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Abstract. Global well-posedness and finite time blow up issues for some strongly damped
nonlinear wave equation are investigated in the present paper. For subcritical initial energy
by employing the concavity method we show a finite time blow up result of the solution. And
for critical initial energy we present the global existence, asymptotic behavior and finite time
blow up of the solution in the framework of the potential well. Further for supercritical initial
energy we give a sufficient condition on the initial data such that the solution blows up in
finite time.
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1. INTRODUCTION

This paper investigates the IBVP (initial boundary value problem) to a class of fourth
order strongly damped nonlinear wave equations

utt −∆u+ ∆2u− α∆ut = f(u), x ∈ Ω, t > 0,
u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ω, (1.1)
u(x, t) = ∆u(x, t) = 0, x ∈ ∂Ω, t ≥ 0,

where α is a positive constant, Ω ⊂ Rn is a smooth bounded domain with a smooth
boundary ∂Ω and f(u) satisfies

(H1) f ∈ C1, u(uf ′(u) − f(u)) ≥ 0, where the equality holds only for u = 0 and
|f(u)| ≤ A|u|q, 1 < q < +∞ for 1 ≤ n ≤ 4; 1 < q < n+4

n−4 for n ≥ 5;
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(H2) there exists p > 1 such that for all u ∈ R

(p+ 1)F (u) ≤ uf(u), F (u) =
u∫

0

f(s)ds.

As an example we can take f(s) = |s|q−1s.
The original second order model of problem (1.1) was introduced by Webb [15] to

consider the motion of a viscous body. Hereafter there are a lot of interesting results
on the qualitative behavior of solutions for such nonlinear second order damped wave
equations (see, for instance, well-posedness of solutions [2, 4, 8], decay behavior of
energy [1, 11], attractors [3, 12, 22] and the papers cited therein). Up to now there are
also various interesting results about the IBVP to different classes of fourth order
nonlinear wave equations with certain initial energy and we refer the reader to some
related papers [5–7,10,13,14,17,20,21] and the references therein. But to our knowledge
up to now almost all the high-energy blow up results for nonlinear wave equations are
derived in the absence of the strong damping term ∆ut or in the presence of both the
strong damping term ∆ut, the weak damping term ut and the dispersive term ∆utt
(see, for instance, the nonlinear fourth-order strain wave equation [14]

utt − α∆u+ ∆2u+
n∑

i=1

∂

∂xi
σi(uxi) = f(u),

the nonlinear fourth-order dispersive-dissipative wave equation

utt −∆u−∆utt −∆ut + ut = |u|p−1u

in [17] and the papers cited therein). So, in the present paper we consider a fourth-order
wave equation with strong damping term, i.e., problem (1.1), and solve some unsolved
problems related to problem (1.1). Now let us recall some existing results on the global
existence, asymptotic behavior and finite time blow up of solutions to the problem
(1.1). To our knowledge Lin et al. [9] made the first try to consider problem (1.1) and
proved the existence of global weak and strong solutions under some assumptions
on the nonlinear source terms f(u) and initial data in the framework of potential
well. Subsequently, by introducing a family of potential wells, Xu and Yang [18]
investigated the problem (1.1) and obtained the existence of global solutions as well as
the asymptotic behavior of global weak solutions under some weak growth conditions
on the nonlinear source terms f(u), i.e., (H1) and (H2), and left some problems
unsolved. These obtained results and unsolved problems are listed in Table 1 below.

The aim of the present paper is to solve some of these unsolved problems listed
in Table 1 and give a comprehensive investigation on the global existence, long-time
behavior and finite time blow up of solutions to the problem (1.1) at three different
initial energy level (subcritical initial energy, critical initial energy and supercritical
initial energy) as we did for a different model equation [19], that is

utt −∆u+ ∆2u−∆utt + ∆2utt = ∆f(u).
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In detail, in the present paper for subcritical initial energy we obtain the finite time
blow up of the solution by employing the classical concavity method in the framework
of potential well [8] (Theorem 3.3). For critical initial energy by the idea [16] we obtain
the global existence, asymptotic behavior and finite time blow up of the solution
(Theorem 4.4, Theorem 4.6 and Theorem 4.8, respectively). For supercritical initial
energy by utilizing an adapted concavity method, we give a sufficient condition on the
initial data such that the solution blows up in finite time (Theorem 5.3).

Table 1
Obtained results and unsolved problems for problem (1.1)

Global existence Asymptotic behavior Blow up
Subcritical initial energy

E(0) < d
Reference [18] Reference [18] Theorem 3.3

Critical initial energy
E(0) = d

Theorem 4.4 Theorem 4.6 Theorem 4.8

Supercritical initial energy
E(0) > d

Still unsolved Still unsolved Theorem 5.3

2. PRELIMINARY

For simplicity, we use the notation ‖u‖ := ‖u‖L2(Ω), ‖u‖p := ‖u‖Lp(Ω) and the
inner product (u, v) =

∫
Ω uvdx throughout the present paper. In addition we denote

H2(Ω) ∩H1
0 (Ω) by H, the duality paring between H−1 and H by 〈·, ·〉. We introduce

the following functionals

E(t) = 1
2‖ut‖

2 + 1
2
(
‖∆u‖2 + ‖∇u‖2

)
−
∫

Ω

F (u)dx

= 1
2‖ut‖

2 + 1
2‖u‖

2
H −

∫

Ω

F (u)dx,

(2.1)

J(u) = 1
2‖∇u‖

2 + 1
2‖∆u‖

2 −
∫

Ω

F (u)dx = 1
2‖u‖

2
H −

∫

Ω

F (u)dx, (2.2)

I(u) = ‖∆u‖2 + ‖∇u‖2 −
∫

Ω

uf(u)dx = ‖u‖2H −
∫

Ω

uf(u)dx (2.3)

and the sets

G := {u ∈ H|I(u) > 0} ∪ {0}, B := {u ∈ H|I(u) < 0}

as well as the definition of potential well

d = inf
u∈N

J(u), N = {u ∈ H|I(u) = 0, u 6= 0}.
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Definition 2.1. By solution of problem (1.1) over [0, T0] we mean a function solution

u(t) ∈ C ([0, T0);H) ∩ C1 ([0, T0);L2(Ω)
)
∩ C2 ([0, T0];H−1)

and
ut ∈ L2 ([0, T0);H1

0 (Ω)
)

such that u(x, 0) = u0 and ut(x, 0) = u1 and

〈utt, v〉+
∫

Ω

∆u∆vdx+
∫

Ω

∇u∇vdx+ α

∫

Ω

∇ut∇vdx =
∫

Ω

f(u)vdx

for all v ∈ H and almost every t ∈ [0, T0]. Further there holds

E(t) + α

t∫

0

‖∇uτ‖2dτ = E(0). (2.4)

By the similar arguments of [8, Theorem 3.1], we can get the following local
existence of a solution to problem (1.1).

Theorem 2.2 (Local existence). Let f(u) satisfy the assumptions (H1) and (H2),
u0 ∈ H and u1 ∈ L2(Ω). Then problem (1.1) admits a unique local solution over
[0, T0], where T0 is the maximal existence time of u(x, t). Moreover, there holds either
T0 = +∞ or T0 < +∞ and

lim
t→T0

‖u(t)‖ = +∞.

Next we show that the depth of potential well is positive, which will be used in
the proof of the finite time blow up of the solution to problem (1.1).

Lemma 2.3 (Depth of potential well). Let f(u) satisfy the assumptions (H1) and (H2).
Then there holds

d = p− 1
2(p+ 1)

(
1

ACq+1
∗

) 2
q−1

, (2.5)

where C∗ = sup0 6=u∈H
‖u‖q+1
‖u‖H , if u is the solution to problem (1.1).

Proof. From the definition of d it implies that for any u ∈ N there holds I(u) = 0 and
‖u‖H 6= 0, which together with the assumption (H1) gives

‖u‖2H =
∫

Ω

uf(u)dx ≤ A‖u‖q+1
q+1 = ACq+1

∗ ‖u‖q−1
H ‖u‖2H ,

i.e.,

‖u‖2H ≥
(

1
ACq+1
∗

) 2
q−1

. (2.6)
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In addition, by (2.2), (2.3) and the assumption (H2) we get

J(u) = 1
2‖u‖

2
H −

∫

Ω

F (u)dx

≥ 1
2‖u‖

2
H −

1
p+ 1

∫

Ω

uf(u)dx = p− 1
2(p+ 1)‖u‖

2
H + 1

p+ 1I(u),
(2.7)

which together with I(u) = 0 and (2.6) implies

J(u) ≥ p− 1
2(p+ 1)‖u‖

2
H ≥

p− 1
2(p+ 1)

(
1

ACq+1
∗

) 2
q−1

.

Therefore, by the definition of potential well we get (2.5).

3. FINITE TIME BLOW UP FOR SUBCRITICAL INITIAL ENERGY

The set B is invariant under the flow of problem (1.1).
Lemma 3.1. Let f(u) satisfy the assumptions (H1) and (H2), u0 ∈ H and
u1 ∈ L2(Ω). Assume that E(0) < d, then the solution to problem (1.1) belongs
to B, provided that u0(x) ∈ B.
Proof. Let u(t) be any weak solution to problem (1.1) with E(0) < d, u0(x) ∈ B
and T0 be the maximum existence time of u(x, t). Then from (2.4) it implies that
E(u(t)) = E(0) < d for t ∈ (0, T0). Next we claim u(t) ∈ B for t ∈ [0, T0). Arguing by
contradiction we suppose that t∗ ∈ (0, T0) is the first time such that I(u(t∗)) = 0 and
I(u(t)) < 0 for t ∈ [0, t∗). Then by the definition of depth of potential well d, we have

d > E(0) ≥ E (u(t∗)) ≥ J (u(t∗)) ≥ d,

which is a contradiction.

Lemma 3.2. Under the conditions of Lemma 3.1, there holds

d <

(
1
2 −

1
p+ 1

)
‖u‖2H . (3.1)

Proof. From Lemma 3.1 we see that I(u) < 0, which together with the assumption
(H1) implies that

‖u‖2H <

∫

Ω

uf(u)dx ≤ A‖u‖q+1
q+1 = ACq+1

∗ ‖u‖q−1
H ‖u‖2H ,

namely

‖u‖2H >

(
1

ACq+1
∗

) 2
q−1

,

where C∗ is defined in Lemma 2.3. Recalling (2.5), it is easy to get (3.1).
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In the following, with the aid of Lemma 3.1 and Lemma 3.2 we prove a finite time
blow up result of the solution when E(0) < d.

Theorem 3.3 (Blow up for subcritical initial energy). Let f(u) satisfy the assumptions
(H1) and (H2), u0 ∈ H and u1 ∈ L2(Ω). Assume that E(0) < d and u0 ∈ B, then
the solution of problem (1.1) blows up in finite time.

Proof. Let u(t) be any solution of problem (1.1) with E(0) < d and u0 ∈ B. Then
from Lemma 3.1 it follows that u ∈ B. Arguing by contradiction, we suppose that the
solution u(x, t) is global. Then for any T0 > 0, we introduce the following auxiliary
function

B(t) := ‖u‖2 + α

t∫

0

‖∇u(τ)‖2dτ + α(T0 − t)‖∇u0‖2. (3.2)

Clearly B(t) > 0 for all t ∈ [0, T0]. From the continuity of B(t) in t we can conclude
that there exists ρ > 0 such that

B(t) ≥ ρ for all t ∈ [0, T0], (3.3)

where ρ is independent of the choice of T0. Further, for t ∈ [0, T0], one gets

B′(t) = 2(u, ut) + α‖∇u‖2 − α‖∇u0‖2 = 2(u, ut) + 2α
t∫

0

(∇u(τ),∇uτ (τ)) dτ (3.4)

and
B′′(t) = 2‖ut‖2 + 2〈utt, u〉+ 2α(∇u,∇ut) = 2‖ut‖2 − 2I(u). (3.5)

The equality (3.4) implies that

(B′(t))2 = 4


(u, ut)2 + 2α(u, ut)

t∫

0

(∇u(τ),∇uτ (τ)) dτ




+ 4


α

t∫

0

(∇u(τ),∇uτ (τ)) dτ




2

.

(3.6)

Then, from the Cauchy–Schwarz inequality it follows

(u, ut)2 ≤ ‖u‖2‖ut‖2,


α

t∫

0

(∇u(τ),∇uτ (τ)) dτ




2

≤ α
t∫

0

‖∇u(τ)‖2dτα
t∫

0

‖∇uτ (τ)‖2dτ
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and

2α(u, ut)
t∫

0

(∇u(τ),∇uτ (τ)) dτ

≤ 2‖u‖‖ut‖


α

t∫

0

‖∇u(τ)‖2dτ




1/2
α

t∫

0

‖∇uτ (τ)‖2dτ




1/2

≤ α‖u‖2
t∫

0

‖∇uτ (τ)‖2dτ + α‖ut‖2
t∫

0

‖∇u(τ)‖2dτ.

Therefore, (3.6) becomes

(B′(t))2 ≤ 4


‖u‖2 + α

t∫

0

‖∇u(τ)‖2dτ




‖ut‖2 + α

t∫

0

‖∇uτ (τ)‖2dτ




≤ 4B(t)


‖ut‖2 + α

t∫

0

‖∇uτ (τ)‖2dτ


 . (3.7)

Hence, from (3.5) and (3.7) we have

B′′(t)B(t)− λ+ 3
4 (B′(t))2

≥ B(t)


B′′(t)− (λ+ 3)


‖ut‖2 + α

t∫

0

‖∇uτ (τ)‖2dτ






≥ B(t)


−(λ+ 1)‖ut‖2 − 2I(u)− α(λ+ 3)

t∫

0

‖∇uτ (τ)‖2dτ


 ,

(3.8)

where p > λ > 1 will be decided later. Now, define

ξ(t) := −(λ+ 1)‖ut‖2 − 2I(u)− α(λ+ 3)
t∫

0

‖∇uτ (τ)‖2dτ. (3.9)

Recalling (2.7), (2.1) and (2.4) we can deduce (3.9) to

ξ(t) ≥(p− λ)‖ut‖2 + (p− 1)‖u‖2H − 2(p+ 1)E(0)

+ α (2p− 1− λ)
t∫

0

‖∇uτ (τ)‖2dτ.
(3.10)
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Let
φ(t) := (p− 1)‖u(t)‖2H − 2(p+ 1)E(0).

Then, from Lemma 3.2 it implies that

φ(t) = (p− 1)‖u(t)‖2H − 2(p+ 1)d+ 2(p+ 1)d− 2(p+ 1)E(0)
:≥ σ1 > 0.

(3.11)

At this point we can choose λ = p+1
2 , which guarantees that λ ∈ (1, p). Then, combining

(3.8)–(3.11) yields

B′′(t)B(t)− λ+ 3
4 B′(t)2 > ρσ1 > 0, t ∈ [0, T0]. (3.12)

If we substitute y(t) = B(t)−λ−1
4 into (3.12), we have

y′′(t) < −λ− 1
4 ρσy(t)

λ+7
λ−1 , t ∈ [0, T0],

which says lim
t→T−

∗
y(t) = 0, where T∗ < T0 and T∗ is independent of the initial

choice of T0. Hence, we can get

lim
t→T−

∗
B(t) = +∞,

which completes the proof.

4. GLOBAL EXISTENCE, ASYMPTOTIC BEHAVIOR
AND FINITE TIME BLOW UP FOR CRITICAL INITIAL ENERGY

Let us give a preliminary Lemma 4.1 to prove the global existence, asymptotic behavior
and blow up of the solution to problem (1.1) under the condition E(0) = d.
Lemma 4.1. Let f(u) satisfy the assumptions (H1) and (H2), u0 ∈ H and u1 ∈ L2(Ω).
Assume that u(x, t) be a solution (not steady state solution) of problem (1.1) over [0, T0],
where T0 is the maximum existence time of u(x, t). Then, there exists t0 ∈ (0, T0) such
that

t0∫

0

‖∇uτ‖2dτ > 0. (4.1)

Proof. Let u(t) be any solution (but not steady-state solution) to problem (1.1) with
E(0) = d and T0 be the maximum existence time of u(t). We prove that there exists
t0 ∈ (0, T0) such that (4.1) holds. If it is false, then

∫ t
0 ‖∇uτ‖2dτ ≡ 0 for 0 ≤ t < T0,

which together with Poincaré inequality yields
∫ t

0 ‖uτ‖2dτ ≡ 0 for 0 ≤ t < T0.
Therefore we can conclude ‖ut‖ ≡ 0 for t ∈ [0, T0) and du

dt ≡ 0 for x ∈ Ω, t ∈ [0, T0).
Then u(x, t) ≡ u0 for x ∈ Ω and 0 ≤ t < T0, i.e. u(x, t) is a steady-state solution to
problem (1.1), which is a contradiction.
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4.1. GLOBAL EXISTENCE FOR CRITICAL INITIAL ENERGY

First we present the global existence of the solution to problem (1.1) under the
condition E(0) < d (see [18]).
Lemma 4.2. Let f(u) satisfy the assumptions (H1) and (H2), u0 ∈ H and u1 ∈ L2(Ω).
Assume that E(0) < d and u0(x) ∈ G, then problem (1.1) admits a global solution.

The invariance of the stable set under the flow of problem (1.1) is acquired, which
plays a core role in proving the existence of the global solution to problem (1.1) at
critical initial energy level.
Lemma 4.3. Let f(u) satisfy the assumptions (H1) and (H2), u0 ∈ H and u1 ∈ L2(Ω).
Assume that E(0) = d, then G is invariant under the flow of problem (1.1).
Proof. Let u(t) be a solution to problem (1.1) with E(0) = d, I(u0) > 0 or ‖u0‖H = 0,
T0 be the maximum existence time of u(t). We prove that u(t) ∈ G for 0 < t < T0.
Arguing by contradiction, we suppose that there exists t0 ∈ (0, T0) such that
u(t0) ∈ ∂W , i.e. I(u(t0)) = 0, ‖u(t0)‖H 6= 0. Then by the definition of d we have
J(u(t0)) ≥ d. Hence together with

1
2‖ut‖

2 + J(u) + α

t∫

0

‖∇uτ‖2dτ = E(0) = d,

we can get α
∫ t0

0 ‖∇uτ‖2dτ = 0 and ‖ut‖ = 0 for 0 ≤ t ≤ t0, which implies du
dt = 0 for

x ∈ Ω, 0 ≤ t ≤ t0 and u(x, t) = u0(x). Hence we have I(u(t0)) = I(u0) > 0, which
contradicts I(u(t0)) = 0.

In the following, we present the global existence of the solution to problem (1.1)
with E(0) = d.
Theorem 4.4 (Global existence for critical initial energy). Let f(u) satisfy the
assumptions (H1) and (H2), u0 ∈ H and u1 ∈ L2(Ω). Assume that E(0) = d and
u0 ∈ G, then problem (1.1) admits a global solution.
Proof. First Theorem 2.2 gives the existence of the local solution over [0, T0], where T0
is the maximum existence time of u(t). Thus, it suffices to prove T0 = +∞. Clearly, if
u(x, t) is a steady-state solution of problem (1.1), then T0 = +∞. If u(x, t) is a solution
but not a steady-state solution of problem (1.1), then from Lemma 4.1 it follows that
there exists t0 ∈ (0, T0) such that

t0∫

0

‖∇uτ‖2dτ > 0.

From (2.4) and E(0) = d we get E(t0) = d − α
∫ t0

0 ‖∇uτ‖2dτ < d. In addition by
Lemma 4.3 we can obtain u(t0) ∈ G, i.e. I(u(t0)) > 0 or ‖u(t0)‖H = 0. Hence let
v(t) = u(t + t0), t ≥ 0, then v(t) is a solution to problem (1.1). From Lemma 4.2
it follows that the existence time of v(t) is infinite, which implies T0 = +∞.



306 Yang Yanbing, Md Salik Ahmed, Qin Lanlan, and Xu Runzhang

4.2. ASYMPTOTIC BEHAVIOR FOR CRITICAL INITIAL ENERGY

Recall the following result about exponential decay of the solution to problem (1.1) in
the subcritical case [18].

Lemma 4.5 ([18]). Let f(u) satisfy the assumptions (H1) and (H2), u0 ∈ H and
u1 ∈ L2(Ω). Assume that 0 < E(0) < d and u0(x) ∈ G, then for the global solution u
given in Lemma 4.2 there holds

‖ut(t)‖2 + ‖u(t)‖2H ≤ Ce−γt, (4.2)

for some positive constants C and γ.

In what follows, we give an asymptotic behavior of the solution to problem (1.1)
for E(0) = d.

Theorem 4.6 (Asymptotic behavior for critical initial energy). Under the conditions
of Theorem 4.4, yield

E(t) ≤ C1e
−γt, t0 ≤ t < +∞ (4.3)

and
‖ut(t)‖2 + ‖u(t)‖2H ≤ C2e

−γt, t0 ≤ t < +∞, (4.4)

for some t0 > 0, Ci > 0 (i = 1, 2) and γ > 0.

Proof. First Theorem 4.4 gives the global existence of the solution. Furthermore, if
u(t) is not a steady-state solution to problem (1.1), then from the proof of Theorem 4.4
it follows that there exists t0 > 0 such that E(t0) < d, I(u0) > 0 or ‖u0‖H = 0. Hence,
by Lemma 4.5 we have

E(t) ≤ Ce−γ(t−t0), t0 ≤ t < +∞

and (4.3), where C1 = Ceγt0 . Furthermore, by a similar argument as that in
[18, Lemma 4.5] we can obtain (4.4).

4.3. FINITE TIME BLOW UP FOR CRITICAL INITIAL ENERGY

First by the same argument of Lemma 4.3 we can get the following invariance of the
unstable set B under the flow of problem (1.1) at critical initial energy level, which is
used to prove the finite time blow up of the solution to problem (1.1) when E(0) = d.

Lemma 4.7. Let f(u) the assumptions (H1) and (H2), u0 ∈ H and u1 ∈ L2(Ω).
Assume that E(0) = d, then B is invariant under the flow of problem (1.1).

Next we prove the finite time blow up of the solution to problem (1.1) with
E(0) = d.

Theorem 4.8 (Finite time blow up for critical initial energy). Let f(u) satisfy the
assumptions (H1) and (H2), u0 ∈ H and u1 ∈ L2(Ω). Assume that E(0) = d and
I(u0) < 0, then the solution but not the steady-state solution u(t) to problem (1.1)
blows up in finite time.
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Proof. First, Theorem 2.2 gives the existence of the local solution over [0, T0], where
T0 is the maximum existence time of u(t). Let us prove that if u(t) is not a steady-state
solution to problem (1.1) then T0 < +∞. In fact, from Lemma 4.1 it follows that there
exists a t0 > 0 such that

t0∫

0

‖∇ut‖2dt > 0

and

E(t0) = d− α
t0∫

0

‖∇ut‖2dt < d.

In addition by Lemma 4.7 we can obtain I(u(t0)) < 0. Hence from Theorem 3.3
it follows that the maximum existence time of u(t) is finite.

5. FINITE TIME BLOW UP FOR SUPERCRITICAL INITIAL ENERGY

In this section, we consider the finite time blow up of the solution to problem (1.1)
with the supercritical initial energy level E(0) > d. Throughout this section we let

1 ≥ α > 0. (5.1)

First, let us prove the following lemma to aid us to obtain that the unstable set
B is invariant under the flow of problem (1.1) with the supercritical initial energy
E(0) > d.

Lemma 5.1 (Increasing function). Let f(u) satisfy the assumptions (H1) and (H2),
u0 ∈ H and u1 ∈ L2(Ω). Assume that E(0) > d and the initial data satisfy

‖∇u0‖2 + 2(u0, u1) > 2(p+ 1)(C + 2)
α(p− 1)C E(0), (5.2)

where C is the best constant of Poincaré inequality

‖∇u‖2 ≥ C‖u‖2. (5.3)

Then the map
t 7→ α‖∇u(t)‖2 + 2(u, ut)

is positive and strictly increasing provided that u(t) ∈ B.
Proof. We introduce the following auxiliary function

F (t) := α‖∇u(t)‖2 + 2(u, ut). (5.4)

Then, from Equation (1.1) it follows

F ′(t) = 2α(∇u,∇ut) + 2〈utt, u〉+ 2‖ut‖2 = 2‖ut‖2 − 2I(u).
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Hence, by u(t) ∈ B we have

F ′(t) > 0, t ∈ [0,+∞). (5.5)

Moreover, from (5.2) and E(0) > d > 0 it implies that

F (0) = α‖∇u0‖2 + 2(u0, u1) ≥ α
(
‖∇u0‖2 + 2(u0, u1)

)
> αAE(0) > 0, (5.6)

where A = 2(p+1)(C+2)
α(p−1)C . Therefore, from (5.5) and (5.6) we can see that

F (t) > F (0) > 0, which tells us that the map

t 7→ α‖∇u(t)‖2 + 2(u, ut)

is positive and strictly increasing.

In the following, we show the invariance of the unstable set B under the flow of
problem (1.1) with the supercritical initial energy E(0) > d.

Lemma 5.2 (Invariant set B). Let f(u) satisfy the assumptions (H1) and (H2),
u0 ∈ H and u1 ∈ L2(Ω). Then the solution to problem (1.1) with E(0) > d belongs
to B, provided that u0 ∈ B and (5.2) holds.

Proof. We prove u(t) ∈ B for t ∈ [0, T0). Arguing by contradiction, we suppose that
t0 ∈ (0, T0) is the first time such that

I(u(t0)) = 0 (5.7)

and
I(u(t)) < 0, t ∈ [0, t0).

Hence, from Lemma 5.1 it follows that the map

t 7→ α‖∇u(t)‖2 + 2(u, ut)

is positive and strictly increasing on the interval [0, t0), which together with (5.2) gives
that

‖∇u(t)‖2 + 2(u(t), ut(t)) ≥ α‖∇u(t)‖2 + 2(u(t), ut(t)) > α‖∇u0‖2 + 2(u0, u1)
> α

(
‖∇u0‖2 + 2(u0, u1)

)
> αAE(0)

for all t ∈ (0, t0), where A = 2(p+1)(C+2)
α(p−1)C , which means

‖∇u(t)‖2 + 2(u(t), ut(t)) >
2(p+ 1)(C + 2)

(p− 1)C E(0).

Moreover, from the continuity of u(t) and ut(t) in t, we obtain

‖∇u(t0)‖2 + 2(u(t0), ut(t0)) > 2(p+ 1)(C + 2)
(p− 1)C E(0). (5.8)
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Recalling (2.4), (2.1), (2.3) and (2.7), we have

E(0) =E(t) + α

t∫

0

‖∇uτ‖2dτ

=1
2‖ut‖

2 + 1
2‖u‖

2
H −

∫

Ω

F (u)dx+ α

t∫

0

‖∇uτ‖2dτ

≥1
2‖ut‖

2 + 1
2‖u‖

2
H −

1
p+ 1

∫

Ω

uf(u)dx+ α

t∫

0

‖∇uτ‖2dτ (5.9)

=1
2‖ut‖

2 +
(

1
2 −

1
p+ 1

)
‖u‖2H + 1

p+ 1I(u) + α

t∫

0

‖∇uτ‖2dτ,

which together with (5.7), (5.1), p > 1, (5.3) and Cauchy-Schwarz inequality shows
that

E(0) ≥1
2‖ut(t0)‖2 + p− 1

2(p+ 1)‖∇u(t0)‖2 +
(

1
2 −

1
p+ 1

)
‖∆u(t0)‖2

≥ p− 1
2(p+ 1)‖ut(t0)‖2 + p− 1

2(p+ 1)‖∇u(t0)‖2

≥ (p− 1)C
2(p+ 1)(C + 2)‖ut(t0)‖2 + p− 1

2(p+ 1)‖∇u(t0)‖2 (5.10)

= (p− 1)C
2(p+ 1)(C + 2)

(
‖ut(t0)‖2 + ‖∇u(t0)‖2

)
+ p− 1

(p+ 1)(C + 2)‖∇u(t0)‖2

≥ (p− 1)C
2(p+ 1)(C + 2)

(
‖ut(t0)‖2 + ‖∇u(t0)‖2

)
+ (p− 1)C

(p+ 1)(C + 2)‖u(t0)‖2

= (p− 1)C
2(p+ 1)(C + 2)

(
‖ut(t0)‖2 + 2‖u(t0)‖2 + ‖∇u(t0)‖2

)

≥ (p− 1)C
2(p+ 1)(C + 2)

(
2(u(t0), ut(t0)) + ‖u(t0)‖2 + ‖∇u(t0)‖2

)

≥ (p− 1)C
2(p+ 1)(C + 2)

(
2(u(t0), ut(t0)) + ‖∇u(t0)‖2

)
.

Obviously (5.10) contradicts (5.8). So the proof is completed.

In the end we prove the finite time blow up result of the solution to problem (1.1)
with the supercritical initial energy E(0) > d.
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Theorem 5.3 (Blow up for supercritical initial energy). Let f(u) satisfy the assump-
tions (H1) and (H2), u0 ∈ H and u1 ∈ L2(Ω). Assume that E(0) > d, u0 ∈ B and
(5.2) holds, then the solution of problem (1.1) blows up in finite time.

Proof. Recalling the auxiliary function B(t) defined as (3.2) and the proof of Theo-
rem 3.3, we have (3.8)-(3.10). Then, from (5.3) and the Cauchy–Schwarz inequality
we can deduce (3.10) to

ξ(t) ≥(p− λ)‖ut‖2 + (p− 1)‖∇u‖2 − 2(p+ 1)E(0) + (p− 1)‖∆u‖2

+ (2p− 1− λ)
t∫

0

‖∇uτ (τ)‖2dτ

=(p− λ)‖ut‖2 + 2(p− λ)
C

‖∇u‖2 − 2(p+ 1)E(0)

+
(

(p− 1)− 2(p− λ)
C

)
‖∇u‖2 + (2p− 1− λ)

t∫

0

‖∇uτ (τ)‖2dτ

≥(p− λ)‖ut‖2 + 2(p− λ)‖u‖2 − 2(p+ 1)E(0) (5.11)

+
(

(p− 1)− 2(p− λ)
C

)
‖∇u‖2 + (2p− 1− λ)

t∫

0

‖∇uτ (τ)‖2dτ

≥(p− λ)
(
‖ut‖2 + 2‖u‖2

)
+
(

(p− 1)− 2(p− λ)
C

)
‖∇u‖2 − 2(p+ 1)E(0)

+ (2p− 1− λ)
t∫

0

‖∇uτ (τ)‖2dτ

≥(p− λ)
(
2(u, ut) + ‖u‖2

)
+
(

(p− 1)− 2(p− λ)
C

)
‖∇u‖2 − 2(p+ 1)E(0)

+ (2p− 1− λ)
t∫

0

‖∇uτ (τ)‖2dτ.

At this point we choose λ = C+2p
C+2 , which guarantees that λ ∈ (1, p), since p > 1. Then,

by a simple computation and λ < 1 + 2p, (5.11) becomes

ξ(t) ≥ C(p− 1)
C + 2

(
2(u, ut) + ‖u‖2 + ‖∇u‖2

)
− 2(p+ 1)E(0)

>
C(p− 1)
C + 2

(
2(u, ut) + ‖∇u‖2

)
− 2(p+ 1)E(0),

(5.12)
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which together with (5.1), Lemma 5.2 and Lemma 5.1 gives

ξ(t) > C(p− 1)
C + 2

(
α‖∇u(t)‖2 + 2(u(t), ut(t))

)
− 2(p+ 1)E(0),

>
C(p− 1)
C + 2

(
α‖∇u0‖2 + 2(u0, u1)

)
− 2(p+ 1)E(0)

>
αC(p− 1)
C + 2

(
‖∇u0‖2 + 2(u0, u1)

)
− 2(p+ 1)E(0)

:= σ2 > 0, t ∈ (0, T0).

(5.13)

Therefore, by (3.8), (3.9), (5.12) and (5.13), we have

B′′(t)B(t)− λ+ 3
4 B′(t)2 > ρσ2 > 0, t ∈ [0, T0].

The remainder proof of this theorem, by the concavity argument, is similar to that of
Theorem 3.3.
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