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Abstract. Given a principal G-bundle π : M → B, let HG(M) be the identity component of
the group of G-equivariant homeomorphisms on M . The problem of the uniform perfectness
and boundedness of HG(M) is studied. It occurs that these properties depend on the structure
of H(B), the identity component of the group of homeomorphisms of B, and of B itself. Most
of the obtained results still hold in the Cr category.
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1. INTRODUCTION

Let M be a topological manifold and let H(M) denote the group of all homeomor-
phisms of M that can be joined to the identity by a compactly supported isotopy.
Mather proved in [14] that the group H(Rm) is acyclic. His result combined with
a fragmentation property for homeomorphisms implies that H(M) is perfect, i.e. equal
to its commutator subgroup. Observe that H(M) is simple as well, provided M is
connected and ∂M = ∅ (Corollary 2.11).

As a topological group, H(M) will be endowed with the majorant (or graph, or
Whitney) topology, cf. section 2. If M is compact this topology coincides with the
compact-open topology.

Assume that G is a Lie group acting freely and properly on M . Then M can be
regarded as the total space of a principal G-bundle π : M → B. (see, e.g., Theorem
1.11.4 in [6]). An equivariant homeomorphism f of M will be called transversely
compactly supported if π(supp(f)) is compact. In the case of G compact it is the
same as being compactly supported. Next, an isotopy is said to be transversely
compactly supported if it consists of transversely compactly supported elements. By
HG(M) we will denote the group of all equivariant homeomorphisms of M which are
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isotopic to the identity through transversely compactly supported equivariant isotopies.
In [16] the third-named author showed the following result.

Theorem 1.1. Under the above assumption, the group HG(M) is perfect.

Actually, in [16] Theorem 1.1 was formulated for G compact, but its proof is still
valid in our case.

Analogous theorems for equivariant Cr-diffeomorphisms (1 6 r 6∞, r 6= dimM −
dimG+ 1) was earlier proved by Banyaga ([3,4]) for G being a torus, and by Abe and
Fukui ([1]) for an arbitrary compact Lie group G, provided G acts freely on M . Abe
and Fukui in [2] showed also similar results for equivariant Lipschitz homeomorphisms.

Recently Fukui studied in [10] the uniform perfectness of the identity component
of the group of compactly supported equivariant Cr-diffeomorphisms under the above
assumptions. He showed a relation between the uniform perfectness of this group and
the uniform perfectness of the identity component of the group of Cr-diffeomorphisms
of B.

In the present paper we will generalize the above results in various directions.
Firstly, we would like to extend the main result in [10] to all homeomorphisms, partly
by using similar methods. In particular, we observe that the groups studied in [16] are
uniformly perfect under some assumptions.

For a topological group G by PG we denote the isotopy (or path) group of G, that
is the totality of f : I → G with f(0) = e, I = [0, 1].

We will need the following notions. By P : HG(M)→ H(B) we denote the homo-
morphism given by P (f)(π(x)) = π(f(x)). Given a perfect group H, the symbol cldH
will stand for the commutator length diameter of H. If G ≤ H(N) is a homeomorphism
group of a manifold N then fdG will denote the diameter of the fragmentation norm
on G. See Section 3 for more details.

Theorem 1.2. Let π : M → B be a principal G-bundle, where G is a Lie group,
and n = dimB. Assume that either B is a compact manifold (possibly with boundary,
provided dimB ≥ 2), or B is an open metrizable manifold. Then:

1. If HG(M) is uniformly perfect then so is H(B).
2. If the fragmentation norm on the isotopy group PH(B) of H(B) is bounded, then
HG(M) is uniformly perfect. Moreover, the commutator length diameter cldHG(M)
of HG(M) satisfies

cldHG(M) ≤ fdPH(B) + 2(n+ 1).

3. If H(B) is uniformly perfect and ker(P ) possesses a finite number of components,
then HG(M) is uniformly perfect and

cldHG(M) ≤ cldH(B) + 2(n+ 1) + l,

where l is the number of components of ker(P ).

Secondly, we consider, more generally, the boundedness of the groups in question.
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Theorem 1.3. Under the above assumption, the following statements hold:

1. If HG(M) is bounded then H(B) is bounded as well.
2. If the fragmentation norm of the isotopy group PH(B) of H(B) is bounded, then
HG(M) is bounded too. Furthermore, for any conjugation-invariant norm ν on
HG(M) and for all f ∈ HG(M) one has

ν(f) ≤ 14(fdPH(B) + n+ 1)ν(ϕ),

where ϕ is a moving map in a ball, cf. Section 3.

Observe that the group PH(B) is fragmentable due to Corollaries 2.7 and 2.10
below.

The proofs will be given in Section 4. The last section is devoted to some remarks
on the smooth case. Namely we formulate analogs of Theorems 1.2 and 1.3 in this
case.

Throughout we will assume that all manifolds are metrizable and so paracompact.

2. FRAGMENTATIONS OF HOMEOMORPHISMS AND ISOTOPIES

Let N be a topological manifold. The following type of fragmentations is important
when studying groups of homeomorphisms.

Definition 2.1. A subgroup G ≤ H(N) is called locally continuously fragmentable
with respect to a finite open cover {Ui}di=1 and a neighborhood U of id ∈ G if there
exist continuous mappings σi : U → G, i = 1, . . . , d, such that for all f ∈ U one has

f = σ1(f) . . . σd(f), supp(σi(f)) ⊂ Ui, for all i.

Moreover, we assume that supp(σi(f)) is compact. If U = G then G is called globally
continuously fragmentable.

For a topological space X and a topological group G ≤ H(N), let C(X,G) stand
for the group of continuous maps X → G with the pointwise multiplication and the
compact-open topology. For f ∈ C(X,G) we define supp(f) =

⋃
x∈X supp(fx), where

fx : p ∈ N 7→ f(x)(p) ∈ N . Then Definition 2.1 extends obviously for C(X,G).

Lemma 2.2. If G is a topological group then C(X,G) is a topological group too.

The proof is trivial.

Proposition 2.3. If G is locally continuously fragmentable then so is C(X,G).

Proof. Let σi : U → G, i = 1, . . . , d, be as in Definition 2.1. If Y ⊂ X is compact,
set V = {f ∈ C(X,G) : f(Y ) ⊂ U} and define continuous maps σCi : V → C(X,G)
by the formulae σCi (f)(x) = σi(fx), where f ∈ C(X,G), x ∈ X. It follows that
supp(σCi (f)x) ⊂ Ui for all i and x. Consequently we have supp(σCi (f)) ⊂ Ui.
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For a topological group G we denote by PG = {f ∈ C(I,G) : f(0) = e} the isotopy
(or path) group. If G = H(N), in view of [13, Lemma 41.7], for all f ∈ PG there is
a compact subset K ⊂ N such that supp(f) =

⋃
t∈I supp(f t) ⊂ K.

Let G be a Lie group. Given a principal G-bundle π : M → B the gauge group
Gau(M) is the subgroup of HG(M) of all elements that project to idB. That is,
Gau(M) is the space of G-equivariant transversely compactly supported mappings
C(M, (G, conj))G. It follows that Gau(M) identifies with C(B ←M [G, conj]), the space
of compactly supported sections of the associated bundle M [G, conj]. Consequently,
any f ∈ Gau(M) in a trivialization of π over Ui ⊂ B identifies with a mapping
f (i) : Ui → G such that f(p) = p.f (i)(π(p)).

Denote by P : HG(M) → H(B) the mapping defined by P (f)(π(x)) = π(f(x)).
Then kerP ⊂ Gau(M).

Let dimB = n. By a ball U in B we will mean relatively compact, open ball
imbedded with its closure in B. Similarly we define a half-ball if B has boundary. For
B compact, let d = dB is the smallest integer such that B =

⋃d
i=1 Ui where Ui is a ball

or half-ball such that cl(Ui) 6= B for each i. Clearly d ≤ n+ 1 for B compact. Next
let B be an open manifold. Then B admits an open cover {Vj}n+1

j=1 (a so-called Palais
cover) such that each Vj is the union of a countable, locally finite family of balls with
pairwise disjoint closures.
Proposition 2.4. Let G be a Lie group and let π : M → B be a principal G-bundle.
Assume that either B is a compact manifold (possibly with boundary) or B is an open
manifold. Then P Gau(M) is globally continuously fragmentable (in the obvious sense)
with respect to {Ui}di=1 in the former case, and with respect to {Vj}n+1

j=1 in the latter.
Proof. (See also [10].) We show the proof in the first case, the second is the same.
Assume that {λi}di=1 is a partition of unity subordinate to {Ui}di=1. Let g = {gt} ∈
P Gau(M). Then clearly gt ∈ kerP for all t. In general, P Gau(M) = P kerP .

Put
ht1(p) = gλ1(π(p))t, ht2(p) = (h1

1)−1gλ1(π(p))+λ2(π(p))t,

and for i = 3, . . . , d, we define

hti(p) = (h1
1 · · ·h1

i−1)−1gλ1(π(p))+···+λi−1(π(p))+λi(π(p))t.

Then supp(P (hti)) ⊂ Ui for all i and t, and g = h1
1 . . . h

1
d. Moreover, the maps

σi : g 7→ hi = {hti} are continuous.

We will use the deformation properties for the spaces of imbeddings obtained by
Edwards and Kirby in [7]. See also Siebenmann [18]. First let us recall some notions
and the main theorem of [7]. From now on N is a metrizable topological manifold
and I = [0, 1]. If U is a subset of N , a proper imbedding of U into N is an imbedding
h : U → N such that h−1(∂N) = U ∩ ∂N . An isotopy of U into N is a family
of imbeddings ht : U → N , t ∈ I, such that the map h : U × I → N defined by
h(x, t) = ht(x) is continuous. An isotopy is proper if each imbedding in it is proper.
Now let C and U be subsets of N with C ⊆ U . By I(U,C;N) we denote the space
of proper imbeddings of U into N which equal the identity on C, endowed with the
compact-open topology.
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Suppose X is a space with subsets A and B. A deformation of A into B is
a continuous mapping ϕ : A × I → X such that ϕ|A×0 = idA and ϕ(A × 1) ⊆ B.
If U is a subset of I(U ;N) and ϕ : U × I → I(U ;N) is a deformation of U , we may
equivalently view ϕ as a map ϕ : U × I × U → N such that for each h ∈ U and t ∈ I,
the map ϕ(h, t) : U → N is a proper imbedding.

If W ⊆ U , a deformation ϕ : U × I → I(U ;N) is modulo W if ϕ(h, t)|W = h|W for
all h ∈ U and t ∈ I.

Suppose ϕ : P × I → I(U ;N) and ψ : V × I → I(U ;N) are deformations of subsets
of I(U ;N) and suppose that ϕ(U ×1) ⊆ V . Then the composition of ψ with ϕ, denoted
by ψ ? ϕ, is the deformation ψ ? ϕ : U × I → I(U ;N) defined by

ψ ? ϕ(h, t) =
{
ϕ(h, 2t) for t ∈ [0, 1/2],
ψ(ϕ(h, 1), 2t− 1) for t ∈ [1/2, 1].

(2.1)

The main result in [7] is the following theorem.

Theorem 2.5. Let N be a topological manifold and let U be a neighborhood in N of
a compact subset C. For any neighborhood V of the inclusion i : U ⊂ N in I(U ;N)
there are a neighborhood U of i ∈ I(U ;N) and a deformation ϕ : U × I → V into
I(U,C;N) which is modulo of the complement of a compact neighborhood of C in U
and such that ϕ(i, t) = i for all t. Moreover, if Di ⊂ Vi, i = 1, . . . , q, is a finite family
of closed subsets Di with their neighborhoods Vi, then ϕ can be chosen so that the
restriction of ϕ to (U ∩ I(U,U ∩ Vi;N))× I assumes its values in I(U,U ∩Di;N) for
each i.

Now we wish to show thatH(N) is locally continuously fragmentable (Definition 2.1)
provided N is compact.

Proposition 2.6. Let N be a compact topological manifold and let {Ui}di=1 be an
open relatively compact cover of N . Then there exist U , a neighborhood of the identity
in H(N), and continuous mappings σi : U → H(N), i = 1, . . . , d, such that h =
σ1(h) . . . σd(h) and supp(σi(h)) ⊂ Ui for all i and all h ∈ U . That is, H(N) satisfies
Definition 2.1.

Proof. (See also [7].) First we have to shrink the cover {Ui}di=1 d times, that is we
choose an open Ui,j for every i = 1, . . . , d and j = 0, . . . , d with Ui,0 = Ui such that⋃d
i=1 Ui,j = N for all j and such that cl(Ui,j+1) ⊂ Ui,j for all i, j. We make use of

Theorem 2.5 d times with q = 1. Namely, for i = 1, . . . , d we have a neighborhood
Ui of the identity in I(N,

⋃i−1
α=1 Uα,i−1;N) and a deformation φi : Ui × I → H(N)

which is modulo N \Ui,0 and which takes its values in I(N,
⋃i
α=1 cl(Uα,i);N) and such

that φi(id, t) = id for all t. Here we apply Theorem 2.5 with C = cl(Ui,i), U = Ui,0,
D1 =

⋃i−1
α=1 cl(Uα,i) and V1 =

⋃i−1
α=1 Uα,i−1. Taking a neighborhood U of id small

enough, we have that φd ? · · · ? φ1 restricted to U × I is well defined. For every h ∈ U
we set h0 = h and hi = φi ? · · · ? φ1(h, 1), i = 1, . . . , d. It follows that hd = id and
h =

∏d
i=1 hih

−1
i−1. It suffices to define σi : U → H(N) by σi(h) = hih

−1
i−1 for all i.
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It follows from Propositions 2.6 and 2.3 the following result.

Corollary 2.7. Assume that N is compact and H(N) is locally continuously frag-
mentable with respect to a cover {Ui}di=1 of N and a neighborhood U of id (Defini-
tion 2.1). Then the isotopy group PH(N) is locally continuously fragmentable with
respect to {Ui}di=1 and Û = {f ∈ C(I,N) : f(I) ⊂ U}.

Recall the notion of the majorant or graph topology (see, e.g., [7] or [13]). Let X and
Y be Hausdorff spaces and let C(X,Y ) be the space of all continuous mappings X → Y .
For f ∈ C(X,Y ) by graphf : X → X×Y we denote the graph mapping. The majorant
topology (or the graph topology, or Whitney topology) on C(X,Y ) is given by the basis
of all sets of the form {f ∈ C(X,Y ) : graphf (X) ⊂ U}, where U runs over all open sets
in X × Y . The majorant topology is Hausdorff since it is finer than the compact-open
topology. If X is paracompact and (Y, d) is a metric space then for f ∈ C(X,Y ) one has
a basis of neighborhoods of the form {g ∈ C(X,Y ) : d(f(x), g(x)) < ε(x), ∀x ∈ X},
where ε runs over all positive continuous functions on X. This topology is independent
of the choice of metric.

Remark 2.8 (See [7], Remark on p. 79.). Theorem 2.5 can be generalized to the
consideration of proper imbeddings of a neighborhood U of a closed subset C of
a manifold N . In this case I(U,C;N) is endowed with the majorant topology and the
deformations considered are majorant deformations, defined in a way analogous to
the above definition.

Proposition 2.9. Let N be an open manifold and {Vj}n+1
j=1 a Palais cover of N . Then

H(N) is locally continuously fragmentable with respect to {Vj}n+1
j=1 .

Proof. We apply the version of Theorem 2.5 mentioned in Remark 2.8 and repeat
the proof of 2.6 with {Vj}n+1

j=1 instead of {Ui}di=1. There is also the problem whether
supp(hti) is compact (the last requirement in Definition 2.1), since Vj need not be
relatively compact. But this is clearly fulfilled because supp(h) is compact and the
deformations involved are modulo the complement of a neighborhood of C.

A homeomorphism group G ≤ H(N) is called fragmentable with respect to some
open cover O of N if each element of G can be written as a product of homeomorphisms
supported in elements of O. Clearly, if G is locally continuously fragmentable with
respect to O then it is fragmentable with respect to O.

Corollary 2.10. Let N be an open manifold. Then PH(N) is locally continuously
fragmentable with respect to {Vj}n+1

j=1 . Consequently, PH(N) is fragmentable with
respect to the family of balls.

Indeed, this follows from Lemma 2.2 and Propositions 2.3 and 2.9. The second
assertion is trivial.

Corollary 2.11. The group H(N) is perfect and, provided N is connected and ∂N = ∅,
H(N) is also simple. The universal covering group H(N)∼ is perfect as well.
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Proof. According to Mather [14] the group H(Rn) is perfect. Next Proposition 2.6
or 2.9 applied to H(N) implies that H(N) is perfect. The simplicity then follows from
[15] (see also [8]).

To show the second assertion we employ a reasoning from Mather [14] concerning
the perfectness for H(U)∼ instead of H(U), U being a ball or half-ball (see also the
proof of Lemma 3.5(1) below) with some modifications as in [15]. Next it suffices to
apply Corollary 2.7 or 2.10.

Observe that the group Homeoc(N) of all compactly supported homeomorphisms
of N need not be path-connected. In fact, this is so for N as follows. Delete from the
cylinder S1 × R a countable number of small discs centered at (1, n), where n ∈ Z.
Then N is an open manifold obtained by sewing up a copy of T2 \B2 to each boundary
component of the above space.

However Homeoc(Rm)is path-connected due to the Alexander trick: if supp(g) is
compact, we define an isotopy gt : Rn → Rn, t ∈ I, from the identity to g, by

gt(x) =
{
tg
( 1
tx
)

for t > 0,
x for t = 0.

Remark 2.12. When we consider the identity component of the compactly supported
Cr diffeomorphism group on a smooth manifold N , it is well-known that its universal
covering is perfect, provided r 6= dimN + 1 ([4]). However, we do not know whether
its isotopy group is perfect.

3. BOUNDEDNESS OF THE GROUPS OF EQUIVARIANT HOMEOMORPHISMS

A group H is called bounded if it is bounded with respect to any bi-invariant metric
on it. This notion is strictly related to the notion of a conjugation-invariant norm.

A conjugation-invariant norm on H is a function ν : H → [0,∞) which satisfies
the following conditions. For any g, h ∈ H,
1. ν(h) > 0 if and only if h 6= e,
2. ν(h−1) = ν(h),
3. ν(hg) ≤ ν(h) + ν(g),
4. ν(ghg−1) = ν(h).
It is easily seen that H is bounded if and only if any conjugation-invariant norm on H
is bounded.

The following general fact will be in use.
Lemma 3.1 ([5]). If a group H admits a homomorphism onto an unbounded group,
then H itself is unbounded.

Observe that the commutator length clH is a conjugation-invariant norm on [H,H].
In particular, if H is a perfect group then clH is a conjugation-invariant norm on H.
For any perfect group H denote by cldH the commutator length diameter of H,
cldH := suph∈H clH(h). Then H is called uniformly perfect if cldH <∞.
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Now let G is a subgroup of H(N) and assume that G is fragmentable (with respect
to balls and half-balls). For h ∈ G, h 6= id, we define the fragmentation norm fragG(h)
to be the least integer r > 0 such that h = h1 . . . hr with supp(hi) ⊂ Ui for some
ball (or half-ball) Ui. By definition fragG(id) = 0. Denote by fdG the diameter of
fragmentation norm, namely fdG = suph∈G fragG(h).

We also have the following concept of conjugation-invariant norm.
Definition 3.2. Let H be a connected topological group and let U be a neighborhood
of e ∈ H. By Ũ we denote the “saturation” of U with respect to conjh for h ∈ H
and the inversion i, that is Ũ =

⋃
h∈H hUh

−1 ∪ hU−1h−1. Then for h ∈ H, h 6= e, by
µU (h) we denote the smallest k ∈ N such that h = h1 . . . hk with hi ∈ Ũ for all i. It is
easily seen that µU is a conjugation-invariant norm.

Clearly if U ⊂ V then µV ≤ µU .
Proposition 3.3. If G ≤ H(N) is bounded and locally continuously fragmentable
with respect to an open cover {Ui}di=1, there is p ∈ N such that any g ∈ G admits
a decomposition g = g1 . . . gp with each gj supported in some Ui(j).

In fact, let U , σi, i = 1, . . . , d, be as in Definition 2.1. Moreover, assume U−1 = U .
In view of the assumption kU = µU (G) <∞, where µU is as in Definition 3.2. Take
p = dkU .

When considering the boundedness or the uniform perfectness of homeo-
morphism groups, the idea of displacement is in use. A subgroup K of H
is called strongly m-displaceable if there is h ∈ H such that the subgroups
K,hKh−1, . . . , hmKh−mpairwise commute. Then we say that h m-displaces K. Then
Theorem 2.2 and Corollary 2.3 in [5] can be formulated as follows.
Theorem 3.4. Let ν be a conjugation-invariant norm on H and assume that h
m-displaces K for every m > 1. For every f ∈ [K,K] we have:
1. clH(f) 6 2,
2. ν(f) 6 14ν(h).

In the case of homeomorphism groups we have the following partial amelioration
of Theorem 3.4.
Lemma 3.5 (Basic Lemma). Let U be a ball or a half-ball of a topological manifold N .
If U is a half-ball we assume dimN ≥ 2.
1. There is ϕ ∈ H(U) such that any f ∈ H(U) can be written as a commutator of the

form f = [h, ϕ̄], where ϕ̄ is a conjugate of ϕ in H(U) and h ∈ H(U).
2. If ν is a conjugation-invariant norm on H(U) then ν is bounded on H(U) by 2ν(ϕ).
3. Let π : M → B be a principal G-bundle. Then for U , a ball or a half-ball in B, any
f ∈ HG(π−1(U)) can be written as a product of two commutators. Moreover, f can
be expressed in the form

f =
7∏

i=1
[hi, ϕ̄i],

where each ϕ̄i is a conjugate of the obvious lift to HG(π−1(U)) of ϕ as in (1) and
each hi ∈ HG(π−1(U)).
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4. Let U be a ball or a half-ball. A conjugation-invariant norm ν on HG(M) restricted
to the subgroup HG(π−1(U)) is bounded by 14ν(ϕ).

The homeomorphism ϕ specified in (1) will be called a moving map in a ball U .
Abusing the notation ϕ stands also for the lift of ϕ to HG(π−1(U)). It is defined
uniquely up to conjugation. Note that when we consider the Cr category, ϕ may be
chosen of class Cr. However, (1) and (2) are no longer true in the Cr category, while
(3) and (4) still hold.

Proof. (1) Fix f ∈ H(U). Then f ∈ H(V ), where V is a ball with cl(V ) ⊂ U . Next,
fix p ∈ U \ cl(V ) and set V0 = V . There exists a sequence of balls {Vk}∞k=1 such that
cl(Vk) ⊂ U for all k, the family {cl(Vk)}∞k=0 is pairwise disjoint, and Vk → p when
k →∞. Choose a homeomorphism ϕ ∈ H(U) such that ϕ(Vk−1) = Vk for k = 1, 2, . . .
Observe that V and ϕ depend on the choice of f ; however all such ϕ can be chosen
in such a way that they are pairwise conjugate. Here we use the fact that H(U) acts
transitively on the family of balls in U .

Now we define a continuous homomorphism S : H(V )→ H(U) by the formula

S(h) = ϕkhϕ−k onVk, k = 0, 1, . . .

and S(h) = id outside
⋃∞
k=0 Vk. It is clear that h = [S(h), ϕ], as required. Observe

that for an arbitrary f ∈ H(U) we can repeat this argument with a new ϕ conjugate
to the old one. If U is a half-ball then this procedure is easily repeated with ϕ moving
on the boundary.

(2) In fact, ν(f) = ν([h, ϕ̄]) ≤ ν(hϕ̄h−1) + ν(ϕ̄−1) = 2ν(ϕ).
(3) The first assertion follows from Theorems 1.1 and 3.4(1). To show the second

we will use the reasoning from section 2.2 in [5]. Given ψ ∈ H(U) we say that f is
a ψ-commutator if f = conjg[ψ, h] for some g, h ∈ H(U). According to the reasoning
from [5, Section 2.2], any element of [H(V ),H(V )] can be written as a product of
seven ϕ-commutators, provided V and ϕ are as in (1). Now since π−1(U) = U ×G, by
arguing componentwise, any homeomorphism belonging to the commutator subgroup
ofHG(π−1(V )) can be expressed as a product of seven ϕ̄-commutators, where ϕ̄(x, g) =
(ϕ(x), g). V being chosen arbitrarily, the same holds for any element of the commutator
subgroup of HG(π−1(U)). Finally we apply Theorem 1.1.

(4) is an immediate consequence of (3).

The following fact reveals a significance of the fragmentation norm for homeomor-
phism groups. Analogous theorem holds for diffeomorphism groups, cf. [5].

Theorem 3.6. The following statements are equivalent:

1. The group H(N) is bounded.
2. The fragmentation norm on H(N) is bounded.

If the above holds and ν is any conjugation-invariant norm on H(N) then

ν(h) ≤ 2frag(h)ν(ϕ),

where ϕ is a moving map in a ball.
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Proof. The part (1)⇒(2) is trivial. To show (2)⇒(1), let ν be a conjugation-invariant
norm on H(N). It suffices to show that ν is bounded on H(U), where U is a ball or
a half-ball. In the case of homeomorphisms this can be proved in a simpler manner
than in [5]. Namely it is an immediate consequence of Lemma 3.5(2) and the estimates
on ν that we obtain are better than in the smooth case, cf. Section 5.

Some other examples of bounded or unbounded homeomorphism groups, especially
diffeomorphism groups, symplectomorphism groups or contactomorphism groups, have
been specified in [5, 9, 11,12,17].

4. PROOFS OF THEOREMS 1.2 AND 1.3

We will need the following proposition.
Proposition 4.1. Let π : M → B be a principal G-bundle. Then the homomor-
phism P : HG(M)→ H(B) is surjective. Furthermore, the induced map for isotopies
P̄ : PHG(M)→ PH(B) is also surjective.
Proof. Obviously, the second assertion implies the first. To show the second, let
h ∈ PH(B). From Corollary 2.7 or 2.10 it follows that h = h1 . . . hp with each
hi ∈ PH(B) supported in a ball or in a half-ball. Consequently, each hi can be lifted
by means of a trivialization of π to an isotopy h̃i ∈ PHG(M) such that P̄ (h̃i) = hi.
Thus P̄ (h̃) = h, where h̃ = h̃1 . . . h̃p.

Proof of Theorem 1.2. (1) In view of the obvious argument it follows from Proposi-
tion 4.1.

(2) Let f ∈ HG(M) and let f̄ = {f̄ t} ∈ PHG(M) joining f to the identity. Then,
in view of the assumption,

P̄ (f̄) = f1 . . . fr,

where fi ∈ PH(B) is supported in a ball or half-ball Ui and r is bounded by fdPH(B).
According to Lemma 3.5(1) any fi can be written as fi = [hi, ϕi], where hi is supported
in Ui and ϕi is a moving map in Ui. Every hi ∈ PH(Ui) and ϕi ∈ H(Ui) can be lifted
to h̄i ∈ PHG(M) and ϕ̄i ∈ HG(M) due to Proposition 4.1. Set

h̄ = [h̄1, ϕ̄1] . . . [h̄r, ϕ̄r], ḡ = f̄ h̄−1 and g = ḡ1.

Since P̄ (h̄) = P̄ (f̄), it follows that ḡ is an isotopy in ker(P ) joining g to the identity.
Now in view of Proposition 2.4 g can be written as the product of at most n+ 1

factors, each of them supported in π−1(U), where U is a ball or a half-ball provided B
is compact. If B is open then U is a finite union of balls with disjoint closures. In view
of Lemma 3.5(3) in each case g can be expressed as a product of at most 2(n + 1)
commutators or 7(n+ 1) ϕ-commutators.

Consequently, f can be expressed as a product of r + 2(n + 1) commutators.
Therefore HG(M) is uniformly perfect and

cldHG(M) ≤ fdPH(B) + 2(n+ 1),
as required.

(3) The proof is analogous to that of Theorem 3.1. in [10].



On the boundedness of equivariant homeomorphism groups 405

Proof of Theorem 1.3. (1) It is an immediate consequence of Lemma 3.1 and Proposi-
tion 4.1.

(2) For f ∈ PHG(M) one has P̄ (f) ∈ PH(B) and we may apply Corollary 2.7
or 2.10 to get a fragmentation of isotopies

P̄ (f) = h1 . . . hp,

where each hi is supported in a ball or a half-ball, say Ui. Here p is bounded according
to the assumption. Due to Proposition 4.1 we define h̃i ∈ PHG(π−1(Ui)), the lifts
of hi, and we put h̃ = h̃1 . . . h̃p and g = fh̃−1 ∈ P ker(P ) as in the proof of 1.2. Due
to Lemma 3.5(4), ν(h̃i) ≤ 14ν(ϕ) for all i, where ϕ is a moving map in a ball. Now
we apply Proposition 2.4 to g and we obtain a fragmentation g = g1 . . . gd, where
d ≤ n + 1 for dimension reasons, and supp(gi) ⊂ π−1(Vi), where Vi is either a ball
or a half-ball or a finite union of balls with pairwise disjoint closures. According to
Lemma 3.5(4), ν(gi) ≤ 14ν(ϕ) for all i. Thus

ν(f) ≤ 14(fdPH(B) + n+ 1)ν(ϕ).

This completes the proof.

5. REMARKS ON THE SMOOTH CASE

Let π : M → B be a smooth principal G-bundle, where G is a compact Lie group. We
define DrG(M), 1 ≤ r ≤ ∞, to be the group of all compactly supported G-equivariant
diffeomorphisms of class Cr that can be joined to the identity by a compactly supported
G-equivariant isotopy of class Cr. The main theorem in [1] is the following.
Theorem 5.1 ([1]). The group DrG(M) is perfect if 1 ≤ r ≤ ∞ and r 6= dimB + 1.

Since in the Cr case, 1 ≤ r ≤ ∞, fragmentations of diffeomorphisms are constructed
by means of isotopies and the corresponding smooth families of vector fields, the
following fact has a standard proof (see, e.g., [4]), easier than that in the topological
case (cf. Section 2).
Proposition 5.2. Let N be a Cr manifold. The group Dr(N) is fragmentable with
respect to the family of balls and half-balls. The same is true for the group PrDr(N)
of all Cr-smooth isotopies of Dr(N).

In the proof of the following analogue of Theorem 3.6. Here we apply Theorem
3.4(2) instead of Lemma 3.5(2).
Theorem 5.3. Under the above notation, the following statements are equivalent:
1. The group Dr(N) is bounded.
2. The fragmentation norm on Dr(N) is bounded.
Moreover, if ν is any conjugation-invariant norm on Dr(N) then

ν(h) ≤ 14frag(h)ν(ϕ),

where ϕ is a moving map in a ball.
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Now we can extend slightly the main theorem in the Fukui’s paper [10] as follows.

Theorem 5.4. Let π : M → B be a Cr principal G-bundle, where G is a compact Lie
group and 1 ≤ r ≤ ∞ and r 6= n+ 1, n = dimB. Assume that either B is a compact
manifold (possibly with boundary if dimB ≥ 2), or B is an open manifold. Then:

1. If DrG(M) is uniformly perfect then Dr(B) is uniformly perfect.
2. If the fragmentation norm of the isotopy group PrDr(B) of Dr(B) is bounded,

then DrG(M) is uniformly perfect, and the commutator length diameter cldDr
G

(M)
of DrG(M) satisfies

cldDr
G

(M) ≤ 2(fdPrDr(B) + n+ 1).

3. If Dr(B) is uniformly perfect and ker(P ) possesses a finite number of components,
then DrG(M) is uniformly perfect and

cldDr
G

(M) ≤ cldDr(B) + 2(n+ 1) + l,

where l is the number of components of ker(P ).

The proof is completely analogous to that of Theorem 1.2 with the only three
exceptions. First we have to use Proposition 5.2 for PrDr(B). Second, Lemma 3.5 is
no longer true in the smooth case and has to be replaced by Theorem 3.4(1) (or by
direct reasonings from Tsuboi [19] and Fukui [10]). Third, we have to apply the fact
that DrG(M) is perfect (Theorem 5.1).

For the same reasons we have the following smooth counterpart of Theorem 1.3.

Theorem 5.5. Under the above assumption, we have:

1. If DrG(M) is bounded then Dr(B) is bounded too.
2. If the fragmentation norm of the isotopy group PrDr(B) of Dr(B) is bounded, then
DrG(M) is bounded as well.

For any conjugation-invariant norm ν on DrG(M) and for all f ∈ DrG(M) one has

ν(f) ≤ 14(fdPrDr(B) + n+ 1)ν(ϕ),

where ϕ is a moving map in a ball.

In the proof we make similar modifications as in Theorem 5.4.
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