solutions of problem (1.1), we consider the energy functional
J : H1

0,p(0,+∞)→ R defined by

J(u) = 1
2‖u‖

2 − λ
+∞∫

0

q(x)F (x, u(x))dx, u ∈ H1
0,p(0,+∞),

where F denotes the primitive of f with respect to its second variable, i.e.
F (x, u) =

∫ u
0 f(x, s)ds.

Proposition 2.1. Suppose that the conditions (H1), (H2) hold. Then the functional
J is Fréchet differentiable on H1

0,p(0,+∞). Moreover, one has

∀v ∈ H1
0,p(0,+∞) : 〈J ′(u), v〉 =

+∞∫

0

p(x)u′(x)v′(x)dx− λ
+∞∫

0

q(x)f(x, u(x))v(x)dx.

Proof. First we show that J is Gâteaux-differentiable. Indeed, for all v ∈ H1
0,p(0,+∞)

and for each t > 0, we have

J(u+ tv)− J(u) = 1
2

+∞∫

0

p(x)((u′ + tv′)(x))2dx− λ
+∞∫

0

q(x)F (x, (u+ tv)(x))dx

− 1
2

+∞∫

0

p(x)u′2(x)dx+ λ

+∞∫

0

q(x)F (x, u(x))dx

= t2

2

+∞∫

0

p(x)v′2(x)dx+ t

+∞∫

0

p(x)u′(x)v′(x)dx

− λ
+∞∫

0

q(x)
[
F (x, (u+ tv)(x))− F (x, u(x))

]
dx

= t2

2

+∞∫

0

p(x)v′2(x)dx+ t

+∞∫

0

p(x)u′(x)v′(x)dx

− tλ
+∞∫

0

q(x)f(x, (u+ tθv)(x))v(x)dx,

where 0 < θ < 1.
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Then

1
t
[J(u+ tv)− J(u)] = t

2

+∞∫

0

p(x)v′2(x)dx+
+∞∫

0

p(x)u′(x)v′(x)dx

− λ
+∞∫

0

q(x)f(x, (u+ tθv)(x))v(x)dx.

Let t → 0, then, by using the Lebesgue dominated convergence theorem and (H1),
we have

∀v ∈ H1
0,p(0,+∞) : 〈J ′(u), v〉 =

+∞∫

0

p(x)u′(x)v′(x)dx− λ
+∞∫

0

q(x)f(x, u(x))v(x)dx.

Next, we show that J ′ is continuous. Indeed, let (un) ⊂ H1
0,p(0,+∞) with un → u when

n → +∞. Then there exists R > 0 such that ‖un‖ ≤ R for all n ∈ N. Furthermore,
from (H1), (H2) and Lemma 1.3 we derive that

q(x)|f(x, un(x))| ≤ aq(x)|un(x)|r + bq(x)
≤ a sup

x∈[0,+∞)
|un(x)|rq(x) + bq(x)

= (a‖un‖r∞ + b)q(x)

≤
(
a

(
(R
√
‖1
p
‖L1

)r
+ b

)
q(x) ∈ L1(0,+∞).

Consequently, according to the Lebesgue dominated convergence theorem, we obtain

lim
n→+∞

+∞∫

0

q(x)f(x, un(x))dx =
+∞∫

0

q(x)f(x, u(x))dx.

So, we have

〈J ′(un)− J ′(u), v〉 =
+∞∫

0

p(x)u′n(x)v′(x)dx− λ
+∞∫

0

q(x)f(x, un(x))v(x)dx

−
+∞∫

0

p(x)u′(x)v′(x)dx+ λ

+∞∫

0

q(x)f(x, u(x))v(x)dx

=
+∞∫

0

p(x)(u′n(x)− u′(x))v′(x)dx

− λ
+∞∫

0

q(x)(f(x, un(x))− f(x, u(x)))v(x)dx.
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Passing to the limit in 〈J ′(un)− J ′(u), v〉, when n→ +∞, and taking into account
that f is continuous, we obtain J ′(un)→ J ′(u) as n→ +∞.

Definition 2.2. We say that u ∈ H1
0,p(0,+∞) is a weak solution of problem (1.1)

if for every v ∈ H1
0,p(0,+∞) we have

〈J ′(u), v〉 =
+∞∫

0

p(x)u′(x)v′(x)dx− λ
+∞∫

0

q(x)f(x, u(x))v(x)dx = 0.

Remark 2.3. Since the nonlinear term f is continuous, then a weak solution of
problem (1.1) is a classical solution.

Our main result is as follows.

Theorem 2.4. Assume (H1)–(H3) hold. Then there exists λ > 0 such that problem
(1.1) has at least one nontrivial solution uλ for each λ ∈ (0, λ).

Proof. From (H1) there exists δ1 > 0 such that

|F (x, u)| ≤ a 1
r + 1 |u|

r+1 + b|u| ≤ K|u|r+1 for all |u| > δ1, for some K > 0.

Also, from (H1), there exists M3 > 0 such that

|F (x, u)| ≤M3 for all u ∈ [−δ1, δ1] and all x ∈ (0,+∞).

Therefore,

|F (x, u)| ≤M3 +K|u|r+1 for all u ∈ R and all x ∈ [0,+∞). (2.1)

From (2.1) and (H2) and by using the continuous embedding of H1
0,p(0,+∞) in

Lr+1
q (0,+∞) (i.e. note that ‖u‖r+1,q ≤M2‖u‖) we get

J(u) = 1
2‖u‖

2 − λ
+∞∫

0

q(x)F (x, u(x))dx

≥ 1
2‖u‖

2 − λ
+∞∫

0

q(x)
(
M3 +K|u|r+1(x)

)
dx

≥ 1
2‖u‖

2 − λM3

+∞∫

0

q(x)dx− λK
+∞∫

0

q(x)|u|r+1(x)dx

= 1
2‖u‖

2 − λM3

+∞∫

0

q(x)dx− λK‖u‖r+1
r+1,q

≥ 1
2‖u‖

2 − λKMr+1
2 ‖u‖r+1 − λM3‖q‖L1 .
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Fix large enough R > 0. Then for u ∈ H1
0,p(0,+∞) such that ‖u‖ ≥ R we have

J(u) ≥ 1
2‖u‖

2 − λ
(
KMr+1

2 ‖u‖r+1 +M3‖q‖L1

)
.

Note that if λ < λ := R2

2(KMr+1
2 Rr+1+M3‖q‖L1 ) , this gives the existence of a real number

ρ > R satisfying

J(u) > 0 if ‖u‖ = ρ, and inf
u∈∂Bρ(0)

J(u) > 0, (2.2)

and
J(u) ≥ −C if ‖u‖ ≤ ρ, for some C > 0.

Since J is a Fréchet differentiable functional, hence it is lower semicontinuous and
bounded from below on Bρ(0). We claim that

inf
u∈Bρ(0)

J(u) < 0. (2.3)

Indeed, let ϕ1 ∈ H1
0,p(0,+∞) be the eigenfunction corresponding to the principal

eigenvalue of problem (1.2) as described in Lemma 1.8. Then for any fixed λ in
(
0, λ
)
,

by (H3), for any D,

D >
t1−r‖ϕ1‖2

2λ‖ϕ1‖r+1
r+1,q

, (2.4)

there exists 0 < εD < 1 such that

f(x, u) ≥ Dur for 0 < u < εD.

Note that since 0 < u < 1, therefore

f(x, u) ≥ Dur implies F (x, u) ≥ Dur+1. (2.5)

Since the function ϕ1 is continuous on [0,+∞) and ϕ1(0) = ϕ1(+∞) = 0, there exists
ĉ > 0 such that supx∈[0,+∞) ϕ1(x) ≤ ĉ. Thus, for every 0 < t < 1/ĉ (t near 0), owing
to (2.4), (2.5) and Lemma 1.8 we have

J(tϕ1) = t2

2 ‖ϕ1‖2 − λ
+∞∫

0

q(x)F (x, tϕ1(x))dx

≤ t2

2 ‖ϕ1‖2 − λDtr+1
+∞∫

0

q(x)ϕr+1
1 (x)dx

= t2

2 ‖ϕ1‖2 − λDtr+1‖ϕ1‖r+1
r+1,q < 0.

So (2.3) is proved.
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From (2.2) together with (2.3) we obtain

inf
u∈Bρ(0)

J(u) < 0 < inf
u∈∂Bρ(0)

J(u).

We define a distance on Bρ(0) as follows:

d(u, v) = ‖u− v‖ for u, v ∈ Bρ(0).

Clearly, Bρ(0) is a complete metric space. It is known that J ∈ C1(Bρ(0),R), therefore
J is lower semicontinuous and bounded from below on Bρ(0). We put

cλ = inf{J(u) : u ∈ Bρ(0)}.

By the Ekeland variational principle (see Theorem 1.9) in Bρ(0), there is a minimizing
sequence (un) ⊂ Bρ(0) for all n ∈ N \ {0} such that

cλ < J(un) ≤ inf
u∈Bρ(0)

J(u) + 1
n
≤ cλ + 1

n
, (2.6)

∀w ∈ Bρ(0) : J(un) ≤ J(w) + 1
n
‖w − un‖. (2.7)

If we put w = un + th in (2.7) for t > 0, h ∈ H1
0,p(0,+∞) and n ∈ N \ {0}, then

we get J(un) ≤ J(un + th) + 1
n t‖h‖. Thus, we have

1
t
[J(un)− J(un + th)] < 1

n
‖h‖,

and taking into account that J is a Fréchet differentiable functional we see that

−〈J ′(un), h〉 ≤ 1
n
‖h‖ for all n ∈ N \ {0},

Similarly, if we put w = un − th, then we get

〈J ′(un), h〉 ≤ 1
n
‖h‖ for all n ∈ N \ {0}.

So
sup
‖h‖≤1

|〈J ′(un), h〉| ≤ 1
n

for all n ∈ N \ {0}.

Therefore, we have

‖J ′(un)‖ → 0 and J(un)→ cλ as n→ +∞,

where cλ stands for the infimum of J(u) on Bρ(0). From the above discussion, we know
that (un) is a bounded (P.S)cλ sequence (see [11, Definition 2.3]), and Bρ(0) is a closed
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convex set, and from Corollary 1.7, then there exist uλ ∈ Bρ(0) ⊂ H1
0,p(0,+∞) and

a convergent subsequence still denoted by (un), such that




un → uλ, weakly in H1
0,p(0,+∞),

un(x)→ uλ(x), for a.e. in (0,+∞),
un → uλ, strongly in Lr+1

q (0,+∞).

Consequently, passing to the limit in 〈J ′(un), v〉 as n→ +∞, we deduce that

+∞∫

0

p(x)u′λ(x)v′(x)dx− λ
+∞∫

0

q(x)f(x, uλ(x))v(x)dx = 0,

for all v ∈ H1
0,p(0,+∞), namely 〈J ′(uλ), v〉 = 0 for all v ∈ H1

0,p(0,+∞).
Now it remains to show that J(uλ) = cλ. Indeed, by (2.1) and Lemma 1.3, for all

x ∈ [0,+∞) and n ∈ N \ {0}, we obtain

q(x)|F (x, un(x))| ≤M3q(x) +Kq(x)|un(x)|r+1

≤M3q(x) +Kq(x) sup
x∈[0,+∞)

|un(x)|r+1

≤M3q(x) +Kq(x)‖un‖r+1
∞

≤
(
M3 +K

(
ρ

√
‖1
p
‖L1

)r+1
)
q(x) ∈ L1(0,+∞).

Thus, by the Lebesgue dominated convergence theorem and (2.6), we conclude that

cλ ≤ lim
n→+∞

J(un) = J(uλ) ≤ cλ.

Hence, cλ is a critical value of the functional J at the point uλ in H1
0,p(0,+∞).
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