MAXIMUM PACKINGS
OF THE λ-FOLD COMPLETE 3-UNIFORM
HYPERGRAPH
WITH LOOSE 3-CYCLES

Ryan C. Bunge, Dontez Collins, Daryl Conko-Camel,
Saad I. El-Zanati, Rachel Liebrecht, and Alexander Vasquez

Communicated by Adam Paweł Wojda

Abstract. It is known that the 3-uniform loose 3-cycle decomposes the complete 3-uniform hypergraph of order v if and only if $v \equiv 0, 1, \text{ or } 2 \pmod{9}$. For all positive integers λ and v, we find a maximum packing with loose 3-cycles of the λ-fold complete 3-uniform hypergraph of order v. We show that, if $v \geq 6$, such a packing has a leave of two or fewer edges.

Keywords: maximum packing, λ-fold complete 3-uniform hypergraph, loose 3-cycle.

Mathematics Subject Classification: 05C65, 05C85.

1. INTRODUCTION

A hypergraph H consists of a finite nonempty set V of vertices and a finite collection $E = \{e_1, e_2, \ldots, e_n\}$ of nonempty subsets of V called hyperedges or simply edges. For a given hypergraph H, we use $V(H)$ and $E(H)$ to denote the vertex set and the edge set (or multiset) of H, respectively. We call $|V(H)|$ and $|E(H)|$ the order and size of H, respectively. The degree of a vertex $v \in V(H)$ is the number of edges in $E(H)$ that contain v. A hypergraph H is simple if no edge appears more than once in $E(H)$. If for each $e \in E(H)$ we have $|e| = t$, then H is said to be t-uniform. Thus t-uniform hypergraphs are generalizations of the concept of a graph (where $t = 2$). Graphs with repeated edges are often called multigraphs. If H is a simple hypergraph and λ is a positive integer, then λ-fold H, denoted λH, is the multi-hypergraph obtained from H by repeating each edge exactly λ times. The hypergraph with vertex set V and edge set the set of all t-element subsets of V is called the complete t-uniform hypergraph on V and is denoted by K^t_v. If $v = |V|$, then λK^t_v is called the λ-fold complete t-uniform hypergraph of order v and is used to denote any hypergraph isomorphic.

© 2020 Authors. Creative Commons CC-BY 4.0 209
to $\lambda K_v^{(t)}$. When $t = 2$, we will use $\lambda K_v^{(2)}$ in place of $\lambda K_v^{(2)}$. Similarly, if $\lambda = 1$, then we will use $K_v^{(t)}$ in place of $\lambda K_v^{(t)}$. If H' is a subhypergraph of H, then $H \setminus H'$ denotes the hypergraph obtained from H by deleting the edges of H'. We may refer to $H \setminus H'$ as the hypergraph H with a hole H'. The vertices in H' may be referred to as the vertices in the hole.

A commonly studied problem in combinatorics concerns decompositions of graphs or multigraphs into edge-disjoint subgraphs. A decomposition of a multigraph M is a set $\Delta = \{G_1, G_2, \ldots, G_s\}$ of subgraphs of M such that $\{E(G_1), E(G_2), \ldots, E(G_s)\}$ is a partition of $E(M)$. If each element of Δ is isomorphic to a fixed graph G, then Δ is called a G-decomposition of M. If L is a subgraph of M and Δ is a G-decomposition of $M \setminus L$, then Δ is called a G-packing of M with leave L. Such a G-packing is maximum if no other possible G-packing of M has a leave of a smaller size than that of L. Clearly, if $|E(L)| < |E(G)|$, then the G-packing is maximum. Moreover, a G-decomposition of M can be viewed as a maximum G-packing with an empty leave.

A G-decomposition of λK_v is also known as a G-design of order v and index λ. A K_k-design of order v and index λ is usually known as a $2-(v, k, \lambda)$ design or as a balanced incomplete block design of index λ or a (v, k, λ)-BIBD. The problem of determining all v for which there exists a G-design of order v is of special interest (see [1] for a survey).

The notion of decompositions of graphs naturally extends to hypergraphs. A decomposition of a hypergraph M is a set $\Delta = \{H_1, H_2, \ldots, H_s\}$ of subhypergraphs of M such that $\{E(H_1), E(H_2), \ldots, E(H_s)\}$ is a partition of $E(M)$. Any element of Δ isomorphic to a fixed hypergraph H is called an H-block. If all elements of Δ are H-blocks, then Δ is called an H-decomposition of M. If L is a subgraph of M and Δ is an H-decomposition of $M \setminus L$, then Δ is called an H-packing of M with leave L, where we again define such a packing to be maximum if L has the fewest edges possible. An H-decomposition of $\lambda K_v^{(t)}$ is called an H-design of order v and index λ. The problem of determining all v for which there exists an H-design of order v and index λ is called the λ-fold spectrum problem for H-designs.

A $K_k^{(t)}$-design of order v and index λ is a generalization of $2-(v, k, \lambda)$ designs and is known as a $t-(v, k, \lambda)$ design or simply as a t-design. A summary of results on t-designs appears in [15]. A $t-(v, k, 1)$ design is also known as a Steiner system and is denoted by $S(t, v, k)$ (see [8] for a summary of results on Steiner systems). Keevash [14] has recently shown that for all t and k the obvious necessary conditions for the existence of an $S(t, k, v)$-design are sufficient for sufficiently large values of v. Similar results were obtained by Glock, Kühn, Lo, and Osthus [9, 10] and extended to include the corresponding asymptotic results for H-designs of order v for all uniform hypergraphs H. These results for t-uniform hypergraphs mirror the celebrated results of Wilson [23] for graphs. Although these asymptotic results assure the existence of H-designs for sufficiently large values of v for any uniform hypergraph H, the spectrum problem has been settled for very few hypergraphs of uniformity larger than 2.

In the study of graph decompositions, a fair amount of the focus has been on G-decompositions of K_v, where G is a graph with a relatively small number of edges (see [1] and [5] for known results). Some authors have investigated the corresponding
Maximum packings of the λ-fold complete 3-uniform hypergraph with loose 3-cycles

problem for 3-uniform hypergraphs. For example, in [4], the 1-fold spectrum problem is settled for all 3-uniform hypergraphs on 4 or fewer vertices. More recently, the 1-fold spectrum problem was settled in [6] for all 3-uniform hypergraphs with at most 6 vertices and at most 3 edges. In [6], they also settle the 1-fold spectrum problem for the 3-uniform hypergraph of order 6 whose edges form the lines of the Pasch configuration. Authors have also considered H-designs where H is a 3-uniform hypergraph whose edge set is defined by the faces of a regular polyhedron. Let T, O, and I denote the tetrahedron, the octahedron, and the icosahedron hypergraphs, respectively. The hypergraph T is the same as $K^{(3)}_4$, and its spectrum was settled in 1960 by Hanani [11]. In another paper [12], Hanani settled the spectrum problem for O-designs and gave necessary conditions for the existence of I-designs. The 1-fold spectrum problem is also settled for a type of 3-uniform hyperstars which is part of a larger class of hypergraphs known as delta-systems. For a positive integer m, let $S^{(3)}_m$ denote the 3-uniform hypergraph of size m which consists of one vertex of degree m and $2m$ vertices of degree one. Necessary and sufficient conditions for the existence of $S^{(3)}_m$-decompositions of $K^{(3)}_v$ are given in [21] for $m \in [4, 6]$ and for all m in [18]. Some results on maximum $S^{(3)}_m$-packings of $K^{(3)}_v$ are given in [19]. Perhaps the best known general result on decompositions of complete t-uniform hypergraphs is Baranyai’s result [3] on the existence of 1-factorizations of $K^{(t)}_m$ for all positive integers m. There are, however, several articles on decompositions of complete t-uniform hypergraphs (see [2] and [20]) and of t-uniform t-partite hypergraphs (see [16] and [22]) into variations on the concept of a Hamilton cycle. There are also several results on decompositions of 3-uniform hypergraphs into structures known as Berge cycles with a given number of edges (see for example [13] and [17]). We note however that the Berge cycles in these decompositions are not required to be isomorphic.

In this paper we are interested in maximum H-packings of $\lambda K^{(3)}_v$, where H is a 3-uniform loose 3-cycle. For integer $m \geq 3$, a 3-uniform loose m-cycle, denoted $LC^{(3)}_m$, is a 3-uniform hypergraph with vertex set $\{v_1, v_2, \ldots, v_{2m}\}$ and edge set $\{\{v_{2i-1}, v_{2i}, v_{2i+1}\} : 1 \leq i \leq m - 1\} \cup \{v_{2m-1}, v_{2m}, v_1\}$. Thus $LC^{(3)}_3$ has vertex set $\{v_1, v_2, v_3, v_4, v_5, v_6\}$ and edge set $\{\{v_1, v_2, v_3\}, \{v_4, v_5, v_6\}, \{v_5, v_6, v_1\}\}$ for which we use $H[v_1, v_2, v_3, v_4, v_5, v_6]$ to denote (see Figure 1).

![Fig. 1. The 3-uniform loose 3-cycle, $LC^{(3)}_3$, denoted by $H[v_1, v_2, v_3, v_4, v_5, v_6]$.](image-url)
Since $LC_3^{(3)}$ has 3 edges and 6 vertices, it is one of the hypergraphs covered in the decomposition results by Bryant, Herke, Maenhaut, and Wannasit in [6]. It is shown in [6] that there exists an $LC_3^{(3)}$-decomposition of $K_v^{(3)}$ if and only if $v \equiv 0, 1, \text{ or } 2 \pmod{9}$. Similarly, it is shown in [7] that there exists an $LC_3^{(3)}$-decomposition of $K_v^{(3)}$ if and only if $v \equiv 0, 1, 2, 4, \text{ or } 6 \pmod{8}$ and $v \notin \{4, 6\}$. Here we focus on maximum $LC_3^{(3)}$-packings of $\lambda K_v^{(3)}$ and show that if λ and $v \geq 6$ are positive integers, then there exists a maximum $LC_3^{(3)}$-packing of $\lambda K_v^{(3)}$ where the leave has two or fewer edges.

1.1. ADDITIONAL NOTATION AND TERMINOLOGY

If a and b are integers with $a \leq b$, we define $[a, b]$ to be $\{a, a + 1, \ldots, b\}$. We next define some notation for certain types of 3-uniform hypergraphs.

Let U_1, U_2, U_3 be pairwise disjoint sets. The hypergraph with vertex set $U_1 \cup U_2 \cup U_3$ and edge set consisting of all 3-element sets having exactly one vertex in each of U_1, U_2, U_3 is denoted by $K^{(3)}_{U_1, U_2, U_3}$. The hypergraph with vertex set $U_1 \cup U_2$ and edge set consisting of all 3-element sets having at most 2 vertices in each of U_1, U_2 is denoted by $L^{(3)}_{U_1, U_2}$. If $|U_i| = u_i$ for $i \in \{1, 2, 3\}$, we may use $K^{(3)}_{u_1, u_2, u_3}$ or $L^{(3)}_{u_1, u_2}$ to denote any hypergraph that is isomorphic to $K^{(3)}_{U_1, U_2, U_3}$ or $L^{(3)}_{U_1, U_2}$, respectively. From a hypergraph decomposition perspective, we note that if $U_1, U_1', U_2, U_2', U_3$ are pairwise vertex disjoint, then

$$E(K^{(3)}_{U_1 \cup U_1', U_2, U_3}) = E(K^{(3)}_{U_1, U_2, U_3}) \cup E(K^{(3)}_{U_1', U_2, U_3}).$$

Thus, for any positive integer x, it is simple to see that $K^{(3)}_{u_1, u_2, u_3}$ decomposes $K^{(3)}_{u_1 + x, u_2, u_3}$ and, in general, $K^{(3)}_{u_1 + x, u_2, u_3}$ decomposes into one copy of $K^{(3)}_{u_1, u_2, u_3}$ and one copy of $K^{(3)}_{x, u_2, u_3}$.

2. MAIN CONSTRUCTIONS

The constructions in this section are dependent on many small examples. These examples are given in the last section. Throughout, we will often identify a hypergraph (e.g., a leave in a packing) with its edge set only. Since the hypergraphs presented here do not contain isolated vertices, this will uniquely define them.

We begin by proving a lemma that is fundamental to our constructions.

Lemma 2.1. Let $n \geq 1$, $x \geq 0$, and $r \geq 0$ be integers and let $v = nx + r$. There exists a decomposition of $K_v^{(3)}$ into:

1. 1 copy of $K_n^{(3)}$,
2. $x - 1$ copies of $K_n^{(3)} \setminus K_r^{(3)}$ (these are isomorphic to $K_{n + r}^{(3)}$ if $r \in [0, 2]$),
3. $\binom{x}{3}$ copies of $K_{n,n,n}^{(3)} \cup L_{n,n}^{(3)}$ (here $K_{r,n,n}$ is empty if $r = 0$), and
4. $\binom{x - 1}{3}$ copies of $K_{n,n,n}^{(3)}$.

Proof. If \(x \in \{0, 1\} \), the decomposition is trivial. Thus we may assume that \(x \geq 2 \).

Let \(V_0, V_1, \ldots, V_x \) be pairwise disjoint sets of vertices with \(|V_0| = r, |V_1| = |V_2| = \ldots = |V_x| = n \) and let \(V = V_0 \cup V_1 \cup \ldots \cup V_x \). Then, \(K^{(3)}_V \) can be viewed as the (edge-disjoint) union

\[
K^{(3)}_{V_1 \cup V_0} \cup \bigcup_{2 \leq i \leq x} (K^{(3)}_{V_i \cup V_0} \setminus K^{(3)}_{V_0}) \cup \bigcup_{1 \leq i < j \leq x} (K^{(3)}_{V_i, V_j, V_0} \cup L^{(3)}_{V_i, V_j}) \cup \bigcup_{1 \leq i < j < k \leq x} (K^{(3)}_{V_i, V_j, V_k})
\]

Thus the result follows. \(\square \)

If \(LC_3^{(3)} \) decomposes \(K^{(3)}_9 \), then we must have \(3 | \binom{9}{3} \) and hence \(18 | v(v-1)(v-2) \). Therefore we have \(v \equiv 0, 1, \) or \(2 \) (mod 9). In [6], it is shown that these necessary conditions are sufficient. Although a proof of Theorem 2.2 is given in [6], we include a proof here for the sake of completeness.

Theorem 2.2. There exists an \(LC_3^{(3)} \)-decomposition of \(K_v \) if and only if \(v \equiv 0, 1, \) or \(2 \) (mod 9).

Proof. Let \(v = 9x + r \), where \(r \in [0, 2] \). If \(x = 0 \), the result is vacuously true. If \(x = 1 \), we give \(LC_3^{(3)} \)-decompositions of \(K^{(3)}_9 \) in Example 3.1, of \(K^{(3)}_{10} \) in Example 3.2, and of \(K^{(3)}_{11} \) in Example 3.3. Thus we may assume that \(x \geq 2 \). By Lemma 2.1, it suffices to give \(LC_3^{(3)} \)-decompositions of \(K^{(3)}_9 \) of \(K^{(3)}_{9+r} \setminus K^{(3)}_9 \) which is isomorphic to \(K^{(3)}_{9+r} \) since \(r \in [0, 2] \), of \(K^{(3)}_{r,9} \cup L^{(3)}_9 \), and of \(K^{(3)}_{9,9,9} \). A decomposition of \(K^{(3)}_{1,9,9} \cup L^{(3)}_9 \) is given in Example 3.7, and a decomposition of \(L^{(3)}_9 \) is given in Example 3.6. Since \(K^{(3)}_{2,3,3} \) decomposes \(K^{(3)}_{2,9,9} \) and \(K^{(3)}_{9,9} \) decomposes \(K^{(3)}_{9,9,9} \), and since \(LC_3^{(3)} \)-decompositions of \(K^{(3)}_{2,3,3} \) and \(K^{(3)}_{3,3,3} \) are given in Examples 3.4 and 3.5, we have that \(LC_3^{(3)} \) decomposes both \(K^{(3)}_{1,9,9} \) and \(K^{(3)}_{9,9,9} \). Thus the result follows. \(\square \)

Next, we give our main result on maximum \(LC_3^{(3)} \)-packings of \(K^{(3)}_9 \).

Theorem 2.3. If \(v \geq 6 \) is an integer, then there exists a maximum \(LC_3^{(3)} \)-packing of \(K^{(3)}_9 \) where the leave has two or fewer edges.

Proof. If \(v \equiv 0, 1, \) or \(2 \) (mod 9), then the result follows from the \(LC_3^{(3)} \)-decomposition result in Theorem 2.2, which translates to a maximum \(LC_3^{(3)} \)-packing with an empty leave. If \(v \in [6, 8] \), a maximum \(LC_3^{(3)} \)-packing of \(K^{(3)}_9 \) with a two edge leave is given in Examples 3.13–3.15. Hence, we need only consider when \(v = 9x + r \) where \(x \geq 1 \) and \(r \in [3, 8] \). By Lemma 2.1 it suffices to find

(i) a maximum \(LC_3^{(3)} \)-packing of \(K^{(3)}_{3+r} \) with a leave consisting of two or fewer edges and
(ii) \(LC_3^{(3)} \)-decompositions of \(K^{(3)}_{9+r} \setminus K^{(3)}_9 \), \(K^{(3)}_{r,9,9} \cup L^{(3)}_9 \), and \(K^{(3)}_{9,9,9} \).

We note that an \(LC_3^{(3)} \)-decomposition of \(K^{(3)}_{12} \setminus K^{(3)}_3 \) is equivalent an \(LC_3^{(3)} \)-packing of \(K^{(3)}_{12} \) with a leave consisting of the single edge in the hole, which is given...
in Example 3.16. Also, for \(r \geq 3 \), it is simple to see that \(K_{r,9}^{(3)} \) is decomposable into copies of \(K_{2,3,3}^{(3)} \) and \(K_{3,3,3}^{(3)} \). Maximum \(LC_{3}^{(3)} \)-packings (with leaves of two or fewer edges) of \(K_{9+r}^{(3)} \), for \(r \in [3,8] \), are given in Examples 3.16–3.21. Similarly, \(LC_{3}^{(3)} \)-decompositions of \(K_{9+r}^{(3)} \backslash K_{r}^{(3)} \), for \(r \in [4,8] \), are given in Examples 3.8–3.12. Finally, an \(LC_{3}^{(3)} \)-decomposition of \(L_{9,9}^{(3)} \) is given in Example 3.6, and \(LC_{3}^{(3)} \)-decompositions of \(K_{2,3,3}^{(3)} \) and of \(K_{3,3,3}^{(3)} \) are given in Examples 3.4 and 3.5, respectively.

Next, we give a lemma on maximum \(LC_{3}^{(3)} \)-packings of \(2K_{v}^{(3)} \) for \(v \in [6,17] \).

Lemma 2.4. If \(v \in [6,17] \), then there exists a maximum \(LC_{3}^{(3)} \)-packing of \(2K_{v}^{(3)} \) where the leave has two or fewer edges.

Proof. Let \(V(2K_{v}^{(3)}) = Z_v \). If \(v \in [9,11] \), there exists an \(LC_{3}^{(3)} \)-decomposition of \(K_{v}^{(3)} \) and hence of \(2K_{v}^{(3)} \). Next, if \(v \in [6,8] \cup [15,17] \), let \(\Delta_1 \) be a maximum \(LC_{3}^{(3)} \)-packing of \(K_{v}^{(3)} \) where the leave has edge set \(\{0,1,2\},\{2,3,4\} \) (which exists by Examples 3.13–3.15 and Examples 3.19–3.21) and let \(\Delta_2 \) be another maximum \(LC_{3}^{(3)} \)-packing of \(K_{v}^{(3)} \) where the leave has edge set \(\{4,5,0\},\{0,1,2\} \). Then \(\Delta_1 \cup \Delta_2 \cup \{H[0,1,2,3,4,5]\} \) is a maximum \(LC_{3}^{(3)} \)-packing of \(2K_{v}^{(3)} \) where \(0,1,2 \) is the only edge in the leave. Finally, if \(v \in [12,14] \), let \(\Delta_1 \) be a maximum packing of \(K_{v}^{(3)} \) where \(0,1,2 \) is the only edge in the leave (which exists by Examples 3.16–3.18) and let \(\Delta_2 \) be a maximum \(LC_{3}^{(3)} \)-packing of \(K_{v}^{(3)} \) where \(2,3,4 \) is the only edge in the leave. Then \(\Delta_1 \cup \Delta_2 \) is a maximum \(LC_{3}^{(3)} \)-packing of \(2K_{v}^{(3)} \) where the leave has edge set \(\{0,1,2\},\{2,3,4\} \).

Now we extend our results to maximum \(LC_{3}^{(3)} \)-packings of \(2K_{v}^{(3)} \) in general.

Theorem 2.5. If \(v \geq 6 \), then there exists a maximum \(LC_{3}^{(3)} \)-packing of \(2K_{v}^{(3)} \) where the leave has two or fewer edges.

Proof. If \(v \equiv 0,1, \text{ or } 2 \pmod{9} \), then the result follows from Theorem 2.2, which translates to a maximum \(LC_{3}^{(3)} \)-packing with an empty leave. If \(v \in [6,8] \), a maximum \(LC_{3}^{(3)} \)-packing of \(2K_{v}^{(3)} \) with a one edge leave is given in Lemma 2.4. Hence, we need only consider when \(v \equiv r \pmod{9} \), \(r \geq 3, v \geq 12 \). Let \(v = 9x + r \) where \(x \geq 1 \) and \(r \in [3,8] \). By Lemma 2.1 it suffices to find

(i) a maximum \(LC_{3}^{(3)} \)-packing of \(2K_{9+r}^{(3)} \) with a leaf consisting of two or fewer edges and

(ii) \(LC_{3}^{(3)} \)-decompositions of \(2K_{9+r}^{(3)} \backslash 2K_{r}^{(3)}, 2K_{r,9}^{(3)} \cup L_{9,9}^{(3)}, \) and \(2K_{9,9,9}^{(3)} \).

But since \(LC_{3}^{(3)} \) decomposes \(K_{r+9}^{(3)} \backslash K_{r}^{(3)}, K_{r,9}^{(3)} \cup L_{9,9}^{(3)}, \) and \(K_{9,9,9}^{(3)} \) (see argument in proof of Theorem 2.3), \(LC_{3}^{(3)} \) decomposes the 2-fold versions of these hypergraphs. Maximum \(LC_{3}^{(3)} \)-packings (with leaves of two or fewer edges) of \(2K_{9+r}^{(3)} \), for \(r \in [3,8] \), are given in Lemma 2.4. The result now follows.
Next, we give a lemma on $LC^3(3)$ decompositions of $3K_v(3)$ for $v \in [6, 17]$.

Lemma 2.6. If $v \in [6, 17]$, then there exists an $LC^3(3)$-decomposition of $3K_v(3)$.

Proof. Let $V(3K_v(3)) = \mathbb{Z}_v$. If $v \in [9, 11]$, there exists an $LC^3(3)$-decomposition of $K_v(3)$ and hence of $3K_v(3)$. Next, if $v \in [6, 8] \cup [15, 17]$, let Δ_1 be a maximum packing of $K_v(3)$ where the leaves have edge set $\{\{2, 3, 4\}, \{4, 5, 0\}\}$ (which exists by Examples 3.13–3.15 and Examples 3.19–3.21) and let Δ_2 be a maximum $LC^3(3)$-packing of $2K_v(3)$ where $\{0, 1, 2\}$ is the only edge in the leave (which exists by Lemma 2.4). Then $\Delta_1 \cup \Delta_2 \cup \{H[0, 1, 2, 3, 4, 5]\}$ is an $LC^3(3)$-decomposition of $3K_v(3)$. Finally, if $v \in [12, 14]$, let Δ_1 be a maximum packing of $K_v(3)$ where $\{4, 5, 0\}$ is the only edge in the leave (which exists by Examples 3.16–3.18) and let Δ_2 be a maximum $LC^3(3)$-packing of $2K_v(3)$ where the leave has edge set $\{\{0, 1, 2\}, \{2, 3, 4\}\}$ (which exists by Lemma 2.4). Then $\Delta_1 \cup \Delta_2 \cup \{H[0, 1, 2, 3, 4, 5]\}$ is an $LC^3(3)$-decomposition of $3K_v(3)$.

It is simple to see that if there is an $LC^3(3)$-decomposition of $\lambda K_v(3)$, then we must have $v \not\in [3, 5]$ and either $\lambda \equiv 0 \pmod{3}$ or $v \equiv 0, 1, 2 \pmod{9}$. Thus, in light of Theorem 2.2 and Lemmas 2.1 and 2.6 and because $3K_v(3)$ decomposes $3K_v(3)$ for all positive integers k, we have the following obvious corollary.

Corollary 2.7. Let λ and $v \not\in [3, 5]$ be positive integers. There exists an $LC^3(3)$-decomposition of $\lambda K_v(3)$ if and only if $\lambda \equiv 0 \pmod{3}$ or $v \equiv 0, 1, 2 \pmod{9}$.

Finally we give our general main result.

Theorem 2.8. If λ and $v \not\in [3, 5]$ are positive integers, then there exists a maximum $LC^3(3)$-packing of $\lambda K_v(3)$ where the leave has two or fewer edges.

Proof. If $\lambda \in \{1, 2\}$, the result follows from Theorems 2.3 and 2.5. If $\lambda \equiv 0 \pmod{3}$, the result follows from Corollary 2.7. Suppose $\lambda \geq 4$ and let $\lambda = 3(b + r)$ for integers $b \geq 1$ and $r \in \{1, 2\}$. We can view $3K_v(3)$ as the edge disjoint union of $3bK_v(3)$ and $bK_v(3)$. An $LC^3(3)$-decomposition of $3bK_v(3)$ exists by Corollary 2.7 and a maximum $LC^3(3)$-packing of $bK_v(3)$ where the leave has two or fewer edges follows from Theorems 2.3 and 2.5. Thus the result follows.

3. SMALL EXAMPLES

Example 3.1. Let

$$V(K_v(3)) = \mathbb{Z}_7 \cup \{\infty_1, \infty_2\}$$

and let

$$B = \{H[0, 1, 2, 4, 6, 3], H[\infty_1, 0, 1, \infty_2, 2, 4], H[0, 1, 3, \infty_1, 2, 4], H[\infty_1, 0, 3, 1, \infty_2, 2]\}.$$

Then an $LC^3(3)$-decomposition of $K_v(3)$ consists of the $LC^3(3)$-blocks in B under the action of the map $\infty_1 \mapsto \infty_1$ and $j \mapsto j + 1 \pmod{7}$.

Example 3.2. Let
\[V(K_{10}^{(3)}) = \mathbb{Z}_{10} \]
and let
\[B = \{ H[0, 2, 1, 3, 4, 9], H[0, 7, 1, 2, 4, 5], H[0, 4, 2, 5, 7, 6], H[0, 6, 2, 4, 7, 3] \}. \]
Then an \(LC_3^{(3)} \)-decomposition of \(K_{10}^{(3)} \) consists of the \(LC_3^{(3)} \)-blocks in \(B \) under the action of the map \(j \mapsto j + 1 \) (mod 10).

Example 3.3. Let
\[V(K_{11}^{(3)}) = \mathbb{Z}_{11} \]
and let
\[B = \{ H[0, 8, 2, 6, 9, 1], H[0, 8, 1, 4, 7, 2], H[1, 0, 5, 3, 8, 9], H[0, 7, 1, 10, 5, 6], H[0, 3, 1, 8, 10, 9] \}. \]
Then an \(LC_3^{(3)} \)-decomposition of \(K_{11}^{(3)} \) consists of the \(LC_3^{(3)} \)-blocks in \(B \) under the action of the map \(j \mapsto j + 1 \) (mod 11).

Example 3.4. Let
\[V(K_{2,3,3}^{(3)}) = \mathbb{Z}_6 \cup \{ \infty_1, \infty_2 \} \]
with the vertex partition \(\{ \{ \infty_1, \infty_2 \}, \{ 0, 2, 4 \}, \{ 1, 3, 5 \} \} \) and let
\[B = \{ H[\infty_1, 0, 1, \infty_2, 2, 5], H[5, \infty_2, 0, 1, \infty_1, 2, 5] \}. \]
Then an \(LC_3^{(3)} \)-decomposition of \(K_{2,3,3}^{(3)} \) consists of the \(LC_3^{(3)} \)-blocks in \(B \) under the action of the map \(\infty_1 \mapsto \infty_1 \) and \(j \mapsto j + 2 \) (mod 6).

Example 3.5. Let
\[V(K_{3,3,3}^{(3)}) = \mathbb{Z}_9 \]
with vertex partition \(\{ \{ 0, 3, 6 \}, \{ 1, 4, 7 \}, \{ 2, 5, 8 \} \} \) and let
\[B = \{ H[7, 3, 2, 1, 0, 5] \}. \]
Then an \(LC_3^{(3)} \)-decomposition of \(K_{3,3,3}^{(3)} \) consists of the \(LC_3^{(3)} \)-block in \(B \) under the action of the map \(j \mapsto j + 1 \) (mod 9).

Example 3.6. Let
\[V(L_{9,9}^{(3)}) = \mathbb{Z}_{18} \]
with vertex partition \(\{ \{ 0, 2, \ldots, 16 \}, \{ 1, 3, \ldots, 17 \} \} \), and let
\[B = \{ H[0, 16, 1, 4, 15, 2], H[14, 0, 1, 11, 16, 9], H[4, 0, 9, 1, 14, 3], H[9, 0, 1, 6, 17, 2], H[0, 5, 1, 12, 15, 14], H[0, 1, 2, 5, 3, 15], H[0, 1, 15, 10, 4, 13], H[1, 5, 12, 7, 0, 13], H[0, 1, 12, 3, 9, 16], H[10, 2, 17, 8, 1, 0], H[1, 0, 8, 2, 17, 4], H[1, 0, 7, 12, 6, 16] \}. \]
Then an $LC_{9,9}^{(3)}$-decomposition of $L_{9,9}^{(3)}$ consists of the $LC_{9,9}^{(3)}$-blocks in B under the action of the map $j \mapsto j + 1 \pmod{18}$.

Example 3.7. Let
\[V \left(L_{9,9}^{(3)} \cup K_{1,9,9}^{(3)} \right) = Z_{18} \cup \{ \infty \} \]
with vertex partition $\{ \{ \infty \}, \{ 0, 2, \ldots, 16 \}, \{ 1, 3, \ldots, 17 \} \}$, and let
\[B = \{ \{ 0, 16, 1, 4, 15, 2 \}, \{ 5, 1, 12, 15, 14 \}, \{ 0, 1, 2, \infty, 3, 15 \}, \{ 0, 1, 15, 10, 4, 13 \}, \{ 1, 5, 12, 7, 0, 13 \}, \{ 0, \infty, 3, 12, 9, 16 \}, \{ 14, 7, 17, 8, 1, \infty \}, \{ 1, \infty, 8, 2, 17, 4 \}, \{ 1, 0, 7, 12, 6, 16 \} \}, \]
\[B' = \{ \{ 0, \infty, 9, 10, 1, 3 \}, \{ 1, \infty, 10, 11, 2, 4 \}, \{ 2, \infty, 11, 12, 3, 5 \}, \{ 3, \infty, 12, 13, 4, 6 \}, \{ 4, \infty, 13, 14, 5, 7 \}, \{ 5, \infty, 14, 15, 6, 8 \}, \{ 6, \infty, 15, 16, 7, 9 \}, \{ 7, \infty, 16, 17, 8, 10 \}, \{ 8, \infty, 17, 0, 9, 11 \}, \{ 10, 0, 1, 2, 9, 3 \}, \{ 11, 1, 2, 3, 10, 4 \}, \{ 12, 2, 3, 4, 11, 5 \}, \{ 13, 3, 4, 5, 12, 6 \}, \{ 14, 4, 5, 6, 13, 7 \}, \{ 15, 5, 6, 7, 14, 8 \}, \{ 16, 6, 7, 8, 15, 9 \}, \{ 17, 7, 8, 9, 16, 10 \}, \{ 0, 8, 9, 10, 17, 11 \}, \{ 12, 9, 10, 11, 0, 1 \}, \{ 13, 10, 11, 12, 1, 2 \}, \{ 14, 11, 12, 13, 2, 3 \}, \{ 15, 12, 13, 14, 3, 4 \}, \{ 16, 13, 14, 15, 4, 5 \}, \{ 17, 14, 15, 16, 5, 6 \}, \{ 0, 15, 16, 17, 6, 7 \}, \{ 1, 16, 17, 0, 7, 8 \}, \{ 2, 17, 0, 1, 8, 9 \} \}. \]

Then an $LC_{9}^{(3)}$-decomposition of $L_{9}^{(3)} \cup K_{1,9,9}^{(3)}$ consists of the $LC_{9}^{(3)}$-blocks in B under the action of the map $\infty \mapsto \infty$ and $j \mapsto j + 1 \pmod{18}$, along with the $LC_{9}^{(3)}$-blocks in B'.

Example 3.8. Let
\[V \left(K_{13}^{(3)} \setminus K_{4}^{(3)} \right) = Z_{9} \cup \{ \infty_{1}, \infty_{2}, \infty_{3}, \infty_{4} \} \]
with $\infty_{1}, \ldots, \infty_{4}$ being the vertices in the hole and let
\[B = \{ \{ \infty_{1}, 0, \infty_{2}, 1, 4, 8 \}, \{ \infty_{2}, 0, \infty_{3}, 1, 4, 8 \}, \{ \infty_{3}, 0, \infty_{4}, 1, 4, 8 \}, \{ \infty_{4}, 0, \infty_{1}, 1, 4, 8 \}, \{ \infty_{1}, 0, \infty_{2}, 1, 2, 3 \}, \{ \infty_{2}, 0, \infty_{3}, 1, 2, 3 \}, \{ \infty_{3}, 0, \infty_{4}, 1, 2, 3 \}, \{ \infty_{4}, 0, \infty_{1}, 2, 6, 3 \}, \{ 0, 1, 4, 8, 3, \infty_{4} \}, \{ 0, 2, 4, 6, 1, 8 \} \}, \]
\[B' = \{ \{ 0, 2, 8, 5, 3, 6 \}, \{ 1, 3, 0, 6, 4, 7 \}, \{ 2, 4, 1, 7, 5, 8 \}, \{ 5, 2, 3, 6, 4, 7 \}, \{ 8, 5, 6, 0, 7, 1 \}, \{ 6, 2, 8, 4, 1, 3 \}, \{ 7, 3, 0, 5, 2, 4 \}, \{ 6, 1, 0, 4, 3, 7 \}, \{ 7, 2, 1, 5, 4, 8 \}, \{ 8, 3, 2, 6, 5, 0 \}, \{ 0, 7, 1, 8, 2, 3 \}, \{ 3, 1, 4, 2, 5, 6 \}, \{ 6, 4, 7, 5, 8, 0 \} \}. \]

Then an $LC_{9}^{(3)}$-decomposition of $K_{13}^{(3)} \setminus K_{4}^{(3)}$ consists of the $LC_{9}^{(3)}$-blocks in B under the action of the map $\infty_{i} \mapsto \infty_{i}$ and $j \mapsto j + 1 \pmod{9}$ along with the $LC_{9}^{(3)}$-blocks in B'.
Example 3.9. Let
\[V\left(K_{14}^{(3)} \setminus K_5^{(3)}\right) = \mathbb{Z}_9 \cup \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5\} \]
with \(\infty_1, \ldots, \infty_5\) being the vertices in the hole and let

\[B = \{H[\infty_1, 0, 0, 2, 1, 6], H[\infty_2, 0, 0, 3, 1, 2, 6], H[\infty_3, 0, 0, 4, 1, 2, 6], \]
\[H[\infty_4, 0, 0, 5, 1, 3, 6], H[\infty_5, 0, 0, 1, 3, 6], \]
\[H[\infty_6, 0, 0, 2, 1, 3, 6], H[0, 2, 4, 6, 1, 8], H[1, 0, 4, 5, 2, 6]\}, \]
\[B' = \{H[0, 2, 8, 5, 3, 6], H[1, 3, 0, 6, 4, 7], H[2, 4, 1, 7, 5, 8], H[5, 2, 3, 6, 4, 7], \]
\[H[8, 5, 6, 0, 7, 1], H[6, 2, 8, 4, 1, 3], H[7, 3, 0, 5, 2, 4], H[0, 7, 1, 8, 2, 3], \]
\[H[3, 1, 4, 2, 5, 6], H[6, 4, 7, 5, 8, 0]\} \].

Then an \(\text{LC}_{3}^{(3)}\)-decomposition of \(K_{14}^{(3)} \setminus K_5^{(3)}\) consists of the \(\text{LC}_{3}^{(3)}\)-blocks in \(B\) under the action of the map \(\infty_i \mapsto \infty_i\) and \(j \mapsto j + 1 \pmod{9}\) along with the \(\text{LC}_{3}^{(3)}\)-blocks in \(B'\).

Example 3.10. Let
\[V\left(K_{15}^{(3)} \setminus K_6^{(3)}\right) = \mathbb{Z}_9 \cup \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6\} \]
with \(\infty_1, \ldots, \infty_6\) being the vertices in the hole and let

\[B = \{H[\infty_1, 0, 0, 2, 1, 3, 2], H[\infty_2, 0, 0, 4, 1, 3, 2], H[\infty_3, 0, 0, 5, 1, 3, 2], \]
\[H[\infty_4, 0, 0, 6, 1, 1, 2], H[0, 2, 0, 4, 1, 6, 2], H[0, 2, 0, 4, 1, 6, 2], \]
\[H[0, 2, 0, 4, 1, 6, 2], H[0, 2, 0, 4, 1, 6, 2], \}
\[B' = \{H[0, 2, 8, 5, 3, 6], H[1, 3, 0, 6, 4, 7], H[2, 4, 1, 7, 5, 8], H[5, 2, 3, 6, 4, 7], \]
\[H[8, 5, 6, 0, 7, 1], H[6, 2, 8, 4, 1, 3], H[7, 3, 0, 5, 2, 4], H[0, 7, 1, 8, 2, 3], \]
\[H[3, 1, 4, 2, 5, 6], H[6, 4, 7, 5, 8, 0]\} \].

Then an \(\text{LC}_{3}^{(3)}\)-decomposition of \(K_{15}^{(3)} \setminus K_6^{(3)}\) consists of the \(\text{LC}_{3}^{(3)}\)-blocks in \(B\) under the action of the map \(\infty_1 \mapsto \infty_1\) and \(j \mapsto j + 1 \pmod{9}\) along with the \(\text{LC}_{3}^{(3)}\)-blocks in \(B'\).

Example 3.11. Let
\[V\left(K_{16}^{(3)} \setminus K_7^{(3)}\right) = \mathbb{Z}_9 \cup \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6, \infty_7\} \]
with \(\infty_1, \ldots, \infty_7\) being the vertices in the hole and let
Maximum packings of the λ-fold complete 3-uniform hypergraph with loose 3-cycles

Let

$B = \{H[\infty_1, 0, \infty_2, 1, \infty_4, 2], H[\infty_2, 0, \infty_3, 1, \infty_5, 2], H[\infty_3, 0, \infty_4, 1, \infty_6, 2], H[\infty_4, 0, \infty_5, 1, \infty_7, 2], H[\infty_5, 0, \infty_6, 1, \infty_1, 2], H[\infty_6, 0, \infty_7, 1, \infty_2, 2], H[\infty_7, 0, \infty_8, 1, \infty_3, 2], H[\infty_1, 0, 1, \infty_2, 3, 7], H[\infty_2, 0, 1, \infty_3, 3, 7], H[\infty_3, 0, 1, \infty_4, 3, 7], H[\infty_4, 0, 1, \infty_5, 3, 7], H[\infty_5, 0, 1, \infty_6, 3, 7], H[\infty_6, 0, 1, \infty_7, 3, 7], H[\infty_7, 0, 1, \infty_1, 3, 7], \}$

$H[0, 0, 1, 3, \infty_2, 6, \infty_3], H[0, \infty_4, 3, \infty_5, 6, \infty_6], H[0, 1, 4, 8, 3, \infty_7], H[0, 2, 4, 6, 1, 8]\}

Then an $LC^{(3)}_{\lambda}-$decomposition of $K^{(3)}_{16} \setminus K^{(3)}_{7}$ consists of the $LC^{(3)}_{\lambda}$-blocks in B under the action of the map $\infty_i \mapsto \infty_i$ and $j \mapsto j + 1 \pmod{9}$ along with the $LC^{(3)}_{\lambda}$-blocks in B'.

Example 3.12. Let

$V(K^{(3)}_{17} \setminus K^{(3)}_{8}) = \mathbb{Z}_9 \cup \{\infty_1, \infty_2, \infty_3, \infty_4, \infty_5, \infty_6, \infty_7, \infty_8\}$

with $\infty_1, \ldots, \infty_8$ being the vertices in the hole and let

$B = \{H[\infty_1, 0, \infty_2, 1, \infty_4, 2], H[\infty_2, 0, \infty_3, 1, \infty_5, 2], H[\infty_3, 0, \infty_4, 1, \infty_6, 2], H[\infty_4, 0, \infty_5, 1, \infty_7, 2], H[\infty_5, 0, \infty_6, 1, \infty_8, 2], H[\infty_6, 0, \infty_7, 1, \infty_1, 2], H[\infty_7, 0, \infty_8, 1, \infty_2, 2], H[\infty_8, 0, \infty_1, 1, \infty_3, 2], H[\infty_1, 0, 4, \infty_2, 3, 6], H[\infty_2, 0, 4, \infty_3, 3, 6], H[\infty_3, 0, 4, \infty_4, 3, 6], H[\infty_4, 0, 4, \infty_5, 3, 6], H[\infty_5, 0, 4, \infty_6, 3, 6], H[\infty_6, 0, 4, \infty_7, 3, 6], H[\infty_7, 0, 4, \infty_8, 3, 6], H[\infty_8, 0, 4, \infty_1, 3, 6], H[\infty_1, 0, 2, 4, \infty_5, 1], H[\infty_2, 0, 2, 4, \infty_6, 1], H[\infty_3, 0, 2, 4, \infty_7, 1], H[\infty_4, 0, 2, 4, \infty_8, 1], H[0, 0, 1, 4, 8, 3, 6], H[0, 2, 4, 6, 1, 8], H[1, 0, 1, 4, 5, 2, 6]\}.$

Then an $LC^{(3)}_{\lambda}-$decomposition of $K^{(3)}_{17} \setminus K^{(3)}_{8}$ consists of the $LC^{(3)}_{\lambda}$-blocks in B under the action of the map $\infty_i \mapsto \infty_i$ and $j \mapsto j + 1 \pmod{9}$ along with the $LC^{(3)}_{\lambda}$-blocks in B'.

Example 3.13. Let

$V(K^{(3)}_{6}) = \mathbb{Z}_6$

and let

$B = \{H[4, 0, 1, 5, 3, 2], H[5, 1, 2, 0, 4, 3], H[4, 5, 0, 3, 2, 1], H[5, 0, 1, 4, 3, 2], H[0, 1, 2, 5, 4, 3], H[1, 2, 3, 0, 5, 4]\}.$
Then B is a maximum $LC_{3}^{(3)}$-packing of $K_{6}^{(3)}$, where the leave has edge set $\{\{0,1,3\}, \{1,2,5\}\}$. Note that by renaming the vertices in this packing, any two hyperedges in $K_{6}^{(3)}$ that intersect in a single vertex can be made into the edge set of the leave of a maximum $LC_{3}^{(3)}$-packing of $K_{6}^{(3)}$.

Example 3.14. Let

$$V(K_{7}^{(3)}) = \mathbb{Z}_7$$

and let

$$B = \{H[0, 1, 2, 4, 6, 3]\},$$

$$B' = \{H[3, 0, 1, 4, 2, 5], H[6, 3, 4, 0, 5, 1], H[1, 6, 2, 0, 3, 4], H[4, 2, 5, 3, 6, 0]\}.$$

Then a maximum $LC_{3}^{(3)}$-packing of $K_{7}^{(3)}$, where the leave has edge set $\{\{0,1,5\}, \{0,2,6\}\}$, consists of the $LC_{3}^{(3)}$-blocks in B under the action of the map $j \mapsto j + 1 \pmod{7}$ along with the $LC_{3}^{(3)}$-blocks in B'. Again, we note that by renaming the vertices in this packing, any two hyperedges in $K_{7}^{(3)}$ that intersect in a single vertex can be made into the edge set of a maximum $LC_{3}^{(3)}$-packing of $K_{7}^{(3)}$.

Example 3.15. Let

$$V(K_{8}^{(3)}) = \mathbb{Z}_8$$

and let

$$B = \{H[6, 0, 7, 2, 3, 1], H[0, 2, 6, 7, 4, 1]\},$$

$$B' = \{H[3, 0, 1, 4, 2, 5], H[6, 3, 4, 7, 5, 0]\}.$$

Then a maximum $LC_{3}^{(3)}$-packing of $K_{8}^{(3)}$, where the leave has edge set $\{\{1,6,7\}, \{0,2,7\}\}$, consists of the $LC_{3}^{(3)}$-blocks in B under the action of the map $j \mapsto j + 1 \pmod{8}$ along with the $LC_{3}^{(3)}$-blocks in B'. Again, we note that by renaming the vertices in this packing, any two hyperedges in $K_{8}^{(3)}$ that intersect in a single vertex can be made into the edge set of a maximum $LC_{3}^{(3)}$-packing of $K_{8}^{(3)}$.

Example 3.16. Let

$$V(K_{12}^{(3)}) = \mathbb{Z}_{11} \cup \{\infty\}$$

and let

$$B = \{H[0, \infty, 1, 3, 2, 4], H[0, \infty, 2, 8, 5, 10], H[0, \infty, 3, 7, 4, 8], H[0, \infty, 4, 9, 5, 2],$$

$$H[0, \infty, 5, 10, 9, 6], H[0, 6, 2, 9, 4, 3]\},$$

$$B' = \{H[3, 0, 1, 4, 2, 5], H[6, 3, 4, 7, 5, 8], H[9, 6, 7, 10, 8, 0], H[1, 10, 2, 0, 3, 4],$$

$$H[4, 2, 5, 3, 6, 7], H[8, 6, 9, 1, 10, 0], H[9, 7, 10, 2, 0, 1]\}.$$
Then a maximum $L C_3^{(3)}$-packing of $K_{12}^{(3)}$, where the leave is the single edge $\{5, 7, 8\}$, consists of the $L C_3^{(3)}$-blocks in B under the action of the map $\infty \mapsto \infty$ and $j \mapsto j + 1 \pmod{11}$ along with the $L C_3^{(3)}$-blocks in B'. Note that by renaming the vertices in this packing, any edge in $K_{12}^{(3)}$ can be made into the leave of a maximum $L C_3^{(3)}$-packing of $K_{12}^{(3)}$.

Example 3.17. Let

$$V(K_{13}^{(3)}) = \mathbb{Z}_{13}$$

and let

$$B = \{ H[0, 3, 9, 12, 1, 11], H[0, 4, 8, 12, 1, 10], H[12, 4, 9, 0, 1, 7], H[12, 5, 8, 0, 1, 6], H[7, 10, 4, 11, 0, 1], H[6, 10, 5, 2, 0, 1], H[0, 2, 3, 5, 1, 0] \},$$

$$B' = \{ H[3, 0, 1, 4, 2, 5], H[6, 3, 4, 7, 5, 8], H[9, 6, 7, 10, 8, 11], H[12, 9, 10, 0, 11, 1] \}.$$

Then a maximum $L C_3^{(3)}$-packing of $K_{13}^{(3)}$, where the leave is the single edge $\{0, 2, 12\}$, consists of the $L C_3^{(3)}$-blocks in B under the action of the map $j \mapsto j + 1 \pmod{13}$ along with the $L C_3^{(3)}$-blocks in B'. Again, we note that by renaming the vertices in this packing, any edge in $K_{13}^{(3)}$ can be made into the leave of a maximum $L C_3^{(3)}$-packing of $K_{13}^{(3)}$.

Example 3.18. Let

$$V(K_{14}^{(3)}) = \mathbb{Z}_{14}$$

and let

$$B = \{ H[13, 0, 8, 3, 5, 12], H[0, 10, 1, 3, 5, 12], H[0, 8, 2, 3, 4, 13], H[0, 1, 11, 5, 6, 3], H[0, 3, 8, 2, 9, 4], H[0, 2, 9, 13, 7, 3], H[0, 3, 10, 5, 8, 4] \},$$

$$B' = \{ H[3, 0, 1, 4, 2, 5], H[6, 3, 4, 7, 5, 8], H[9, 6, 7, 10, 8, 11], H[12, 9, 10, 13, 11, 0], H[1, 13, 2, 0, 3, 4], H[4, 2, 5, 3, 6, 7], H[7, 5, 8, 6, 9, 10], H[11, 9, 12, 1, 13, 0], H[12, 10, 13, 2, 0, 1] \}.$$

Then a maximum $L C_3^{(3)}$-packing of $K_{14}^{(3)}$, where the leave is the single edge $\{8, 10, 11\}$, consists of the $L C_3^{(3)}$-blocks in B under the action of the map $j \mapsto j + 1 \pmod{14}$ along with the $L C_3^{(3)}$-blocks in B'. Again, we note that by renaming the vertices in this packing, any edge in $K_{14}^{(3)}$ can be made into the leave of a maximum $L C_3^{(3)}$-packing of $K_{14}^{(3)}$.

Example 3.19. Let

$$V(K_{15}^{(3)}) = \mathbb{Z}_{13} \cup \{\infty_1, \infty_2\}$$
and let

\[B = \{ H[\infty_1, 0, \infty_2, 1, 2, 3], H[0, \infty_1, 2, \infty_2, 4, 8], H[0, \infty_1, 3, \infty_2, 6, 12], \]
\[H[0, \infty_1, 4, \infty_2, 8, 3], H[0, \infty_1, 5, \infty_2, 10, 7], H[0, \infty_1, 6, \infty_2, 12, 11], \]
\[H[0, 9, 11, 8, 4, 10], H[0, 5, 2, 4, 8, 6], H[0, 10, 2, 4, 11, 6], \]
\[H[0, 1, 4, 3, 8, 7], H[0, 1, 10, 9, 5, 6] \}, \]
\[B' = \{ H[3, 0, 1, 4, 2, 5], H[6, 3, 4, 7, 5, 8], H[9, 6, 7, 10, 8, 11], H[12, 9, 10, 0, 11, 1], \]
\[H[1, 12, 2, 0, 3, 4], H[4, 2, 5, 3, 6, 7], H[7, 5, 8, 6, 9, 10], H[10, 8, 11, 9, 12, 0] \}. \]

Then a maximum \(LC_{3}^{(3)} \)-packing of \(K_{15}^{(3)} \), where the leave has edge set \(\{ 0, 2, 14 \}, \{ 2, 4, 5 \} \), consists of the \(LC_{3}^{(3)} \)-blocks in \(B \) under the action of the map \(\infty_i \mapsto \infty_i \) and \(j \mapsto j + 1 \) (mod 13) along with the \(LC_{3}^{(3)} \)-blocks in \(B' \). Again, we note that by renaming the vertices in this packing, any two hyperedges in \(K_{15}^{(3)} \) that intersect in a single vertex can be made into the edge set the leave of a maximum \(LC_{3}^{(3)} \)-packing of \(K_{15}^{(3)} \).

Example 3.20. Let

\[V \left(K_{16}^{(3)} \right) = \mathbb{Z}_{16} \]

and let

\[B = \{ H[1, 0, 13, 10, 6, 4], H[0, 5, 10, 6, 11, 4], H[1, 14, 9, 3, 7, 13], \]
\[H[0, 11, 1, 12, 3, 10], H[0, 10, 2, 14, 7, 6], H[13, 5, 12, 0, 4, 7], \]
\[H[0, 3, 8, 15, 7, 14], H[15, 5, 14, 8, 6, 2], H[0, 13, 3, 8, 1, 6], \]
\[H[1, 0, 4, 8, 3, 7], H[0, 14, 12, 10, 11, 13] \}, \]
\[B' = \{ H[3, 0, 1, 4, 2, 5], H[6, 3, 4, 7, 5, 8], H[9, 6, 7, 10, 8, 11], \]
\[H[12, 9, 10, 13, 11, 14], H[15, 12, 13, 0, 14, 1], H[1, 15, 2, 0, 3, 4], \]
\[H[4, 2, 5, 3, 6, 7], H[7, 5, 8, 6, 9, 10], H[10, 8, 11, 9, 12, 13], \]
\[H[13, 11, 14, 12, 15, 0] \}. \]

Then a maximum \(LC_{3}^{(3)} \)-packing of \(K_{16}^{(3)} \), where the leave has edge set \(\{ 0, 1, 14 \}, \{ 0, 2, 15 \} \), consists of the \(LC_{3}^{(3)} \)-blocks in \(B \) under the action of the map \(j \mapsto j + 1 \) (mod 16) along with the \(LC_{3}^{(3)} \)-blocks in \(B' \). Again, we note that by renaming the vertices in this packing, any two hyperedges in \(K_{16}^{(3)} \) that intersect in a single vertex can be made into the edge set the leave of a maximum \(LC_{3}^{(3)} \)-packing of \(K_{16}^{(3)} \).
Example 3.21. Let

\[V(K_{17}^{(3)}) = \mathbb{Z}_{17} \]

and let

\[B = \{ H[0, 15, 1, 16, 13, 3], H[0, 14, 1, 13, 5, 11], H[2, 13, 0, 4, 11, 16], \]
\[H[11, 16, 1, 13, 0, 3], H[0, 12, 1, 11, 5, 10], H[0, 11, 1, 16, 10, 3], \]
\[H[0, 10, 1, 16, 9, 4], H[14, 6, 0, 9, 1, 10], H[0, 8, 1, 6, 15, 7], \]
\[H[15, 5, 1, 7, 0, 6], H[0, 6, 1, 4, 15, 5], H[0, 15, 4, 8, 5, 1], \]
\[H[0, 15, 3, 5, 4, 2] \}, \]
\[B' = \{ H[3, 0, 1, 4, 2, 5], H[6, 3, 4, 7, 5, 8], H[9, 6, 7, 10, 8, 11], \]
\[H[12, 9, 10, 13, 11, 14], H[15, 12, 13, 16, 14, 0] \}. \]

Then a maximum $LC_{4}^{(3)}$-packing of $K_{17}^{(3)}$, where the leave has edge set \(\{ \{1, 15, 16\}, \{0, 2, 16\} \} \), consists of the $LC_{4}^{(3)}$-blocks in B under the action of the map $j \mapsto j + 1 \pmod{17}$ along with the $LC_{3}^{(3)}$-blocks in B'. Again, we note that by renaming the vertices in this packing, any two hyperedges in $K_{17}^{(3)}$ that intersect in a single vertex can be made into the edge set of the leave of a maximum $LC_{3}^{(3)}$-packing of $K_{17}^{(3)}$.

Acknowledgements

This research is supported in part by grant number A1659815 from the Division of Mathematical Sciences at the National Science Foundation. Part of this work was completed while the second, third, fifth, and sixth authors participated in REU Site: Mathematics Research Experience for Pre-service and for In-service Teachers at Illinois State University.

REFERENCES

Maximum packings of the \(\lambda \)-fold complete 3-uniform hypergraph with loose 3-cycles

Ryan C. Bunge
rcbunge@ilstu.edu
Illinois State University
Normal, IL 61790, USA

Dontez Collins
Sussex Technical High School
Georgetown, DE 19947, USA

Daryl Conko-Camel
Salish Kootenai College
Pablo, MT 59855, USA

Saad I. El-Zanati (corresponding author)
saad@ilstu.edu
Illinois State University
Normal, IL 61790, USA

Rachel Liebrecht
Ohio Northern University
Ada, OH 45810, USA

Alexander Vasquez
Manhattan College
Bronx, NY 10471, USA

Received: August 28, 2019.
Accepted: January 23, 2020.