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Abstract. In this paper, we study factorizability of C-valued formal series at fixed vertices,
called the graph zeta functions, induced by the reduced length on the graph groupoids of
given finite connected directed graphs. The construction of such functions is motivated by
that of Redei zeta functions. In particular, we are interested in (i) “non-factorizability” of
such functions, and (ii) certain factorizable functions induced by non-factorizable functions.
By constructing factorizable functions from our non-factorizable functions, we study relations
between graph zeta functions and well-known number-theoretic objects, the Riemann zeta
function and the Euler totient function.
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1. INTRODUCTION

In [6], we established certain C-valued functions induced by directed graphs. Combi-
natorial properties of graphs was considered in terms of analytic tools from function
theory, and vice versa. Motivated by the construction of Redei zeta functions (e.g., [11]),
we constructed so-called graph zeta functions as C-valued functions with variables de-
termined up to vertices of graphs and an arbitrary C-variable. In [7], we further studied
about the factorizability of graph zeta functions at fixed vertices. We recognized in [7]
that there are certain graphs making their graph zeta functions be “not” factorizable
in the sense of [7] (see below). In this paper, we further study non-factorizability of
graph zeta functions.

We say that a graph zeta function is not factorizable if it does not have suitable
(muti-)factors determined by certain subgraphs of the given graph, for each fixed vertex.
And we say a given graph is not factorizable if the corresponding graph zeta functions
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are not factorizable for “all” vertices. It is interesting that a connected finite graph G,
with its maximal out-degree N € N, having d-many vertices (d € N u {00}), is not fac-
torizable if and only if it is graph-isomorphic to a subgraph K, having d-many vertices,
of the circulant N-regular graph K} with d-vertices, i.e. the non-factorizability of all
finite-connected-graph zeta functions is completely characterized by a graph-theoretical
invariance.

1.1. BACKGROUND

Recently, we found there are close connection between number-theoretic objects and
operator-theoretic, and operator-algebraic objects. Moreover, number-theoretical tech-
niques or tools can be applicable to the studies of operator-theoretic, free-probabilistic,
and operator-algebraic structures. Conversely, free-probabilistic, operator-theoretic
and operator-algebraic techniques and tools provide new models for studying
number-theoretic problems (e.g., [2,4, 5] and [12]). In this paper, by using the
analytic-and-combinatorial number-theoretic techniques, we will characterize combina-
torial objects, graphs, and corresponding algebraic objects, graph groupoids.

Independently, graphs and corresponding graph groupoids have close connections
with operator-theoretic, representation-theoretic, and operator-algebraic objects. In
particular, elements of graph groupoids are understood as operators induced by certain
projections and partial isometries, assigned from vertices, respectively, edges of given
graphs (e.g., [3] cited references therein) We cannot help emphasizing the importance
of graphs and graph groupoids not only in mathematical fields but also in related
science areas (e.g., [9] and [8]). Whenever a graph G is fixed, it has its corresponding
algebraic structure G, which is a groupoid, generated by edges of the shadowed graph
G of G, with its multi-units identified with the vertices of G. Recall that groupoids are
algebraic structures consisting of sets with a single partially-defined binary operation
equipped with “multi-units.” (In our case, by attaching the empty word ¢ (if needed),
we make the binary operation be well-defined.) For instance, every group is a groupoid
with a “single” unit, the group identity. We call the groupoids induced by graphs,
graph groupoids. They are understood as groupoidal version of free groups.

Graph groupoids are playing important roles not only in combinatorics and algebra,
but also in noncommutatve function theory, dynamical systems, operator theory,
(amalgamated) free probability, and operator algebra. Thus we cannot help emphasizing
the importance of applications of graph groupoids in various scientific areas (e.g., [3]).

L-function theory (including the study of Dirichlet series induced by arithmetic
functions) is one of the branches of number theory and mathematical analysis. Clas-
sically, Dirichlet series are constructed as C-valued functions induced by arithmetic
functions, i.e. if f: N — C is an arithmetic function, then one has the corresponding
Dirichlet series Ly : C — C defined by

Ls(s) = Z fT(;L)7 seC.

n=1
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o0

For example, the Riemann zeta function ), —_, % is understood as the Dirichlet

series L1 (s), where 1 is the constant arithmetic function,
1(n) =1in C for alln € N,

Let x be a Dirichlet character, which is an arithmetic function satisfying that:

(i) there exists N € N such that x(n + N) = x(n),
(ii) x(n) = 0, whenever ged(n, N) # 1, and
(iii) x(nm) = x(n)x(m) for all n,m € N.

The corresponding Dirichlet series L, (s) is said to be a (Dirichlet) L-function of x
(e.g., [10] and cited papers therein).

1.2. MOTIVATION

In [6], we attempted to connect the above two different topics, graph-groupoid theory
and L-function theory, which seem completely un-related. For the graph groupoid G
of a given graph G, we constructed a suitable order function w, and then establish
the corresponding Redei-zeta-function-like function

La(v,s) = 2 !

)
weG, W(U]) ’

as in [11], where v is a fixed vertex and G, is a certain subset of G determined by an
arbitrarily fixed vertex v, and s is a C-variable. Analytic, combinatorial, and algebraic
properties of {Lg(v, s)}vev(@) have been studied in [6].

In [7], we showed that there exists certain inner structure &, = {G’ < G} of G

such that
Lg(v,s) = H Lei (v, 8),
G'eG

where G is the shadowed graph of & in the sense of Section 2.3 below. And we realized
that there do exist graphs G such that &, = {G} for all z € V(G), and hence all graph
zeta functions Lg(zx, s) are not factorizable.

1.3. OVERVIEW AND SKETCH OF MAIN RESULTS

We here further study factorizability of “finite”, “connected” graphs, in terms of
the factorizability of the corresponding graph zeta functions. To do that, we collect
non-factorizable finite connected graphs, and construct other graphs induced by them.
In particular, we construct factorizable graphs by “gluing” non-factorizable graphs,
and study detailed properties of corresponding graph zeta functions.

In Section 2, we briefly introduce motivations and backgrounds for our proceeding
works. In Sections 3 and 4, we construct graph zeta functions, and review fundamental
properties of such functions (also, see [6]). In Sections 5 and 6, we consider factorizability
of graph zeta functions, and those of graphs. We characterize the factorizability of
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graph zeta functions in terms of subgraphs in Theorem 5.6. And then, based on this
factorizability, we characterize the non-factorizable graphs, see Theorem 6.3 (also, see
[7]). In Section 7, the graph zeta functions of non-factorizable finite connected graphs
are considered in detail. In particular, the specific forms of non-factorizable-graph
zeta functions are obtained in Theorems 7.2, and certain subgraphs zeta functions of
non-factorizable-graph zeta functions are characterized in Theorem 7.4. And hence, we
refine the results in Theorem 7.5. In Section 8, we construct finite connected graphs by
gluing non-factorizable graphs. And the corresponding glued-graph zeta functions are
obtained in Theorem 8.3. And we obtain certain relations between our glued-graph
zeta function and well-known number-theoretic objects, especially, the Riemann zeta
function ¢(s), and the Euler totient function ¢. See Theorems 8.6, 8.7, 8.8 and 8.9.

2. PRELIMINARIES

In this section, we introduce basic concepts and backgrounds of our proceeding study.

2.1. REDEI ZETA FUNCTIONS

In this section, we briefly introduce Redei zeta functions. For more about Redei zeta
function, see [11].
Let L be an arbitrary lattice with its minimal element Op, equipped with its
ordering <. And assume
f:LxL—>Ny=Nu{0}

is a well-defined function satisfying

{f@y N ifz<y,
f,y) = {0 otherwise (2.1)
for all (z,y) e L x L, and
f(@,y) = f(z,2)f(2,9), (2.2)

whenever < z < y in L. Such a function f satisfying (2.1) and (2.2) is called an order
function on the lattice L.
For a fixed order function f on L, one may define a function

foo :L—N

by
fao(2) = f(20,2), w€EL, (2.3)

for an arbitrarily fixed o € L. We call such a function f,, of (2.3) induced by f
an order function on L with its base xg.

Now, let A be a subset of L, and let M (A) be the sub-lattice generated by A in L.
A subset A is said to be a Redei set in L if for each element = in M (A) there are only
“finitely” many y in M (A) such that f(x,y) < oo.
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Fix an arbitrary element xg in IL. The Redei zeta function of A based on xq (see [11])
is defined by
def (=DM
S froa)
Based on the construction (2.4) of Redei zeta function, we will establish our

graph-L-functions in Sections 3 and 4 below. Our graph zeta functions are not exactly
Redei zeta functions of (2.8), but the construction of them is highly motivated by them.

Ly, (5)

(2.4)

2.2. GRAPHS AND GRAPH GROUPOIDS

For more about directed graphs, graph groupoids and corresponding operator algebras,
see [3]. We will use the same notations and definitions used there. In this section, we
briefly introduce concepts from those references used for our study.

Let G be a directed graph (V(G), E(G), s,r), where V(QG) is the vertex set, E(G)
is the edge set, and s and r are the functions from E(G) onto V(G), called the source
map, respectively, the range map, indicating the initial vertex and the terminal vertex
of each edge, respectively. All graphs in this paper will be automatically assumed to
be directed. For convenience, we write e = vievy, where s(e) = v; and r(e) = vy in
V(G), for all e € E(G).

The corresponding new graph G~ is the “opposite” directed graph of G sharing
same vertices, i.e. by replacing the orientation of edges of G backwardly, we obtain
the graph G—!. This new graph G~! is said to be the shadow of G. It is trivial that

(G Ht=q.
Let G and G5 be graphs. The union GG; U G is defined by a new graph G with
V(G) = V(G1) v V(G2), (2.5)

and

E(G) = E(Gl) U E(Gz),

which preserves the directions of G1 and G.
The shadowed graph G of a given graph G is defined by the union G U G71, i.e.

V(G) =V(G)uV(G™) =V(G) =V (G,

and

E(G) = E(G) UE(G™") = E(G)u E(G™).

Let G be the shadowed graph of a given graph G. The set F' P((A?), consisting of all
finite paths on (A?, is called the finite path set of G. All finite paths on G is denoted by
forms of words in edges of E(G).

Now, let w =e;...e; € FP(@) for k € N. Then one can extend the maps s and r

~

on FP(G) as follows:

s(w) =s(er) and r(w) =r(eg).
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~

If s(w) = vy and r(w) = vo in V(G), we also write

w = V1w, Or W = Wvg, Or W = VW3,

~

for all w e FP(Q).
Define a set F*(G) by

FH(G) Y (@} uV(G) L FP(Q),

and define a binary operation () by
wiws  if r(w) = s(ws) in V(G
wy - Wy déf 102 ( 1? ( 2) ( )7 (26)
%) otherwise
for all wy,wy € FT+ (é), where (Jf is the empty word, representing the “undefinedness
of wy - ws, as finite paths or vertices of G”.

~

The operation (-) of (2.6) on F*(G) is called the admissibility. If wy - we # &
in F+(é), then w; and wsy are said to be admissible; if wy - wy = ¢, then they are
said to be not admissible.

The algebraic pair F(G) = (F*(G), ), equipped with the admissibility, is called
the free semigroupoid of G. R

For a fixed free semigroupoid F*(G), define a natural reduction by

wlw=vy and ww' =y, (RR)

~ ~

whenever w = vywvg € FT(G)\ {}, with vy, vs € V(G). Then this reduction (RR)
acts as a relation on the free semigroupoid F*(G).

~

Definition 2.1. The quotient set G = F*(G)/ (RR), equipped with the inherited

admissibility (-) from F*(G), is called the graph groupoid of G.

The graph groupoid G of G is indeed a categorial groupoid with its (multi-)units
V(G) = V(G) (e.g., [3,9] and [8]). The subset of G, consisting of all “reduced” finite
paths, is denoted by F'P,. (G‘) Notice that every graph groupoid G of a graph G is in
fact a collection of all “reduced” words in the edge set F (CA}') of the shadowed graph G
under (RR).

Let K and G be graphs. The graph K is said to be a subgraph of G if K is a graph
with

V(K) < V(G) (2.7)

and
E(K) ={e€ E(G) : there exists e € E(K) such that e = vev' for v,v" € V(K)}.
We write this subgraph-inclusion by

K <G. (2.8)
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3. ORDER FUNCTIONS ON GRAPHS

Throughout this section, let G be a fixed graph with its graph groupoid G.
The (reduced) length || on G is naturally defined by

o] {o if we {@}uV(G), .1)

k ifw=e;...epe FP.(G),

with e, ...,er € E(@), for k € N and w € G. Clearly,

|w_1w| =0= ‘ww‘ll , weG.

Remark that, in general,
|wiws| < |wi] + |wa|, wi,ws €G.
Define the following quantities for each vertex v by
deg,,:(v) = |{e € E(G) : e = ve}|, deg,, (v)=|{e€e E(G):e=ev}|,

and
deg(v) = degout (U) + degin (U)

in G, where |X| means the cardinality of arbitrary sets X. They are called the
out-degree, the in-degree, and the degree of v in G, respectively. A graph G is said to
be locally finite if the degrees of all vertices of G are finite.
In the rest of this paper, all graphs are assumed to be “finite” and “connected”.
Let G be a given graph with its graph groupoid G, and let

N = max{deg,,;(v) : v e V(G) in G}. (3.2)
Define a new quantity Ny by
Ny oN 41N, (3.3)
where N is in the sense of (3.2). Note that
2N = max{deg,,(v) : ve V(G) in G},

where @ is the shadowed graph of G. Based on the finiteness of @, (3.2) and (3.3),
one can define a function

w:G—->N

by
w(w) def Néw‘, w e G, (3.4)

where Ny is in the sense of (3.3), and |w| means the reduced length (3.1) on G.
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Now, let weG. In particular, assume w = wiws ... wg in G for some wy, ..., w; € G,
for k € N. Then we write

wj —winGforj=1,...,k,

with axiomatization

& — wfor all w € G.

Let w; and wy be nonempty elements in G, and assume the “reduced” word wyws

is again a nonempty element of F'P.(G) in G. Then there exist w},w) € F'P,.(G) such
that:
(i) wj — w; for j =1,2,
(il) wiwe = wijwj in G,
(iii) wj are the maximal reduced words in G, satisfying (i) and (ii), for j = 1, 2.

A~

Definition 3.1. Let w} and w) be elements of FP,.(G) in G, satisfying the above
conditions (i), (ii), and (iii). Then they are said to be reduced embeddings of wyws.

The following proposition shows the relation between reduced embeddings and
the function w of (3.4) on G.

Proposition 3.2 ([6]). Let w : G — R be a function (3.4). Then w is “conditionally”
multiplicative, in the sense that

~

w(w))w(wh) if wiwe € FP.(G),

1 if wws € {F} U V(G) (3.5)

w(wiws) = {

for all wy,wq € G, where w} and wh are the reduced embeddings of wiws in G.
By (3.5), the function w is “conditionally” multiplicative.

Definition 3.3. The map w of (3.4) is called the ordering map of the graph groupoid
G (or, of a graph G).

Remark that the finiteness of all our graphs guarantees the Redei-set-condition
of Section 2.1 for w.

4. GRAPH ZETA FUNCTIONS

Throughout this section, let G be a fixed finite connected graph with its graph
groupoid G, with corresponding quantity Ny of (3.3) induced by N of (3.2).

4.1. GRAPH ZETA FUNCTIONS Lg(e, s)
Define subsets G}2? of the graph groupoid G by

v1

G2 = {weG:w=rvwve} (4.1)
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~

for all vy, ve € V(G). Similarly, define subsets G, and G* of G by

Gy= |J G and G"= (] GY (4.2)
2eV(8) zeV (@)

~

for all v € V(G), where G and G? are subsets of G in the sense of (4.1).
Definition 4.1. Define a function L : V(CA?) x C — C by

Lo(v,s) <Y wéu)s (4.3)
weG,

for s € C, where G, are in the sense of (4.2). Such a function L is called the graph
zeta function of G at v.

Define subsets W, of G* </ G\{&} by
w, < {weG* : |w| =n} (4.4)

for all n € Ng = N U {0}. It is not difficult to check that

~

Wo = V(G)

and

o8]
G* = |_| W;  set-theoretically.
j=0

Also, let

G2(n) aef G2 W, and Gy(n) = Gy, " W,

for all v,v1,v9 € V(@) and n € Np.
The following theorem allow us consider our graph zeta functions as certain (formal)

series.

Proposition 4.2 ([6]). Let Lg be the graph zeta function (4.3) of a graph G. Then

o0 0
|G, (k)| Gy (logy, n
La(v,s) = ), —os :Z| (ns ), (4.5)
k=0 2 n=1
In particular, if logy, n ¢ N, then Wiog,, n is empty by (4.4), and hence
’Gn (logN2 n)‘ = ‘Gv N WlogN2 nl = 0. (4.6)

Define now functions 7;? : N — Ny by

ez (k) < |GU (k)| = |G A W (4.7)
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for all k € N, where vy, vs € V(C:‘) Similarly, define 7, : N — Ny by

def

(k) = [Gy(k)] = |Gy 0 Wi (4.8)
forallke Nand v e V(@) By the very constructions (4.7) and (4.8), one has that
Z ny, on N. (4.9)
eV (@)

Thus, one has that

0] o8]
Lg(v,s) = Z logN2 Z n—*° Z ny (logN2 n)

n=1 zeV (@)

s (ZMW))

er(G)

(4.10)

by (4.6), (4.8) and (4.9). The above relation (4.10) motivates the following proposition,
showing certain decomposition property of Lg(v, s).

Proposition 4.3. There exist C-valued functions

fo(v,8): V(G) xC - C

defined by
0 [ee]
1y (log, 1) m; (k)
fz(vvs) = 5 : = - s
ngl n ];0 NQk
for all x € V(G’) such that
Lo(v,s) = Y. falv,5). (4.11)
zeV(G)
Proof. The proof of (4.11) is done by (4.10). O

4.2. GRAPH-ARITHMETIC ALGEBRAS
Let A be a set consisting of all arithmetic functions, i.e.

A {f:N—C: fis a function}.

Then, as we discussed in Section 2.1, the set A forms an algebra over C, with the
usual functional addition, and convolution. In fact, by defining the unary operation
f— f* where o

f*(n) = f(n)inCforalln e N,

one can understand A as a #-algebra, where Z mean the conjugates of z for all z € C.
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Definition 4.4. We call the =#-algebra A the arithmetic(-functional-#-)algebra
(over C).

~

Let ny2 and 7, be in the sense of (4.7) and (4.8) for all vy, v, v € V(G). Since they
are Ng-valued in C with their domains N, one can naturally regard them as arithmetic
functions contained in A.

For a fixed given graph G, define a subset Vg of the arithmetic algebra A by

Vo = spanc ({32 : v, v2 € V(G)}) (4.12)

where spanc(X) mean the vector spaces generated (or spanned) by arbitrary sets X
over C. Then the set Vg of (4.12) is a subspace of A, but we cannot guarantee it is
a subalgebra of A, because even though 711,72 € Vg and 11 = 12 € A, in general,

m xn2 € A\Vg.
Define now a “conditional” convolution
®: Vg xVg— A

by a (non-closed) binary operation satisfying that

02z @022 8y, oz w22, (4.13)
under linearity on V¢ for all vy, vq, 1,9 € V(@), where ¢ means the Kronecker delta.
Clearly, 0y ® 132 is contained in the arithmetic algebra A, but still, in general, it is
not contained in Vg.

Construct now a subalgebra A¢, generated by Vg, under the conditional convolution
® of (4.13), i.e.

Ac ™ 418 (Vo) = CelVel, (4.14)

where Alg® (V) means “the subalgebra Cg[Vg]” of the algebra C[Vg] generated by
arbitrary subsets Vg in A, “under ®”.

Proposition 4.5 ([4]). Let Ag be the algebra (4.14) of the arithmetic algebra A
generated by the subspace Vg of (4.12), under the conditional convolution ® of (4.13).
Then it is a subalgebra of A over C.

Remark 4.6. Since two binary operations, the conditional convolution (®) on Ag
and the usual convolution (*) on A, are defined differently, one may understand the
“subset” Ag of A as an independent algebra induced from certain elements of A under
the conditions dictated by the Kronecker delta of (4.13). However, we regard Ag as
a subalgebra of A, because

(i) Ag is an algebraic sub-structure of A, and
(ii) the conditional convolution (®) is nothing but the convolution (*) satisfying
certain connection rules (in fact, the admissibility on G) among elements 7%’s of A.

So, if there is no conflicts, we will use the term “subalgebra” for Ag in A.
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Remark here that the condition on ® of (4.13) is preserving the combinatorial
property of a given graph G.

Definition 4.7. Let Ag be the subalgebra (4.14) of the arithmetic algebra A. We call
Ag, the G-arithmetic algebra. And the conditional convolution ® of (4.13) on Ag is
called the G-convolution on Ag.

Let Ag be the G-arithmetic algebra with G-convolution ®, and let 1,,7. € Ag,
for v,z € V(G), where 7, are in the sense of (4.8), for all y € V(G). Then

menm=(( X w)e( X n))®

yeV (@) 2eV(G)
by (4.9)

_ ( 3 ) n%,’@ni)(’f) = ] ) (n%‘@ni(k))

y,2eV(G) y2eV(G) (4.15)
= > (%,w% *ni)(k)

y,2€V(G)
= N (o) w = (= (X )

2eV (@) 2eV (@)

= 775 @nw(k) = 775 * nm(k)a

A~

for all v,z € V(G) and k € N.

Lemma 4.8. Let Ag be the G-arithmetic algebra, and let n,,n, € Ag for v,z € V(G).
Then

Mo ® Mg = 1y * Nz (4.16)
Proof. The proof of (4.16) is done by (4.15). O

4.3. GRAPH ZETA FUNCTIONAL ALGEBRAS

Let G be a fixed locally finite and connected graph with its graph groupoid G, and
let Ag be the G-arithmetic algebra in A. Define now a set £ by the collection of all
Dirichlet series induced by arithmetic functions, i.e.

Ldif{in’:(ngeA}. (4.17)

We call £ the (Dirichlet-) L-functional algebra. It is not difficult to check that there
exists a morphism

p: A—>L
defined by

inl, feA. (4.18)

n?

PG
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Then this morphism ¢ is a x-algebra-isomorphism up to the C-variable s (see [4]),
i.e. the arithmetic algebra A and the L-functional algebra L are x-isomorphic.

By understanding our G-arithmetic algebra Ag as a subalgebra of A, one can
determine a corresponding x-isomorphic subalgebra Lg of the L-functional algebra L.
Define

Lo o(Ac), (4.19)

where ¢ is in the sense of (4.18) from A onto L.

Definition 4.9. The subalgebra Lg of the L-functional algebra L is called the graph
zeta functional algebra induced by G.

Notice here that the subalgebra A¢ of A is dictated by the “conditionality” from the
G-convolution ®. So, the (usual inherited) multiplication on L5 = ¢ (Ag) (inherited
from L) is determined by the conditionality.

Theorem 4.10 ([4]). Let n,?,n32 be generating elements of the G-arithmetic algebra

~

Ac forvj,x; € V(G), j = 1,2, and let o(n;?), p(n3?) be corresponding L-functions
in Lg. Then

- Ovg,zr (M2 * m3z2) (lo n
(o)) (p(nz2)) = D) = U nzl)(l &, ") (4.20)

“in Lg”.
The above theorem characterizes the conditionality on the multiplication (-) on L,
in terms of (®) on Ag in L.

To emphasize the above conditional multiplicativity (4.20) on the graph zeta
functional algebra Lg, we denote the multiplication on Lg by

:Lag X Lg— Lg, (4.21)

i.e. we want to handle the subalgebra L of £, as an independent algebraic structure
(under [X]).
By (4.20) and (4.21), if 1,72 € Ag, and if

5 (n) S 72(n)
L1 = Z 3 and L2 = Z 7 in EG,
n=1 n=1

n

then ”
LiLo =L XLy = Z I ¥ 1) ®12(n) “in Lg”.
ns

n=1

4.4. CONVERGENCE OF GRAPH ZETA FUNCTIONS

In the rest of this paper, we are no longer interested in the convergence of graph zeta
functions. One may understand all our graph zeta functions are assumed to be conver-
gent. But it is true that, under such conditions, we may lose lots of interesting analytic
properties of graph zeta functions gotten from the pure algebraic-and-combinatorial
properties of G (or of G). The following convergence condition (4.22) is obtained in [6].
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Theorem 4.11 ([6]). Let G be a finite connected graph, and v € V(G), and let
Lg(v, s) be the graph zeta function based at v. If

Re(s) > logy, <lim m(n-i—l)> , (4.22)

n—w  1,(n)

then L (v, s) is convergent absolutely, as an infinite series in C.

5. FACTORIZATIONS OF GRAPH ZETA FUNCTIONS

As before, we fix a finite connected graph G with its graph groupoid G, and let Lg (v, s)
be graph zeta functions at v € V(@) In this section, we further study factorizability
of graph zeta functions (at vertices) which have been considered in [7].

Let w be a loop reduced finite path in FP,,((A?) in G. Since w is a loop, w™ are all
loop reduced finite paths, for all m € Z. Moreover, whenever such a loop w is chosen
in G, there exists a unique loop finite path [, such that: (i) w =", for some n € N,
and (ii) there is no other loop finite path y such that y < I.

Let [ be the loop satisfying the conditions (i) and (ii) of the above paragraph. Then
we call [ a basic loop (reduced finite path).

Let w® = vw® € FPT(CA}’) be a reduced finite paths of G initial from the vertex v,
and let

~

w® = vejezes ... ey, with ey, es, ... e, € E(G)

for n € N. Moreover, assume that w® is “mazimal from v”, in the sense that w? is a

~

reduced word in E(G) satisfying the following two conditions (5.1) and (5.2):

if there is a loop reduced finite path w’ embedded in w?° (5.1)
(i.e. w' — w° or w' = w°), then w’ is basic in G, :

there does not exist w satisfying (5.1) such that w® — w (5.2)
“properly” in G. Equivalently, if such w exists, then w = w°. ‘

Definition 5.1. Assume that w° is maximal from v in the sense of (5.1) and (5.2).
Then w? is said to be a ray from v (or a v-ray).

”

See [7] for precise examples for v-rays. Especially, in [7], we considered “locally-finite
graphs (instead of handling finite graphs), and hence, it is possible that a ray w®
cannot be contained in G, if G is an infinite graph under (5.1) and (5.2). However, in
this paper, we assumed all given graphs G are finite, so rays are regarded as reduced
finite paths in G under (5.1) and (5.2).

Now, let u® = vejezes - - - e, be a ray from a fixed vertex v in G, where ey, ..., e, €
E(G) for some n € N, and let

z; =r(ej) =s(ejp1), j=1,....,n—1,

with z,, = r(e,). Then one can construct the corresponding sequence U® of vertices
from the v-ray u°,
U’ = (v==20,21,T2,23,...,Tn). (5.3)



Non-factorizable C-valued functions induced by finite connected graphs 239

We call the sequence U° of (5.3), the ray-vertex sequence of u°. For each embedded
pair W¢ = (xj,x;41) of U°, there may be multi-edges connecting ; to x;41 in the
edge set E(CA;) of the shadowed graph CAT', j=1,...,n—1

~

Let G be given and v, a fixed vertex in V(G), and let w® be the v-ray. Let W° be
the corresponding ray-vertex sequence of w® as in (5.3). Now, construct a subgraph
G o of the “shadowed” graph G of G by a new independent graph with

V(Gue) = {v = xo,21,22,23,...,%n}, (5.4)

and

~

E(Gyo) ={e€ E(G):e=zxjexji1,j =0,1,...,n—1}.

Definition 5.2. Let G be a graph, and v € V(G), and let w® be the v-ray with its
ray-vertex sequence W°. Then subgraph G. of (5.4) is called a ray subgraph of G
from v.

The following proposition is proven by the connectedness of our graph G.

Proposition 5.3 ([7]). Let G be a graph with its shadowed graph é, and let v be
a fized graph. Let

G, ={K < G : K is a ray subgraph of G from v}, (5.5)

i.e. the family G, is the set of all ray subgraphs of G from v. Then

G is graph-isomorphic to Uxkes, K, (5.6)
and
G is groupoid-isomorphic to @ K, (5.7)
Keg, ’

where K mean shadowed graphs of K, and K are graph groupoids of K, for all K € G,,.

Remark that the above relations (5.6) and (5.7) do not hold in general without
connectedness of G.
Now, let G, be as in (5.5), and assume K; # K3 € G,. Suppose

(V(ED)\{v}) n (V(EK2)\{v}) # 2.
Then construct the graph union K; u Ks. If there exists K3 € G, such that
K3 #* K1 and K3 #* K2

and
(V(E)\{v}) n (V(E1 v Ko)\{v}) # 2,

then construct the graph union
(Klqu)qu =[(1UI(2UI(37

as a subgraph of G. Do this processes until it ends for G,.
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Definition 5.4. The process in the very above paragraph is called the v-ray-subgraph
unionization for a fixed vertex v, and the resulted subgraph induced by G, of (5.5)
are said to by v-ray-subgraph unions in the shadowed graph G of G. Then one obtains
a new family &, of subgraphs of G,

®, = {K <G : K is a v-ray-subgraph union}. (5.8)

This family &, of (5.8) is called the v-ray factorization of G.
For instance, let

G = o — 0 «— 0 «—

°
v O

e e,
Then the v-ray subgroup unions G, of (5.5) is
gv = {Klv KQ; K37 K47 K5}7

where

sz :_)6_)._).7 j=17273747

and

in G. Then we obtain the v-ray factorization &, of (5.8),
8, = {G1,Ga},

where

and

in the shadowed graph G of G.

Definition 5.5. Let &, be the v-ray factorization (5.8) induced by the v-ray subgraph
unions G, of (5.5). If &, = {G}, then the graph G (or the shadowed graph G, or the
graph groupoid G) is not v-ray factorizable. Otherwise, one says G (resp., CA?, resp., G)
is v-ray factorizable.

Assume now that G is v-ray factorizable, i.e. the family &, of (5.8) has more than
one element. Let K7 # Ky € &,,. Then it is not difficult to verify that

V(K1) nV(Ky) ={v} and E(K;)n E(Ks3) =2 (5.9)

in G, i.e. the distinct elements of the v-ray factorization &, share their only common
element v as (proper) subgraphs of G.
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Proposition 5.6. Let &, be the v-ray factorization (5.8) for a fixed vertex v of a given
graph G. Assume that G is v-ray factorizable, and Ky # Ky € &,. Then

K nKS = {v} inG, (5.10)

where K; are the graph groupoids of K;, as subgroupoids of G, and Kjx = K,\{},
j=1,2.

Proof. The proof of (5.10) is done by (5.9). O

Consider now the following proposition.
Proposition 5.7. Suppose K is a subgraph of G, and let

ZK(.T,S) = Z ﬁ,

wekK,

where K, = K n G, where K is the graph groupoid of K (as a subgroupoid of G), for
all vertices x in K. If ve V(K) in V(Q), then

lk(v,s) = i w inLeg. (5.11)
n=1

nS

Proof. The proof of (5.11) is trivial by the very construction of I (x, s) as an embedded
part of Lg(z, s), by (5.10). O

Notice here that, by the construction of the graph zeta-functional algebra Lg (by
that of the G-arithmetic algebra A¢), indeed, the function I (v, s) is contained in L,
whenever K < G. Note also that the functions [k (v, s) generated by subgraphs K
of G are regarded as independent graph zeta functions Ly, (v, s), where K is a graph
with its shadowed graph K.

In Lg, if ve V(G), but v ¢ V(K), then lx (v, s) is automatically assumed to be
the zero element O, and if v € V/(K), then Ik (v, s) is determined as above in (5.11)
in ,Cg.

Proposition 5.8 ([7]). Let K1 and K be connected subgraphs of the shadowed graph
G of G with
V172 = V(Kl) N V(Kg) #* J,

and let v e Vio. Let Ik, (v,s) and Ik, (v,s) be elements of the graph zeta functional
algebra L, as in (5.11). Then

I, (v, 8) Kk, (v, 8) = lk, oK, (V,5), (5.12)

where K1 U Ks is the graph union of K1 and Ks, as a subgraph of G, and where [X] is
in the sense of (4.21).
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With help of (5.12), we obtain the following theorem.

Theorem 5.9. Let &, be the v-ray factorization induced by G, , for a fixed verter v
of a given graph G. Assume that &, is v-ray factorizable and suppose K1 and Ky are
distinct elements in &, as subgraphs of G. Then

koK, (v, 8) = Ik, (v, 8)) (Ik, (v, 8)) in L, (5.13)

where U, , Ui, and Ui, LK, are in the sense of (5.11) in L. (Remark here that K1 U Ko
is again a subgraph of G, but it is “not” contained in &,.)

Proof. By (5.12), we have that
Ik oK ('U, S) =k, (U7 8) Ik, (U, 8)7

where [X] is in the sense of (4.21) on the graph zeta functional algebra L. However,
one has
Ki nK3 = {v},

by (5.10), where K; are the graph groupoids of K; and K} = K;\{v}, j = 1,2. So, if
wy =ww e V(K;) and ws = vws € V(K3),

then the reduced finite path wyws in K; 2 which is the graph groupoid of the graph
union K; u K> (as a subgroupoid of G) satisfies that

w; =w; and wh = wo,
where w’; means the reduced embeddings in K; 2 in the sense of (3.5), and hence
wiwe = wiws in Ky 5,
satisfying
wiws| = [wiws| = [wi| + [wg] = [wi] + [ws].

It shows that
w(wlwg) = w(wl)w(wg),

by (3.5). It guarantees that, for the fixed vertex v,
Ui, (v, 8) Bk, (v, 8) = (I, (v, 8)) (I, (v, )

in ,C(;. [

The characterization (5.13) shows that if K7 and K are distinct elements of the
v-ray factorization &,, then the “conditional” product of Ik, (v, s) and Ik, (v, s) of La
becomes the “usual” functional multiplication of them.

Therefore, we obtain the following factorizability, by (5.13), with help of (5.10)
and (5.11).
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Theorem 5.10. Let G be a finite connected graph and let v be an arbitrarily chosen
vertex in V(G). Let &, be the v-ray factorization (5.8). Then

Lg(v,s) = H Ik (v,s), (5.14)

Ked®,

in the graph zeta functional algebra Lg, where Ik (v, s) are in the sense of (5.11), and
[T means the usual functional multiplication.

Proof. Suppose first that the v-ray factorization &, is not factorizable in the sense
that &, = {G}. Then, clearly, we have

Lg(v,s) = 1_[ Ik (v,s) =l5(v,s) = La(v, s).
Ke®,={G}

So, the relation (5.14) holds.
Assume now that &,, is factorizable. And let

&, ={K;,Ks,...,K,,} forsome meNm#l.

Then, by the construction of K, their graph groupoids K; only share their common
elements v as subgroupoids of G for 5 =1,...,m.
Notice that, by (5.6) and (5.7), we have

So,

Lg(v,s) =la(v,s) = ZUKH% x (v,8),

where Lg(v, s) means our graph zeta function, and I5(v, s) means the element of Lg

in the sense of (5.11)
(Ik (v, )
Ked,

by (5.12)
=TT tx(v.s))

Ke®,

by (5.13). Therefore, the graph zeta function L (v, s) at a fixed vertex v is factorizable
with its factors, the subgraph zeta functions [k (v,s), for the wv-ray-subgraph
unions K, at v. O

Definition 5.11. Let Lg(v,s) be a graph zeta function at v € V(G). We say that
Lg(v, s) is factorizable at v if the v-ray factorization &, is factorizable; otherwise,
L (v, s) is not factorizable at v.
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6. NON-FACTORIZABLE GRAPHS

In this section, we consider non-factorizable graph zeta functions more in detail. First,
we introduce the following example, providing a motivation.

Example 6.1. Let K} be the n-regular circulant graph with d-vertices, for n € N,
d e N\{1}, i.e.

v AN
Kj= "¢ E (6.1)
l 1

where each arrow “— 7 in (6.1) actually means n-multi-edges. Then, for any arbitrarily
fived vertex vj, the vj-ray factorization &, satisfies that

&, = (K7}, j=1,...,d

Therefore, the graph zeta function Ly (vj, s) are not factorizable, for all j =1,...,d.
Furthermore,

L (v1,8) = Ly (v2,8) = -+ = Ly (va, ) in Licy.

So, one can classify the following special types of finite connected graphs.

Definition 6.2. If a graph G induces non-factorizable graph zeta functions Lg(z, s),
for “all z € V(G),” then the graph G is said to be non-factorizable.

By the above example, the n-regular circulant graphs K} with d-vertices are
non-factorizable graphs, for all n € N, d € N\{1}.
More generally, we obtained the following theorem.

Theorem 6.3 ([7]). Let G be a graph with the quantity N of (3.2), and d = |V(G)|
in N. Then G is non-factorizable if and only if the shadowed graph G of G is

graph-isomorphic to the shadowed graph K of a “connected” subgraph K of the circulant
N-reqular KY with d-vertices of (6.1) whose vertex set satisfies V(K) = V(KY), i.e.

a graph G is non-factorizable with N of (3.2) (6.2)
if and only if

there exists connected K < K%(G” with same N such that G Graph K.

The above statement (6.2) characterizes “finite and connected” non-factorizable
graphs having more than 1 vertices. Without loss of generality, every non-factorizable
graph G with N of (3.2) and d = |[V(G)| € N u {0} is regarded as a subgraph K of
the circulant N-regular graph K2 with d-vertices such that |V (K)| = d.
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7. GRAPH ZETA FUNCTIONS FOR NON-FACTORIZABLE GRAPHS

Let G be a finite connected graph with the quantity N € N of (3.2), and |V(G)| =d €
N u {oo}. In this section, based on the main results of Section 6, we study graph zeta
functions L (e, s), where G is non-factorizable. In particular, we are interested in the
cases where given non-factorizable graphs G are (graph-isomorphic to) the circulant
N-regular graph K% with d-vertices.

Recall that, by the characterization (6.2), a finite connected graph G is
non-factorizable if and only if there exists a subgraph K of the circulant N-regular
K ‘I‘V/(G)‘ such that K and G are graph-isomorphic.

Proposition 7.1. Let Kcll be the circulant (1-regular) graph with d-vertices vy, ..., vq,
for alld e N u {oo}. Then
3% +1
Licy (vj,8) = 55— (7.1)

forallj=1,...,d.
Proof. One can check that, for any d € N u {0},

(€3, @ =1 and |(i),, ()] =2

forall ke Nand j = 1,...,d, where K} are the graph groupoids of circulant 1-regular
graphs K} with n-vertices for all n € N. Therefore, we obtain that

Kg (v, ) g 3,” = g 3ks =1+2( 5

forall j =1,...,d, since Ny of (3.3) satisfies that No = 2(1) + 1 = 3, where N is in
the sense of (3.2). O

Let us extend the formula (7.1) to the general cases.

Theorem 7.2. Let KY be the circulant N-reqular graph with d-vertices, for N € N,
de N u {o}. Then

2N N -t
Lgy (v,s) =1+ N+ 1r <1 - (2N+1)5) (7.2)

for allve V(KY).
Proof. Observe that

|(KY), (W] = [{v}| =1

|(KY) (k)| = 2N* for all k € N,

and

where K" are the graph groupoids of the circulant m-regular graphs K" with n-vertices,
for all m € N and n e N u {oo}.
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Thus, for each vertex v of K,
0
Lin (v,s) = Y. 1) )]
d ’ (2

in EK(le. So, the formula (7.2) holds. O

Consider now (proper) connected subgraphs K C]lV ‘I of the circulant N-regular graph
KY of d-vertices with
V(EQ™) = V(EY)

and

. e is a unique edge connectin,
B = (e BUR) o (), ; 3

pairs of vertices in V(K1)

For example, if

then
K22:1: e-—>e Or e — e,

Recall that a graph G is said to be simplicial if

(i) G has no loop-edges, and
(ii) if there is an edge e = vex connecting a vertex v to a vertex x, then it is the only
edge connecting v to z, for v,z € V(G).

So, the subgraphs K év ‘L are simplicial (sub)graphs in K C]lv . We call the subgraphs K, év i
of Kév, the simplicial subgraphs of Kév.

Remark 7.3. There are N%-many simplicial subgraphs of K.
The following theorem demonstrates not only the similarity of
lKém(v, s) € Lgny and  Lp: (v,s) € Lk,

but also the difference of them.

Theorem 7.4. Let Kév be the circulant N -regular graph with d-vertices, for N € N,
de Nu{oo}, and let KY*' be a simplicial subgraph of KJ . Let ZK[ziv:l (z,s) be elements

of Lgn in the sense of (5.11), for all x € V(KY1) = V(KY). Then

2 1 !
lKé\]:l (’U,S) =1+ m (1 - (2]\[4—1)9) 5 (73)

in Ly, forallve V(KY:L).
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Proof. By (5.9), one can get that

lKé\Iﬂ('U,S) = Z !

57
we(KY 1), W(U})

with
w(w) = (2N + l)w for all w e KY*' ¢ K¥,

where lgva (e, ) are subgraph zeta functions in Ly in the sense of (5.11), and the

quantity 2N + 1 is in the sense of (3.3). Then it is not difficult to check that, for any
ve V(KR = V(KY),

0 | ]KNl (k)‘
lKNl v,8) = Z
= (2N +1
by (5.11)
[ee}
2
=1+ ) o
= (2N +1)
because
(KY™)e (0)] = e} =1,
and

|(Kd™), (k)] =2,

for all z € V(K}'*1), as in (7.1), and k € N.
Therefore, one has that

2 1 -
L S U S ([P —
Ky (0:8) = 1+ G < (2N+1)S> ’
similar to (7.2). So, the computation (7.3) holds true in Lgx. O

Let K):! be a simplicial subgraph of K2 as above, for N € N, d € N U {o0}. Then,
we have

2 1 -
0 =1+ ey (- )
by (7.3), for all v e V(KJ:1), and
-1
2 1
Lk (z, s)—1+?)5(1—35> )

by (7.1), for all z € V(K}).
Observe now that the functions [y (e,s) are obtained by replacing 3 to 2N + 1
in the computations of the graph zeta functions L K} (e, ).
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By (7.2), one has
N5+ N

for all x € V(KY), and, by (7.3), we have

N§+1
N5 —1

lva (v, s) =

for all v € V(KY) = V(KY1), in Lgn, where N and Ny are in the sense of (3.2)
and (3.3).

Theorem 7.5. Let LK§v (z,5) be the graph zeta function of K, and let ZKém(v,s)
be the elements of EKév in the sense of (5.11) for the simplicial subgraphs

KY1in Lgn, forallz,ve V(KY). Now, let us understand Len (z, s) and lgna (v, 8)
as complex-valued functions in s on C. Then there exists a C-valued function

- (B (e,

such that
Lgn (z,8) = (f(s)) (lKém(v, s)) for allz,ve V(KLY). (7.4)

Proof. By the straightforward computation, one has

Licy (w,8) = <((2‘21]\; - 11>;++ v ) (((;JJVV ++11)):_Zlv> (s (0,))

as C-valued functions. O

The above relation (7.4) shows the relations between our graph-zeta-functional
study and complex function theory.

8. GLUING NON-FACTORIZABLE GRAPHS AND GRAPH ZETA FUNCTIONS
In this section, we study how to construct factorizable graphs from non-factorizable

graphs, and consider corresponding graph zeta functions.
Let MF be the collection of all non-factorizable finite connected graphs,

def G is a non-factorizable, finite,
NS = {G’ connected graphs } (8.1)
Define now a sub-family,
N K is a graph with N of (3.2),
Mg = {K €Ny and d-many vertices ’ (8.2)

of NF, for d, N € N.
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Without loss of generality, we define the families (8.1) and (8.2) “up to
graph-isomorphisms”, i.e. if G; and G2 are graph-isomorphic in MF (or ‘Jt&dN ), then
we regard them as the same element in MF (resp., in mgﬁlv, for all d, N € N).

Then, under the above assumption, one can re-define ‘ﬁ&év by the identical
family &Y,

. . N
QN ) e K is a subgraph of K ’ 8.3
d § | with V(K) — V(KY) )

under graph-isomorphisms, where K C]lv are the N-regular circulant graph with d-vertices,
by the non-factorizability (6.2).
For instance, if

[ ] L]

Ki= ~N U,

then the collection &2 of (8.3) contains not only K3, itself, but also, the graphs

N NN NN (8.4)
NN NoU N N

and all other graphs obtained by changing the direction of each edge of the graphs of
(8.4) one-by-one. Then, by (6.2), this family &3 of (8.3) is identical to the family NF3
of (8.2), up to graph-isomorphisms.

We naturally obtain the following classification theorem by (6.2).

Proposition 8.1. Let MF and ‘ﬂ%fiv be given as in (8.1) and (8.2), respectively, for
(d,N) e N x N. Then

R I (8.5)

(d,N)eNg xN
where &Y are in the sense of (8.3).

Proof. By the very definitions (8.1) and (8.2),

ng= || 9

(d,N)eNxN

By the characterization (6.2), the set MF) is equipotent to & of (8.3), for all
d, N € N. Thus, the classification (8.5) holds. O
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8.1. GLUING ON "M§
Let G1 and G2 be arbitrary two finite connected graphs such that

V(Gl) N V(Gz) =J = E(Gl) N E(Gg)

Fix vertices v; € V(G;) for j = 1,2. Now, let us identify these two vertices as a single
ideal vertex, denoted by v 2. Such an identified vertex vy is called the glued vertex
of v1 and vs.
Understand now the graphs G and G5 as the corresponding graphs G and G,
with
V(G) = (V(G1) \ {v;}) v {vr2} (8.6)

and
E(G)) = BE(G)),
with identification: if e € E(G,) satisfies either e = vje or e = ev;, then identify it as

e = vy 2e, respectively, e = ev'm in B(GY), for all j = 1,2.

Definition 8.2. Let G; be the graphs in the sense of (8.6) induced by fixed graphs
Gj, for j = 1,2, where vy 2 is the glued vertex of v; and vo. Then the graph union
G1,2 = G} U G4 is called the glued graph of G; and G2 with its glued vertex vy o.

For example, let

Gy = eo—ey

and

’U2. — [ ]

Gy = N

.7

then
o —> [ ] —> [ ]
V1,2
G1,2 = .

The above construction of glued graphs is called the gluing (process) on graphs.
We do gluings on the family MF of (8.1), satisfying (8.5). Take now K; # Ks in 5.
More precisely, let
K; e MF, forj =1,2.

Note here that (d;, N;) are not necessarily distinct, if N; # 1 in N. Remark that
VERAY/ J
NFy = Ky = {K,}

for all d € N.)

Fix vertices v; € Kj, for j = 1,2, and glue these vertices to the glued vertex
v1,2, and with respect to this glued vertex v 2, construct the glued graph K; 5 of K3
and K.
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Theorem 8.3. Let K, N be the Nj-regular circulant graph with d;-vertices in U§ o
in NG, for j = 1,2, and a fized N € N. Let K12 be the glued gmph with its glued
vertex v1,2. Then

(8.7)

2N1 + 1) + N 2N 4+ 1) + N. .
LKl,z(Ul,Qas) = <( ! ) 1> <( > ) 2) n£K1 29

(2N1 + 1)3 - N (2Ny + 1)5 — Ny

where Lg(e, s) means the graph zeta functions at vertices of G in Lg, for any locally
finite connected graphs G.

Proof. If K7 are in the sense of (8.6) induced from ng € ‘ﬁ&]i\; for j = 1,2, the
corresponding graph zeta functions L K/ (o, 5) satisfy

LK; (z,s) = LK:J' (y,s), as C-valued functions, (8.8)

for all z € V(K?) and y € V(Kj), by the non-factorizability (6.2) of K(Zj, j=12
Now, by (5.13), one has that

LKl,z (’1}1’2, S) = (LKi (’Ul,g, S)) (LKQ (ULQ, S)) 5 (89)

since the vy p-ray factorization &,, , = {K7, K3}, by the non-factorizability of K fi\lf !
and KIZZ.

Therefore, by (8.8) and (8.9), we obtain that

LKl,z (vl,Za 5) = (LKl (Ulv 8)) (LKz (UQv S)) in ‘CKl,z'

By applying the computation (7.3), one can get the formula (8.7). O

By (8.7), we obtain the following corollary.
Corollary 8.4. Let K, Nj € ‘ﬁ&gj be the N;-regular cz'rculam‘ graphs with d;-vertices,
forj=1,...,n, forn e N\{1}. Fiz vertices v; € V(K ) forj=1,....n, and

construct the iterated glued vertex vy, ,, i.e. identify all] vertices vi, ..., Un. Let
Ky, n be the iterated glued graph with its glued vertex vi,.. n. Then
(2N + 1) + N
L n, S ——— | in Lk, . 8.10
Ky, n v E[ ( 2N + 1) Nj > mLK, . n ( )
Proof. The formula (8.10) is obtained by induction on (8.7). O

Also, by (8.7) and (8.10), the following rough estimation among C-valued functions
is obtained.
Corollary 8.5. Let K; € ‘)TSZ? in NG, forj =1,2, and let Ky 2 be the glued graph
of K1 and Ko with its glued vertex vi 2. Let Ly, , (v1,2, ) be the graph zeta function
at vi,2. Then

(2N, + 1) +N1>H(2N2+ +N2>'. (8.11)

L <
‘ K1,2(v17275)| ‘((QNI +1 2N2 +1 Ny
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Proof. Similar to the proof of (8.7), one has that
L, ,(vi2,5) = (LKi (vl,s)) (LKé (vg,s)) = (Lk, (v1,9)) (Li,(v2, 9)). (8.12)
So,
Ly (v1,2,8)| = [(Li, (v1,9)) (L, (v2, 9)))]

by (8.12)

< (L, (015 8))[ (L, (v2,5))] (8.13)

(o )|z

for any x € V(Kﬁl) and v € V(K(Zz), by the non-factorizability of KCZJ', forall j =1,2.
By (7.3), one has

2N +1)°*+N

A T forallze V(KY
GN 1) erallze VKD,

LK(Ji\’ (z,v) =

for all d, N € N. So, the estimation (8.13) goes to

\L (w S)|< (2N + 1)® +N1 (2N2 + 1 +N2
K202 2= 2N, + 1) (2N, + 1) — Ny /|

Therefore, we obtain the estimation (8.11). O

8.2. GLUED GRAPHS AND Ijx (e, 5)

In this section, we apply our gluing process of Section 8.1, to other functions lKé\m (o,5)
in the sense of (7.3) in ﬁKj;“ Recall now that the simplicial subgraphs K}! of
KC]lV introduced in Section 7 is also contained in NF, because KéV:l, themselves,
are independent non-factorizable graphs. Indeed, for any K é\’ € ‘ﬁ&dN , one obtains
KN e MF) in NF.

Also, recall that

1 2N +1)°+1
LN = = 8.14
wy (2,9) )3 w(w)®s (2N +1)s—1’ (8.14)
wE(Ké\]:l)r
in Ly, by (7.3), for all z € V(KY1) =V(KY) and (d,N) e N x N.
Now, let us take two graphs
K=Ky e Mgy, (8.15)

and let ZK{ZiVj:l (vj, s) be the corresponding elements in £ n; in the sense of (7.11), for

J dj

j=1,2.
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Suppose K7 o is the glued graph of Kﬁ“l and Ké\f:l. Then one has

Lk, ,(v12,5) = (lK(IiVl:l('U, s)> (lKé\/gzl(x,S)>

by (8.12)

2 1 ! 2 1 -
- <1 ERCIAESIE (1 (2N + 1)8) ) <1 MRCIESIE (1 T (2Ns + 1)8) )

(@ ) ( T T )( T >_1 (- @)
b+ (1)
! (<2N12+ ) ) (<2N2+1> ) <1 <2N1+1>> (1‘<2N1+1>>

(8.16)
Define a new C-valued function ¢, ,(s) by
de
VK, 5 (8) lef Li, ,(v1,2,8) — lKCzlvl:l(vl,s) — (lKévQ:l(vg,s) - 1) . (8.17)
1 2
Now, let KN e m&d , and choose vertices v; € V(K ) for j = 1,2,3. By

doing iterated glulng processes, obtain the glued graph K172,3 of K]\lf1 L KA;? nd

chl\?:l with its glued vertex vq 23 of v1, v2 and vs. Then, by (5.13) and (8.12), one
obtains
3
LK1,2,3 (U1,2,3a 5) = 1_[ (lij:l(vjv S)) ) (818)
j=1 N
since the vy 2 3-ray factorization &, ,, = {K7, K3, K3}, where each element K is
graph-isomorphic to Kéjjzl, for all j = 1,2,3, and the corresponding graph groupoids
K/, K} and K§ share their only common element v1 23, the glued vertex.
Then, as in (8.16), the product which is the right-hand side of (8.18) contains the

e (00wt )

(f[l (1 - (2le+1)5) 1) + [Rest terms].
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Define a C-valued function ¢k, , ,(s) by

K, .5(8) = L, ,,(v1,2,3,5) — [Rest terms], (8.19)

as in (8.17), where [Rest terms] of (8.19) is from the right-hand side of (8.18), as in
the above paragraph.

.....

PK, <]ﬁ N, 1) )(ﬁ( 2N+))1> (8.20)

.....

,,,,,

Define now new functions (x,

... n<s>—<ﬂwil)s> Prrn(9), (821)

where ¢g,  (s) are in the sense of (8.20). So, by the very definition (8.21), the
functions Ef,  (s) are simply identical to

..... lj ( 2N+)>1. (8.22)

Definition 8.6. The functions ¢ K1 _____ . (s) of (8.22) are called the Riemann-zeta parts
n odej e‘)“(&fi\? for j=1,...,n and n e N\{1}.

Let N; be “distinct” numbers in N such that 2N; + 1 are “odd primes” for
j=1,...,n and for some n € N, and let

of the glued graphs K,

.....

K, = Kjljfl € mgfj forj=1,...,n, (8.23)

as above.

From below, let us take N; as natural numbers, making 2N; + 1 be prime in N. In
such a case, we denote these primes 2V;+1 by p;. If N; has odd prime p; = 2/V;+1 in N,
we will say N; has odd prime property.

For instance, if N; = 2, then 2V; + 1 becomes a prime 5 in N, but if N; = 4, then
2N; + 1 becomes a composite number 9. So, the quantity 2 has odd prime property,
but the quantity 5 does not have odd prime property.

The Riemann-zeta part (x, , of the graph zeta function Ly,  (v1,.. n,s) at
the glued vertex vy, for the glued graph K, ., of the graphs K,..., K, of (8.23)
satisfies that

for odd primes p1,...,pn, with p; = 2IV; + 1.
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Lemma 8.7. Let K; = ng:l be the elements (8.23) of ‘ﬂ&gj forj=1,...,n, and
neN, and let K., be the glued graph of Ki,..., K, with its glued vertezx vy, . .
(v1,..n,s) be the corresponding graph zeta function at vy ;

,,,,,,,,,,,,,,,

.....

=@ | T (-] (5.24)

S
q€P \ {p1,--,pn} 9

where ((s) is the Riemann zeta function Y, _| .
Proof. The proof of (8.24) is clear by the very construction (8.22) of Riemann-zeta
parts where IV; have odd prime property, for all j = 1,...,n, i.e. under hypothesis,

one has that

—1

1\ 1\
‘( (- 5) ) ()
peP q€P \ {p1,..,pn}

e | 1 }(1—;)_1 )

q€P \ {p1,.-..Pn

e | T1 (1—;) |

q€P \ {p1,...;pn}
where ((s) is the Riemann zeta function, and P is the set of all primes in N. O

So, if we choose suitably big number n and n-many quantities IV;j, having odd
prime property, for j = 1,...,n, then the Riemann-zeta part (g,  (s) of the
glued-graph zeta function Ly,
to the Riemann zeta function ((s). It demonstrates the connections between our
(non-factorizable-)graph zeta functions and the Riemann zeta function ((s).

By (8.24), one can get the following corollary.

Theorem 8.8. Under the same hypothesis with the above lemma, we obtain that

(ﬁ 25> (LK1 ,,,,, (V1. n,8) — [Rest terms])

(8.25)

e | T] }(1—;3),

g€P \ {p1,---sPn

where [Rest terms| is in the sense of (8.19).
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Proof. The proof of (8.25) is identical to that of (8.24), because the left-hand side
of (8.25) is nothing but the Riemann-zeta part Cx, , (s). O

By expressing (8.24) as (8.25), we can directly see the relation between
the glued-graph zeta function Lk,  (v1,.. n,s) at the glued vertex vy, , and the

Riemann zeta function ((s), whenever K; = K(Zj:l, with 2N; +1 = p; are odd primes,
forj=1,...,n.
Independently, recall now an arithmetic function ¢ € A, defined by

é(n) = |{keN:k<n, ged(k, n) =1} (8.26)

for all n € N, where “gcd” means the greatest common divisor, i.e. the image ¢(n) is
counting the number of all relative primes with a fixed number n, which are less than
or equal to n, for all n € N. This arithmetic function ¢ of (8.26) is the well-known
Euler totient function.

For any n € N, one has

¢n)=n| ] (1;) : (8.27)

peP, pn

So, we obtain the following number-theoretic characterization of a specific functional
value Lg, . (v1,...n,1) of the graph zeta function Ly, ... »(v1,....n, §) of the glued graph
Ky, ., of Ki,..., K, in the sense of (8.23).

Theorem 8.9. Let K; = Ké\;j:l be non-factorizable subgraphs of ng in msf]j in the

sense of (8.23) for all j =1,...,n, and n € N\{1}. Assume that N; have odd prime
property, for j =1,...,n. Let Ky, be the iterated glued graph of K1, ..., K, with

----------

where p; =2N; +1forallj=1,...,n
1 to

G (1-5) (L (- 2))
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where tg = [[_, pj in N
to

= o) (¢(to))

i.e. there exists to = [ [j_, (2N; + 1) such that

Crr, (1) =t (6(t0) ")
O

The above characterization (8.28) shows that the ratio between a natural number
to, and the corresponding Euler totient functional value ¢(tg), can be measured by
. (s) of the glued-graph

----------

graphs Ky, ..., K,.

8.3. MORE ABOUT (8.25)

In this section, we concentrate on refining the relation (8.25), which is equivalent to
(8.24). In (8.25) and (8.28), we showed a relation between glued-graph zeta functions
induced by non-factorizable graphs, and the Riemann zeta function. Even though the
formulas (8.24) and (8.25) are interesting, it seems not clear enough to understand in
details, because of [Rest terms] of (8.19), in (8.25). So, here, we analyze [Rest terms]
of (8.19) as a summand in (8.25).

First, recall that how we obtain the [Rest terms] in (8.19). Let

K=K, e g,

be non-factorizable graphs, for j = 1,...,n, for some fixed n € N\{1}, and let K1,
n, having

.....

N; have odd prime property with
p; =2N;+1€P,inN

forall j =1,...,n, where P is the set of all primes in N.
By the factorizability (5.13), one has

LK1 ..... n (Ul,-u,m 8) = 1_[ (lKj (vj7 s)) (8'29)

with

-1
2 1 f+1
I, (vj,8) =1+ — [1—-— =pi
p P; p;—1

J
forall j =1,...,n, by (7.3), where Ix,(vj, s) are in the sense of (5.11). Let

-1

2 1

a; degte CY](S) dif E (1 _ ps> , .7 = 1, Lo, n, (830)
7 J
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i.e.
Ik;(vj,8) =14+a;, j=1,...,n,
by (8.29).
Recall now that, for arbitrary z1,...,z, € C and n € N, the polynomial
= || (z+z;) eClz]
j=1
satisfies that

z) =1+ Z Rz, (8.31)

where the coefficients

k
ok = 0k(T1,. .oy Tpn) = Z (Hazu> )

I<ii<io<...<ipg<n

By defining
gpg = O'0<£L'1,. .. ,xn) = 1,

the expression (8.31) can be re-written by

= Y opa" ", (8.32)
k=0

Generally, if we understand z1, ..., x, as arbitrary algebraically independent inde-
terminants, then the coefficients oy of (8.31) and (8.32) are said to be the elementary
symmetric polynomials. Recall that a n-variable function f(z1,...,x,) is symmetric if

F(Zoq)s - Tom)) = @1, ... xp)

for all o € S,,, where S,, is the symmetric group over {1,...,n}.
It is trivial that, for z1,..., 2, € C, the coefficients o = op(x1,...,z,) of (8.31)
are symmetric for all k = 1,...,n.
Now, apply such computations and notations to our cases.
By (8.29),
Ui, (03,8) = 1+,
where o; = a;(s) are in the sense of (8.30), for all j =1,...,n. So, one has that
n n n
H (v, 8 1_[ 1+« ) :Zak (a1,...,ap)1" 7"
j=1 j=1 k=0

by (8.31) or (8.32)

011,..., ),

HM:

where oy (a1, ..., a,) are in the sense of (8.31) forallk=1,...,n



Non-factorizable C-valued functions induced by finite connected graphs 259

Theorem 8.10. Let K; be the simplicial subgraphs K, i of K, Ni i ‘ﬁ%d for
j=1,...,n, and let K; . _, be the iterated glued graph of them wzth zts glued verter
v Then

.....

1,..., n Z Oél, AR ) )a (833)

where oy, are in the sense of (8.32) and «y, are in the sense of (8.30) forallk =1,...,n.
Moreover, one obtains that

PKy, .., n(s) =0n (041, S 7an) = L n (1 - 15) (834)

S
(H;Ll pj) j=1 Pj
and .
CKL___,n(S) =2" (Hpj> On (a1, cees an)v
j=1
where vk, (s) is in the sense of (8.20) and (k, () is the Riemann-zeta part of

.....

Lk, ., (vl,...;ru s) in the sense of (8.21).

on n 1\
(H?Zl pj) =1 Pi

Thus, the first formula of (8.34) holds true. Since the formula (8.34) holds, the
Riemann-zeta part Cx, . (s) satisfies

-

—1

Il
~
3
N
—=
=z
~_
.
Q
3
£}
=
£

i.e. one obtains that

(Iums) 1 1 1
ﬂ<s>=an<1—( - OIS PR S
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By the above theorem, in particular, by the formulas (8.34) and (8.35), we obtain
the following conclusion.

Corollary 8.11. The [Rest terms| of (8.19) is identified with
n—1
[Rest terms] = Z op(aq, ..., an), (8.36)
k=0

where o (o, ..., o) are in the sense of (8.34), k=1,...,n—1.

This means that by (8.34), we can not only clarify [Rest terms] of (8.19) by (8.36),
but also re-characterize the Riemann-zeta parts (g, , of L, .
Now, under the same hypothesis, assume k # n, and let

o = op(ay,...,ap) for k # n,

i.e.

k
oK = Z < ai,> for such k. (8.37)
=1

1<) <io<...<ip<n

Proposition 8.12. Let us denote the summands Hle a;, of (8.37) simply by
geie fork < n. Then

(Til""’ik =0k (ail,aiz, ey aik) =
and hence, oy, of (8.37) satisfies that

Tk = (@, - .. ) = 3 . (gK(s)) (8.39)

k S
1<y <iz<...<ix<n (]_[l:1 p,-l)

_____ i (s) are the Riemann-zeta parts of the glued-graph zeta function
Lic,, ., Wiy, iy, 8) with its glued vertex vy, i, , where K;, ., is the glued graph of

K = K, el forl=1,... k.
iy i
Proof. For ke {1,...,n— 1},

Bl
o't =0 (Qiyy Qigy vy Q)
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So, the formula (8.38) holds. Thus, by (8.37) and (8.38), one obtains that

k
op =op(ar,...,0n) = Z ( ail>
=1

1<i)<io<...<ip<n

Z Uk'(ail, Oti2, --~7051'k.)

1<iyp<io<...<ip<n

- X o ()

k S
1<ii<ig<...<ip<n (Hl:l piz)

for all k =1,...,n — 1. Therefore, the formula (8.39) holds. O
So, by (8.38) and (8.39), one obtains the following result of this section.

Theorem 8.13. Let K; = ng:l € mgfj;"l be non-factorizable graphs for j =1,...,n
and n € N\{1}, and let Klw’n‘be the iterated glued graph of K1, ..., K, with its glued
vertex v1,... n. Assume that N; have odd prime property, j =1,...,N. Then the graph
zeta function Lk, (v1,.. n,S) satisfies that

LKI ..... n(Ul,u-,n’S) = Z 2 L (CKil,i2 ..... ip (S)) )
k=0

k’ S
1<y <io<...<ip<n (Hz:1 Pil)

(8.40)
where Cr, .. (s) are the Riemann-zeta parts of the glued graph zeta functions
LKil,...,ik (Viy....ins ), for all k-tuples (i1, ...,i), such that 1 <iy <iz <...<ip <mn,
and where p; = 2N; + 1, forall j=1,...,n.

Proof. The proof of (8.40) is done by (8.33), (8.38) and (8.39). O

8.4. THE RIEMANN-ZETA PARTS (g, (s)

In this section, we fix Vy,..., N, € N, having odd prime property with
p]=2N]+1EP7 j=1,...7’l’l,

for n e N\{1}. And let

K=Ky emg,’ = /)7,
be simplicial subgraphs of K(Zj for all j = 1,...,n, generating the iterated glued
_____ n With its glued vertex vy, . . Then one can have the corresponding graph
zeta function Lg, . (v1,..n,s) equipped with its Riemann-zeta part (x, ., (s) in the
sense of (8.22). By (8.34) and (8.35),

,,,,,

n(S)—Wan<1_l L “.’1_1(>

27L
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satisfying
1
..... (w=eo | T1 (1—qs) , (8.41)
q€P \ {p1,--spn}

by (8.24), where ((s) is the Riemann zeta function. By (8.41), clearly, one can verify
that if n — oo, then

W - I1 (1 - ;) . (8.42)

q€P \ {p1,....pn}
Therefore, one can obtain the following ratio determined by primes.

Theorem 8.14. Under the above hypothesis, we have

(H?=1 %)71 (Lk,..,(v1,..n,8) — [Rest terms))
¢(s)

= H 1-— 1) , (8.43)

GEP\ (P10} q

where [Rest terms) is in the sense of (8.19), characterized by (8.36).
Proof. The proof of (8.43) is done by the identity

11111 (s) = (H 2&> (Lk,...,.(v1,..n,s) — [Rest terms]),

by (8.42). O
So, by (8.40) and (8.43), we have the following corollary.

Corollary 8.15. Under the same hypothesis with the above theorem, we obtain
the following relation between our glued-graph zeta function of non-factorizable graphs
at the glued vertex, and the Riemann zeta function {(s).

Ly (V1ns8) = )] ( > 0“"“’“(5)> ; (8.44)
k=0

1<igp<io<...<ip<n

with

) . on 1
IO () — ) ) I (1 - )
(Hf:l pil) q€P \ {Piys--sPiy } 4

Proof. The proof of (8.44) is done by (8.40) and (8.43). O
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