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Abstract. In this paper, we study factorizability of C-valued formal series at fixed vertices,
called the graph zeta functions, induced by the reduced length on the graph groupoids of
given finite connected directed graphs. The construction of such functions is motivated by
that of Redei zeta functions. In particular, we are interested in (i) “non-factorizability” of
such functions, and (ii) certain factorizable functions induced by non-factorizable functions.
By constructing factorizable functions from our non-factorizable functions, we study relations
between graph zeta functions and well-known number-theoretic objects, the Riemann zeta
function and the Euler totient function.
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1. INTRODUCTION

In [6], we established certain C-valued functions induced by directed graphs. Combi-
natorial properties of graphs was considered in terms of analytic tools from function
theory, and vice versa. Motivated by the construction of Redei zeta functions (e.g., [11]),
we constructed so-called graph zeta functions as C-valued functions with variables de-
termined up to vertices of graphs and an arbitrary C-variable. In [7], we further studied
about the factorizability of graph zeta functions at fixed vertices. We recognized in [7]
that there are certain graphs making their graph zeta functions be “not” factorizable
in the sense of [7] (see below). In this paper, we further study non-factorizability of
graph zeta functions.

We say that a graph zeta function is not factorizable if it does not have suitable
(muti-)factors determined by certain subgraphs of the given graph, for each fixed vertex.
And we say a given graph is not factorizable if the corresponding graph zeta functions
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are not factorizable for “all” vertices. It is interesting that a connected finite graph G,
with its maximal out-degree N P N, having d-many vertices (d P NY t8u), is not fac-
torizable if and only if it is graph-isomorphic to a subgraph K, having d-many vertices,
of the circulant N -regular graph KN

d with d-vertices, i.e. the non-factorizability of all
finite-connected-graph zeta functions is completely characterized by a graph-theoretical
invariance.

1.1. BACKGROUND

Recently, we found there are close connection between number-theoretic objects and
operator-theoretic, and operator-algebraic objects. Moreover, number-theoretical tech-
niques or tools can be applicable to the studies of operator-theoretic, free-probabilistic,
and operator-algebraic structures. Conversely, free-probabilistic, operator-theoretic
and operator-algebraic techniques and tools provide new models for studying
number-theoretic problems (e.g., [2, 4, 5] and [12]). In this paper, by using the
analytic-and-combinatorial number-theoretic techniques, we will characterize combina-
torial objects, graphs, and corresponding algebraic objects, graph groupoids.

Independently, graphs and corresponding graph groupoids have close connections
with operator-theoretic, representation-theoretic, and operator-algebraic objects. In
particular, elements of graph groupoids are understood as operators induced by certain
projections and partial isometries, assigned from vertices, respectively, edges of given
graphs (e.g., [3] cited references therein) We cannot help emphasizing the importance
of graphs and graph groupoids not only in mathematical fields but also in related
science areas (e.g., [9] and [8]). Whenever a graph G is fixed, it has its corresponding
algebraic structure G, which is a groupoid, generated by edges of the shadowed graph
pG of G, with its multi-units identified with the vertices of G. Recall that groupoids are
algebraic structures consisting of sets with a single partially-defined binary operation
equipped with “multi-units.” (In our case, by attaching the empty word H (if needed),
we make the binary operation be well-defined.) For instance, every group is a groupoid
with a “single” unit, the group identity. We call the groupoids induced by graphs,
graph groupoids. They are understood as groupoidal version of free groups.

Graph groupoids are playing important roles not only in combinatorics and algebra,
but also in noncommutatve function theory, dynamical systems, operator theory,
(amalgamated) free probability, and operator algebra. Thus we cannot help emphasizing
the importance of applications of graph groupoids in various scientific areas (e.g., [3]).

L-function theory (including the study of Dirichlet series induced by arithmetic
functions) is one of the branches of number theory and mathematical analysis. Clas-
sically, Dirichlet series are constructed as C-valued functions induced by arithmetic
functions, i.e. if f : NÑ C is an arithmetic function, then one has the corresponding
Dirichlet series Lf : CÑ C defined by

Lf psq “
8
ÿ

n“1

fpnq

ns
, s P C.
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For example, the Riemann zeta function
ř8

n“1
1
ns is understood as the Dirichlet

series L1psq, where 1 is the constant arithmetic function,

1pnq “ 1 in C for all n P N.

Let χ be a Dirichlet character, which is an arithmetic function satisfying that:

(i) there exists N P N such that χpn`Nq “ χpnq,
(ii) χpnq “ 0, whenever gcdpn,Nq ‰ 1, and
(iii) χpnmq “ χpnqχpmq for all n,m P N.

The corresponding Dirichlet series Lχpsq is said to be a (Dirichlet) L-function of χ
(e.g., [10] and cited papers therein).

1.2. MOTIVATION

In [6], we attempted to connect the above two different topics, graph-groupoid theory
and L-function theory, which seem completely un-related. For the graph groupoid G
of a given graph G, we constructed a suitable order function $, and then establish
the corresponding Redei-zeta-function-like function

LGpv, sq “
ÿ

wPGv

1
$pwqs

,

as in [11], where v is a fixed vertex and Gv is a certain subset of G determined by an
arbitrarily fixed vertex v, and s is a C-variable. Analytic, combinatorial, and algebraic
properties of tLGpv, squvPV p pGq have been studied in [6].

In [7], we showed that there exists certain inner structure Gv “ tG
1 ď pGu of G

such that
LGpv, sq “

ź

G1PG
LG1pv, sq,

where pG is the shadowed graph of G in the sense of Section 2.3 below. And we realized
that there do exist graphs G such that Gx “ t pGu for all x P V pGq, and hence all graph
zeta functions LGpx, sq are not factorizable.

1.3. OVERVIEW AND SKETCH OF MAIN RESULTS

We here further study factorizability of “finite”, “connected” graphs, in terms of
the factorizability of the corresponding graph zeta functions. To do that, we collect
non-factorizable finite connected graphs, and construct other graphs induced by them.
In particular, we construct factorizable graphs by “gluing” non-factorizable graphs,
and study detailed properties of corresponding graph zeta functions.

In Section 2, we briefly introduce motivations and backgrounds for our proceeding
works. In Sections 3 and 4, we construct graph zeta functions, and review fundamental
properties of such functions (also, see [6]). In Sections 5 and 6, we consider factorizability
of graph zeta functions, and those of graphs. We characterize the factorizability of
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graph zeta functions in terms of subgraphs in Theorem 5.6. And then, based on this
factorizability, we characterize the non-factorizable graphs, see Theorem 6.3 (also, see
[7]). In Section 7, the graph zeta functions of non-factorizable finite connected graphs
are considered in detail. In particular, the specific forms of non-factorizable-graph
zeta functions are obtained in Theorems 7.2, and certain subgraphs zeta functions of
non-factorizable-graph zeta functions are characterized in Theorem 7.4. And hence, we
refine the results in Theorem 7.5. In Section 8, we construct finite connected graphs by
gluing non-factorizable graphs. And the corresponding glued-graph zeta functions are
obtained in Theorem 8.3. And we obtain certain relations between our glued-graph
zeta function and well-known number-theoretic objects, especially, the Riemann zeta
function ζpsq, and the Euler totient function φ. See Theorems 8.6, 8.7, 8.8 and 8.9.

2. PRELIMINARIES

In this section, we introduce basic concepts and backgrounds of our proceeding study.

2.1. REDEI ZETA FUNCTIONS

In this section, we briefly introduce Redei zeta functions. For more about Redei zeta
function, see [11].

Let L be an arbitrary lattice with its minimal element 0L, equipped with its
ordering ď. And assume

f : Lˆ LÑ N0 “ NY t0u

is a well-defined function satisfying

fpx, yq “

#

fpx, yq in N if x ď y,

0 otherwise
(2.1)

for all px, yq P Lˆ L, and
fpx, yq “ fpx, zqfpz, yq, (2.2)

whenever x ď z ď y in L. Such a function f satisfying (2.1) and (2.2) is called an order
function on the lattice L.

For a fixed order function f on L, one may define a function

fx0 : LÑ N

by
fx0pxq “ fpx0, xq, x P L, (2.3)

for an arbitrarily fixed x0 P L. We call such a function fx0 of (2.3) induced by f
an order function on L with its base x0.

Now, let A be a subset of L, and let MpAq be the sub-lattice generated by A in L.
A subset A is said to be a Redei set in L if for each element x in MpAq there are only
“finitely” many y in MpAq such that fpx, yq ă 8.
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Fix an arbitrary element x0 in L. The Redei zeta function of A based on x0 (see [11])
is defined by

Lx0psq
def
“

ÿ

aPA

p´1q|A|
fx0paq

s
. (2.4)

Based on the construction (2.4) of Redei zeta function, we will establish our
graph-L-functions in Sections 3 and 4 below. Our graph zeta functions are not exactly
Redei zeta functions of (2.8), but the construction of them is highly motivated by them.

2.2. GRAPHS AND GRAPH GROUPOIDS

For more about directed graphs, graph groupoids and corresponding operator algebras,
see [3]. We will use the same notations and definitions used there. In this section, we
briefly introduce concepts from those references used for our study.

Let G be a directed graph pV pGq, EpGq, s, rq, where V pGq is the vertex set, EpGq
is the edge set, and s and r are the functions from EpGq onto V pGq, called the source
map, respectively, the range map, indicating the initial vertex and the terminal vertex
of each edge, respectively. All graphs in this paper will be automatically assumed to
be directed. For convenience, we write e “ v1ev2, where speq “ v1 and rpeq “ v2 in
V pGq, for all e P EpGq.

The corresponding new graph G´1 is the “opposite” directed graph of G sharing
same vertices, i.e. by replacing the orientation of edges of G backwardly, we obtain
the graph G´1. This new graph G´1 is said to be the shadow of G. It is trivial that

pG´1q´1 “ G.

Let G1 and G2 be graphs. The union G1 YG2 is defined by a new graph G with

V pGq “ V pG1q Y V pG2q, (2.5)

and
EpGq “ EpG1q Y EpG2q,

which preserves the directions of G1 and G2.
The shadowed graph pG of a given graph G is defined by the union GYG´1, i.e.

V p pGq “ V pGq Y V pG´1q “ V pGq “ V pG´1q,

and
Ep pGq “ EpGq Y EpG´1q “ EpGq \ EpG´1q.

Let pG be the shadowed graph of a given graph G. The set FP p pGq, consisting of all
finite paths on pG, is called the finite path set of pG. All finite paths on pG is denoted by
forms of words in edges of Ep pGq.

Now, let w “ e1 . . . ek P FP p pGq for k P N. Then one can extend the maps s and r
on FP p pGq as follows:

spwq “ spe1q and rpwq “ rpekq.
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If spwq “ v1 and rpwq “ v2 in V p pGq, we also write

w “ v1w, or w “ wv2, or w “ v1wv2,

for all w P FP p pGq.
Define a set F`p pGq by

F`p pGq def“ tHu Y V p pGq Y FP p pGq,

and define a binary operation (¨) by

w1 ¨ w2
def
“

#

w1w2 if rpw1q “ spw2q in V p pGq,
H otherwise

(2.6)

for all w1, w2 P F`p pGq, where H is the empty word, representing the “undefinedness
of w1 ¨ w2, as finite paths or vertices of pG”.

The operation (¨) of (2.6) on F`p pGq is called the admissibility. If w1 ¨ w2 ‰ H

in F`p pGq, then w1 and w2 are said to be admissible; if w1 ¨ w2 “ H, then they are
said to be not admissible.

The algebraic pair F`p pGq “ pF`p pGq, ¨q, equipped with the admissibility, is called
the free semigroupoid of pG.

For a fixed free semigroupoid F`p pGq, define a natural reduction by

w´1w “ v2 and ww´1 “ v1, (RR)

whenever w “ v1wv2 P F`p pGqz tHu, with v1, v2 P V p pGq. Then this reduction (RR)
acts as a relation on the free semigroupoid F`p pGq.

Definition 2.1. The quotient set G “ F`p pGq{ (RR), equipped with the inherited
admissibility (¨) from F`p pGq, is called the graph groupoid of G.

The graph groupoid G of G is indeed a categorial groupoid with its (multi-)units
V p pGq “ V pGq (e.g., [3, 9] and [8]). The subset of G, consisting of all “reduced” finite
paths, is denoted by FPrp pGq. Notice that every graph groupoid G of a graph G is in
fact a collection of all “reduced” words in the edge set Ep pGq of the shadowed graph pG
under (RR).

Let K and G be graphs. The graph K is said to be a subgraph of G if K is a graph
with

V pKq Ď V pGq (2.7)
and

EpKq “ te P EpGq : there exists e P EpKq such that e “ vev1 for v, v1 P V pKqu.

We write this subgraph-inclusion by

K ď G. (2.8)
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3. ORDER FUNCTIONS ON GRAPHS

Throughout this section, let G be a fixed graph with its graph groupoid G.
The (reduced) length |¨| on G is naturally defined by

|w| “

#

0 if w P tHu Y V p pGq,
k if w “ e1 . . . ek P FPrp pGq,

(3.1)

with e1, . . . , ek P Ep pGq, for k P N and w P G. Clearly,
ˇ

ˇw´1w
ˇ

ˇ “ 0 “
ˇ

ˇww´1ˇ
ˇ , w P G.

Remark that, in general,

|w1w2| ď |w1| ` |w2| , w1, w2 P G.

Define the following quantities for each vertex v by

degoutpvq “ |te P EpGq : e “ veu| , deginpvq “ |te P EpGq : e “ evu| ,

and
degpvq “ degoutpvq ` deginpvq

in G, where |X| means the cardinality of arbitrary sets X. They are called the
out-degree, the in-degree, and the degree of v in G, respectively. A graph G is said to
be locally finite if the degrees of all vertices of G are finite.

In the rest of this paper, all graphs are assumed to be “finite” and “connected”.
Let G be a given graph with its graph groupoid G, and let

N “ maxtdegoutpvq : v P V pGq in Gu. (3.2)

Define a new quantity N2 by

N2
def
“ 2N ` 1 in N, (3.3)

where N is in the sense of (3.2). Note that

2N “ maxtdegoutpvq : v P V p pGq in pGu,

where pG is the shadowed graph of G. Based on the finiteness of G, (3.2) and (3.3),
one can define a function

$ : GÑ N

by
$pwq

def
“ N

|w|
2 , w P G, (3.4)

where N2 is in the sense of (3.3), and |w| means the reduced length (3.1) on G.
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Now, let wPG. In particular, assume w “ w1w2 . . . wk in G for some w1, . . . , wk P G,
for k P N. Then we write

wj ãÑ w in G for j “ 1, . . . , k,

with axiomatization
H ãÑ w for all w P G.

Let w1 and w2 be nonempty elements in G, and assume the “reduced” word w1w2
is again a nonempty element of FPrp pGq in G. Then there exist w11, w12 P FPrp pGq such
that:

(i) w1j ãÑ wj for j “ 1, 2,
(ii) w1w2 “ w11w

1
2 in G,

(iii) w1j are the maximal reduced words in G, satisfying (i) and (ii), for j “ 1, 2.

Definition 3.1. Let w11 and w12 be elements of FPrp pGq in G, satisfying the above
conditions (i), (ii), and (iii). Then they are said to be reduced embeddings of w1w2.

The following proposition shows the relation between reduced embeddings and
the function $ of (3.4) on G.

Proposition 3.2 ([6]). Let $ : GÑ R be a function (3.4). Then $ is “conditionally”
multiplicative, in the sense that

$pw1w2q “

#

$pw11q$pw
1
2q if w1w2 P FPrp pGq,

1 if w1w2 P tHu Y V p pGq
(3.5)

for all w1, w2 P G, where w11 and w12 are the reduced embeddings of w1w2 in G.

By (3.5), the function $ is “conditionally” multiplicative.

Definition 3.3. The map $ of (3.4) is called the ordering map of the graph groupoid
G (or, of a graph G).

Remark that the finiteness of all our graphs guarantees the Redei-set-condition
of Section 2.1 for $.

4. GRAPH ZETA FUNCTIONS

Throughout this section, let G be a fixed finite connected graph with its graph
groupoid G, with corresponding quantity N2 of (3.3) induced by N of (3.2).

4.1. GRAPH ZETA FUNCTIONS LGp‚, sq

Define subsets Gv2
v1 of the graph groupoid G by

Gv2
v1

def
“ tw P G : w “ v1wv2u (4.1)
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for all v1, v2 P V p pGq. Similarly, define subsets Gv and Gv of G by

Gv “
ď

xPV p pGq

Gxv and Gv “
ď

xPV p pGq

Gvx (4.2)

for all v P V p pGq, where Gxv and Gvx are subsets of G in the sense of (4.1).

Definition 4.1. Define a function LG : V p pGq ˆ CÑ C by

LGpv, sq
def
“

ÿ

wPGv

1
$pwqs

(4.3)

for s P C, where Gv are in the sense of (4.2). Such a function LG is called the graph
zeta function of G at v.

Define subsets Wn of Gˆ def
“ GztHu by

Wn
def
“ tw P Gˆ : |w| “ nu (4.4)

for all n P N0 “ NY t0u. It is not difficult to check that

W0 “ V p pGq

and
Gˆ “

8
ğ

j“0
Wj set-theoretically.

Also, let

Gv2
v1pnq

def
“ Gv2

v1 XWn and Gvpnq
def
“ Gv XWn

for all v, v1, v2 P V p pGq and n P N0.
The following theorem allow us consider our graph zeta functions as certain (formal)

series.

Proposition 4.2 ([6]). Let LG be the graph zeta function (4.3) of a graph G. Then

LGpv, sq “
8
ÿ

k“0

|Gvpkq|
Nk s

2
“

8
ÿ

n“1

ˇ

ˇGv
`

logN2 n
˘
ˇ

ˇ

ns
. (4.5)

In particular, if logN2 n R N, then WlogN2 n
is empty by (4.4), and hence

ˇ

ˇGn
`

logN2 n
˘
ˇ

ˇ “

ˇ

ˇ

ˇ
Gv XWlogN2 n

ˇ

ˇ

ˇ
“ 0. (4.6)

Define now functions ηv2
v1 : NÑ N0 by

ηv2
v1 pkq

def
“

ˇ

ˇGv2
v1pkq

ˇ

ˇ “
ˇ

ˇGv2
v1 XWk

ˇ

ˇ (4.7)
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for all k P N, where v1, v2 P V p pGq. Similarly, define ηv : NÑ N0 by

ηvpkq
def
“ |Gvpkq| “ |Gv XWk| (4.8)

for all k P N and v P V p pGq. By the very constructions (4.7) and (4.8), one has that

ηv “
ÿ

xPV p pGq

ηxv on N. (4.9)

Thus, one has that

LGpv, sq “
8
ÿ

n“1
n´sηv

`

logN2 n
˘

“

8
ÿ

n“1
n´s

¨

˝

ÿ

xPV p pGq

ηxv
`

logN2 n
˘

˛

‚

“
ÿ

xPV p pGq

˜

8
ÿ

n“1
n´sηxv

`

logN2 n
˘

¸

(4.10)

by (4.6), (4.8) and (4.9). The above relation (4.10) motivates the following proposition,
showing certain decomposition property of LGpv, sq.

Proposition 4.3. There exist C-valued functions

fxpv, sq : V p pGq ˆ CÑ C

defined by

fxpv, sq “
8
ÿ

n“1

ηxv
`

logN2 n
˘

ns
“

8
ÿ

k“0

ηxv pkq

Nk s
2

for all x P V p pGq such that

LGpv, sq “
ÿ

xPV p pGq

fxpv, sq. (4.11)

Proof. The proof of (4.11) is done by (4.10).

4.2. GRAPH-ARITHMETIC ALGEBRAS

Let A be a set consisting of all arithmetic functions, i.e.

A def
“ tf : NÑ C : f is a functionu.

Then, as we discussed in Section 2.1, the set A forms an algebra over C, with the
usual functional addition, and convolution. In fact, by defining the unary operation
f ÞÑ f˚, where

f˚pnq “ fpnq in C for all n P N,
one can understand A as a ˚-algebra, where z mean the conjugates of z for all z P C.
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Definition 4.4. We call the ˚-algebra A the arithmetic(-functional-˚-)algebra
(over C).

Let ηv2
v1 and ηv be in the sense of (4.7) and (4.8) for all v1, v2, v P V p pGq. Since they

are N0-valued in C with their domains N, one can naturally regard them as arithmetic
functions contained in A.

For a fixed given graph G, define a subset VG of the arithmetic algebra A by

VG “ spanC
´

tηv2
v1 : v1, v2 P V p pGqu

¯

, (4.12)

where spanCpXq mean the vector spaces generated (or spanned) by arbitrary sets X
over C. Then the set VG of (4.12) is a subspace of A, but we cannot guarantee it is
a subalgebra of A, because even though η1, η2 P VG and η1 ˚ η2 P A, in general,

η1 ˚ η2 P AzVG.

Define now a “conditional” convolution

f : VG ˆ VG Ñ A

by a (non-closed) binary operation satisfying that

ηv2
v1 f η

x2
x1

def
“ δv2,x1η

v2
v1 ˚ η

x2
x1 , (4.13)

under linearity on VG for all v1, v2, x1, x2 P V p pGq, where δ means the Kronecker delta.
Clearly, ηv2

v1 f η
x2
x1 is contained in the arithmetic algebra A, but still, in general, it is

not contained in VG.
Construct now a subalgebra AG, generated by VG, under the conditional convolution

f of (4.13), i.e.
AG

def
“ A lgfC pVGq “ CfrVGs, (4.14)

where A lgfC pVGq means “the subalgebra CfrVGs” of the algebra CrVGs generated by
arbitrary subsets VG in A, “under f”.
Proposition 4.5 ([4]). Let AG be the algebra (4.14) of the arithmetic algebra A
generated by the subspace VG of (4.12), under the conditional convolution f of (4.13).
Then it is a subalgebra of A over C.
Remark 4.6. Since two binary operations, the conditional convolution (f) on AG

and the usual convolution (˚) on A, are defined differently, one may understand the
“subset” AG of A as an independent algebra induced from certain elements of A under
the conditions dictated by the Kronecker delta of (4.13). However, we regard AG as
a subalgebra of A, because
(i) AG is an algebraic sub-structure of A, and
(ii) the conditional convolution (f) is nothing but the convolution (˚) satisfying

certain connection rules (in fact, the admissibility on G) among elements ηxv ’s of A.
So, if there is no conflicts, we will use the term “subalgebra” for AG in A.
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Remark here that the condition on f of (4.13) is preserving the combinatorial
property of a given graph G.
Definition 4.7. Let AG be the subalgebra (4.14) of the arithmetic algebra A. We call
AG, the G-arithmetic algebra. And the conditional convolution f of (4.13) on AG is
called the G-convolution on AG.

Let AG be the G-arithmetic algebra with G-convolution f, and let ηv, ηx P AG,
for v, x P V p pGq, where ηy are in the sense of (4.8), for all y P V p pGq. Then

ηv f ηxpkq “
´´

ÿ

yPV p pGq

ηyv

¯

f

´

ÿ

zPV p pGq

ηzx

¯¯

pkq

“

´

ÿ

y,zPV p pGq

ηyv f η
z
x

¯

pkq “
ÿ

y,zPV p pGq

´

ηyv f η
z
xpkq

¯

“
ÿ

y,zPV p pGq

´

δy,xη
y
v ˚ η

z
x

¯

pkq

“
ÿ

zPV p pGq

´

ηxv ˚ η
z
x

¯

pkq “
´

ηxv ˚
´

ÿ

zPV p pGq

ηzx

¯¯

pkq

“ ηxv f ηxpkq “ ηxv ˚ ηxpkq,

(4.15)

by (4.9)

for all v, x P V p pGq and k P N.

Lemma 4.8. Let AG be the G-arithmetic algebra, and let ηv, ηx P AG for v, x P V p pGq.
Then

ηv f ηx “ ηxv ˚ ηx. (4.16)
Proof. The proof of (4.16) is done by (4.15).

4.3. GRAPH ZETA FUNCTIONAL ALGEBRAS

Let G be a fixed locally finite and connected graph with its graph groupoid G, and
let AG be the G-arithmetic algebra in A. Define now a set L by the collection of all
Dirichlet series induced by arithmetic functions, i.e.

L def
“

#

8
ÿ

n“1

fpnq

ns
| f P A

+

. (4.17)

We call L the (Dirichlet-)L-functional algebra. It is not difficult to check that there
exists a morphism

ϕ : A Ñ L
defined by

ϕpfq
def
“

8
ÿ

n“1

fpnq

ns
in L, f P A. (4.18)
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Then this morphism ϕ is a ˚-algebra-isomorphism up to the C-variable s (see [4]),
i.e. the arithmetic algebra A and the L-functional algebra L are ˚-isomorphic.

By understanding our G-arithmetic algebra AG as a subalgebra of A, one can
determine a corresponding ˚-isomorphic subalgebra LG of the L-functional algebra L.
Define

LG def
“ ϕ pAGq , (4.19)

where ϕ is in the sense of (4.18) from A onto L.
Definition 4.9. The subalgebra LG of the L-functional algebra L is called the graph
zeta functional algebra induced by G.

Notice here that the subalgebra AG of A is dictated by the “conditionality” from the
G-convolution f. So, the (usual inherited) multiplication on LG “ ϕ pAGq (inherited
from L) is determined by the conditionality.
Theorem 4.10 ([4]). Let ηv2

v1 , η
x2
x1 be generating elements of the G-arithmetic algebra

AG for vj , xj P V p pGq, j “ 1, 2, and let ϕpηv2
v1 q, ϕpη

x2
x1 q be corresponding L-functions

in LG. Then
`

ϕpηv2
v1 q

˘ `

ϕpηx2
x1 q

˘

“

8
ÿ

n“1

δv2,x1

`

ηv2
v1 ˚ ηx2

x1

˘ `

logN2 n
˘

ns
(4.20)

“in LG”.
The above theorem characterizes the conditionality on the multiplication (¨) on LG,

in terms of (f) on AG in L.
To emphasize the above conditional multiplicativity (4.20) on the graph zeta

functional algebra LG, we denote the multiplication on LG by

b : LG ˆ LG Ñ LG, (4.21)

i.e. we want to handle the subalgebra LG of L, as an independent algebraic structure
(under b).

By (4.20) and (4.21), if η1, η2 P AG, and if

L1 “
8
ÿ

n“1

η1pnq

ns
and L2 “

8
ÿ

n“1

η2pnq

ns
in LG,

then
L1L2 “ L1 b L2 “

8
ÿ

n“1

η1 f η2pnq

ns
“in LG”.

4.4. CONVERGENCE OF GRAPH ZETA FUNCTIONS

In the rest of this paper, we are no longer interested in the convergence of graph zeta
functions. One may understand all our graph zeta functions are assumed to be conver-
gent. But it is true that, under such conditions, we may lose lots of interesting analytic
properties of graph zeta functions gotten from the pure algebraic-and-combinatorial
properties of G (or of G). The following convergence condition (4.22) is obtained in [6].
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Theorem 4.11 ([6]). Let G be a finite connected graph, and v P V pGq, and let
LGpv, sq be the graph zeta function based at v. If

Repsq ą logN2

ˆ

lim
nÑ8

ηvpn` 1q
ηvpnq

˙

, (4.22)

then LGpv, sq is convergent absolutely, as an infinite series in C.

5. FACTORIZATIONS OF GRAPH ZETA FUNCTIONS

As before, we fix a finite connected graph G with its graph groupoid G, and let LGpv, sq
be graph zeta functions at v P V p pGq. In this section, we further study factorizability
of graph zeta functions (at vertices) which have been considered in [7].

Let w be a loop reduced finite path in FPrp pGq in G. Since w is a loop, wm are all
loop reduced finite paths, for all m P Z. Moreover, whenever such a loop w is chosen
in G, there exists a unique loop finite path l, such that: (i) w “ ln, for some n P N,
and (ii) there is no other loop finite path y such that y ãÑ l.

Let l be the loop satisfying the conditions (i) and (ii) of the above paragraph. Then
we call l a basic loop (reduced finite path).

Let wo “ vwo P FPrp pGq be a reduced finite paths of G initial from the vertex v,
and let

wo “ ve1e2e3 . . . en, with e1, e2, . . . , en P Ep pGq

for n P N. Moreover, assume that wo is “maximal from v”, in the sense that wo is a
reduced word in Ep pGq satisfying the following two conditions (5.1) and (5.2):

if there is a loop reduced finite path w1 embedded in wo

(i.e. w1 ãÑ wo or w1 “ wo), then w1 is basic in G, (5.1)

there does not exist w satisfying (5.1) such that wo ãÑ w
“properly” in G. Equivalently, if such w exists, then w “ wo. (5.2)

Definition 5.1. Assume that wo is maximal from v in the sense of (5.1) and (5.2).
Then wo is said to be a ray from v (or a v-ray).
See [7] for precise examples for v-rays. Especially, in [7], we considered “locally-finite”
graphs (instead of handling finite graphs), and hence, it is possible that a ray wo
cannot be contained in G, if G is an infinite graph under (5.1) and (5.2). However, in
this paper, we assumed all given graphs G are finite, so rays are regarded as reduced
finite paths in G under (5.1) and (5.2).

Now, let uo “ ve1e2e3 ¨ ¨ ¨ en be a ray from a fixed vertex v in G, where e1, . . . , en P
Ep pGq for some n P N, and let

xj “ rpejq “ spej`1q, j “ 1, . . . , n´ 1,

with xn “ rpenq. Then one can construct the corresponding sequence Uo of vertices
from the v-ray uo,

Uo “ pv “ x0, x1, x2, x3, . . . , xnq. (5.3)
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We call the sequence Uo of (5.3), the ray-vertex sequence of uo. For each embedded
pair W o

j “ pxj , xj`1q of Uo, there may be multi-edges connecting xj to xj`1 in the
edge set Ep pGq of the shadowed graph pG, j “ 1, . . . , n´ 1.

Let G be given and v, a fixed vertex in V p pGq, and let wo be the v-ray. Let W o be
the corresponding ray-vertex sequence of wo as in (5.3). Now, construct a subgraph
Gwo of the “shadowed” graph pG of G by a new independent graph with

V pGwoq “ tv “ x0, x1, x2, x3, . . . , xnu, (5.4)

and
EpGwoq “ te P Ep pGq : e “ xjexj`1, j “ 0, 1, . . . , n´ 1u.

Definition 5.2. Let G be a graph, and v P V pGq, and let wo be the v-ray with its
ray-vertex sequence W o. Then subgraph Gwo of (5.4) is called a ray subgraph of G
from v.

The following proposition is proven by the connectedness of our graph G.
Proposition 5.3 ([7]). Let G be a graph with its shadowed graph pG, and let v be
a fixed graph. Let

Gv “ tK ď pG : K is a ray subgraph of pG from vu, (5.5)

i.e. the family Gv is the set of all ray subgraphs of G from v. Then

pG is graph-isomorphic to
Ť

KPGv

pK, (5.6)

and
G is groupoid-isomorphic to ‘

KPGv

K, (5.7)

where pK mean shadowed graphs of K, and K are graph groupoids of K, for all K P Gv.
Remark that the above relations (5.6) and (5.7) do not hold in general without

connectedness of G.
Now, let Gv be as in (5.5), and assume K1 ‰ K2 P Gv. Suppose

pV pK1qztvuq X pV pK2qztvuq ‰ ∅.

Then construct the graph union K1 YK2. If there exists K3 P Gv such that

K3 ‰ K1 and K3 ‰ K2

and
pV pK3qztvuq X pV pK1 YK2qztvuq ‰ ∅,

then construct the graph union

pK1 YK2q YK3 “ K1 YK2 YK3,

as a subgraph of G. Do this processes until it ends for Gv.
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Definition 5.4. The process in the very above paragraph is called the v-ray-subgraph
unionization for a fixed vertex v, and the resulted subgraph induced by Gv of (5.5)
are said to by v-ray-subgraph unions in the shadowed graph pG of G. Then one obtains
a new family Gv of subgraphs of G,

Gv “ tK ď pG : K is a v-ray-subgraph unionu. (5.8)

This family Gv of (5.8) is called the v-ray factorization of pG.

For instance, let
G “ ‚ Ñ ‚ Ð ‚

v
Ð ‚

ö
Ñ ‚ Õ ‚.

Then the v-ray subgroup unions Gv of (5.5) is

Gv “ tK1,K2,K3,K4,K5u,

where
Kj “ ‚

v
Ñ ‚

ö
Ñ ‚ Ñ ‚, j “ 1, 2, 3, 4,

and
K5 “ ‚ Ð ‚ Ð ‚

v

in pG. Then we obtain the v-ray factorization Gv of (5.8),

Gv “ tG1, G2u,

where
G1 “ K5 “ ‚ Ð ‚ Ð ‚

v
,

and

G2 “
4
ď

j“1
Kj “ ‚

v
Ñ ‚

ö
Ñ ‚ Ñ ‚,

in the shadowed graph pG of G.

Definition 5.5. Let Gv be the v-ray factorization (5.8) induced by the v-ray subgraph
unions Gv of (5.5). If Gv “ t pGu, then the graph G (or the shadowed graph pG, or the
graph groupoid G) is not v-ray factorizable. Otherwise, one says G (resp., pG, resp., G)
is v-ray factorizable.

Assume now that G is v-ray factorizable, i.e. the family Gv of (5.8) has more than
one element. Let K1 ‰ K2 P Gv. Then it is not difficult to verify that

V pK1q X V pK2q “ tvu and EpK1q X EpK2q “ ∅ (5.9)

in G, i.e. the distinct elements of the v-ray factorization Gv share their only common
element v as (proper) subgraphs of pG.
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Proposition 5.6. Let Gv be the v-ray factorization (5.8) for a fixed vertex v of a given
graph G. Assume that G is v-ray factorizable, and K1 ‰ K2 P Gv. Then

Kˆ1 XKˆ2 “ tvu in G, (5.10)

where Kj are the graph groupoids of Kj, as subgroupoids of G, and Kˆj “ KjztHu,
j “ 1, 2.

Proof. The proof of (5.10) is done by (5.9).

Consider now the following proposition.

Proposition 5.7. Suppose K is a subgraph of G, and let

lKpx, sq “
ÿ

wPKx

1
$pwqs

,

where Kx “ KXGx, where K is the graph groupoid of K (as a subgroupoid of G), for
all vertices x in K. If v P V pKq in V pGq, then

lKpv, sq “
8
ÿ

n“1

ˇ

ˇpKvq
`

logN2 n
˘
ˇ

ˇ

ns
in LG. (5.11)

Proof. The proof of (5.11) is trivial by the very construction of lKpx, sq as an embedded
part of LGpx, sq, by (5.10).

Notice here that, by the construction of the graph zeta-functional algebra LG (by
that of the G-arithmetic algebra AG), indeed, the function lKpv, sq is contained in LG,
whenever K ď G. Note also that the functions lKpv, sq generated by subgraphs K
of G are regarded as independent graph zeta functions LK0pv, sq, where K0 is a graph
with its shadowed graph K.

In LG, if v P V pGq, but v R V pKq, then lKpv, sq is automatically assumed to be
the zero element 0LG

, and if v P V pKq, then lKpv, sq is determined as above in (5.11)
in LG.

Proposition 5.8 ([7]). Let K1 and K2 be connected subgraphs of the shadowed graph
pG of G with

V1,2 “ V pK1q X V pK2q ‰ ∅,

and let v P V1,2. Let lK1pv, sq and lK2pv, sq be elements of the graph zeta functional
algebra LG, as in (5.11). Then

lK1pv, sqb lK2pv, sq “ lK1YK2pv, sq, (5.12)

where K1 YK2 is the graph union of K1 and K2, as a subgraph of G, and where b is
in the sense of (4.21).
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With help of (5.12), we obtain the following theorem.

Theorem 5.9. Let Gv be the v-ray factorization induced by Gv, for a fixed vertex v
of a given graph G. Assume that Gv is v-ray factorizable and suppose K1 and K2 are
distinct elements in Gv, as subgraphs of pG. Then

lK1YK2pv, sq “ plK1pv, sqq plK2pv, sqq in LG, (5.13)

where lK1 , lK2 and lK1YK2 are in the sense of (5.11) in LG. (Remark here that K1YK2
is again a subgraph of pG, but it is “not” contained in Gv.)

Proof. By (5.12), we have that

lK1YK2pv, sq “ lK1pv, sqb lK2pv, sq,

where b is in the sense of (4.21) on the graph zeta functional algebra LG. However,
one has

Kˆ1 XKˆ2 “ tvu,

by (5.10), where Kj are the graph groupoids of Kj and Kˆj “ Kjztvu, j “ 1, 2. So, if

w1 “ w1v P V pK1q and w2 “ vw2 P V pK2q,

then the reduced finite path w1w2 in K1,2 which is the graph groupoid of the graph
union K1 YK2 (as a subgroupoid of G) satisfies that

w11 “ w1 and w12 “ w2,

where w1j means the reduced embeddings in K1,2 in the sense of (3.5), and hence

w1w2 “ wo1w
o
2 in K1,2,

satisfying
|w1w2| “ |w

o
1w

o
2| “ |w

o
1| ` |w

o
2| “ |w1| ` |w2| .

It shows that
$pw1w2q “ $pw1q$pw2q,

by (3.5). It guarantees that, for the fixed vertex v,

lK1pv, sqb lK2pv, sq “ plK1pv, sqq plK2pv, sqq

in LG.
The characterization (5.13) shows that if K1 and K2 are distinct elements of the

v-ray factorization Gv, then the “conditional” product of lK1pv, sq and lK2pv, sq of LG
becomes the “usual” functional multiplication of them.

Therefore, we obtain the following factorizability, by (5.13), with help of (5.10)
and (5.11).
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Theorem 5.10. Let G be a finite connected graph and let v be an arbitrarily chosen
vertex in V p pGq. Let Gv be the v-ray factorization (5.8). Then

LGpv, sq “
ź

KPGv

lKpv, sq, (5.14)

in the graph zeta functional algebra LG, where lKpv, sq are in the sense of (5.11), and
ś

means the usual functional multiplication.

Proof. Suppose first that the v-ray factorization Gv is not factorizable in the sense
that Gv “ t pGu. Then, clearly, we have

LGpv, sq “
ź

KPGv“tGu

lKpv, sq “ l
pGpv, sq “ LGpv, sq.

So, the relation (5.14) holds.
Assume now that Gv is factorizable. And let

Gv “ tK1,K2, . . . ,Kmu for some m P N,m ‰ 1.

Then, by the construction of Kj , their graph groupoids Kj only share their common
elements v as subgroupoids of G for j “ 1, . . . ,m.

Notice that, by (5.6) and (5.7), we have

pG “
ď

KPGv

pK and G “
à

KPGv

K,

So,
LGpv, sq “ l

pGpv, sq “ lŤ
KPGv

K pv, sq ,

where LGpv, sq means our graph zeta function, and l
pGpv, sq means the element of LG

in the sense of (5.11)
“

ò

KPGv

plKpv, sqq

by (5.12)
“

ź

KPGv

plKpv, sqq

by (5.13). Therefore, the graph zeta function LGpv, sq at a fixed vertex v is factorizable
with its factors, the subgraph zeta functions lKpv, sq, for the v-ray-subgraph
unions K, at v.

Definition 5.11. Let LGpv, sq be a graph zeta function at v P V pGq. We say that
LGpv, sq is factorizable at v if the v-ray factorization Gv is factorizable; otherwise,
LGpv, sq is not factorizable at v.
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6. NON-FACTORIZABLE GRAPHS

In this section, we consider non-factorizable graph zeta functions more in detail. First,
we introduce the following example, providing a motivation.

Example 6.1. Let Kn
d be the n-regular circulant graph with d-vertices, for n P N,

d P Nzt1u, i.e.

Kn
d “

v1
‚

Ö Ô
v2
‚

vd
‚

Ó Ò

‚
v3

Ñ ¨ ¨ ¨ Ñ ‚
vd´1

.

(6.1)

where each arrow “Ñ” in (6.1) actually means n-multi-edges. Then, for any arbitrarily
fixed vertex vj, the vj-ray factorization Gvj

satisfies that

Gvj
“ tyKn

d u, j “ 1, . . . , d.

Therefore, the graph zeta function LKn
d
pvj , sq are not factorizable, for all j “ 1, . . . , d.

Furthermore,

LKn
d
pv1, sq “ LKn

d
pv2, sq “ ¨ ¨ ¨ “ LKn

d
pvd, sq in LKn

d
.

So, one can classify the following special types of finite connected graphs.

Definition 6.2. If a graph G induces non-factorizable graph zeta functions LGpx, sq,
for “all x P V pGq,” then the graph G is said to be non-factorizable.

By the above example, the n-regular circulant graphs Kn
d with d-vertices are

non-factorizable graphs, for all n P N, d P Nzt1u.
More generally, we obtained the following theorem.

Theorem 6.3 ([7]). Let G be a graph with the quantity N of (3.2), and d “ |V pGq|
in N. Then G is non-factorizable if and only if the shadowed graph pG of G is
graph-isomorphic to the shadowed graph pK of a “connected” subgraph K of the circulant
N -regular KN

d with d-vertices of (6.1) whose vertex set satisfies V pKq “ V pKN
d q, i.e.

a graph G is non-factorizable with N of (3.2) (6.2)

if and only if

there exists connected K ď KN
|V pGq| with same N such that pG

Graph
“ pK.

The above statement (6.2) characterizes “finite and connected” non-factorizable
graphs having more than 1 vertices. Without loss of generality, every non-factorizable
graph G with N of (3.2) and d “ |V pGq| P NY t8u is regarded as a subgraph K of
the circulant N -regular graph KN

d with d-vertices such that |V pKq| “ d.
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7. GRAPH ZETA FUNCTIONS FOR NON-FACTORIZABLE GRAPHS

Let G be a finite connected graph with the quantity N P N of (3.2), and |V pGq| “ d P
NY t8u. In this section, based on the main results of Section 6, we study graph zeta
functions LGp‚, sq, where G is non-factorizable. In particular, we are interested in the
cases where given non-factorizable graphs G are (graph-isomorphic to) the circulant
N -regular graph KN

d with d-vertices.
Recall that, by the characterization (6.2), a finite connected graph G is

non-factorizable if and only if there exists a subgraph K of the circulant N -regular
KN
|V pGq| such that pK and pG are graph-isomorphic.

Proposition 7.1. Let K1
d be the circulant (1-regular) graph with d-vertices v1, . . . , vd,

for all d P NY t8u. Then
LK1

d
pvj , sq “

3s ` 1
3s ´ 1 (7.1)

for all j “ 1, . . . , d.

Proof. One can check that, for any d P NY t8u,
ˇ

ˇ

ˇ

`

K1
d

˘

vj
p0q

ˇ

ˇ

ˇ
“ 1 and

ˇ

ˇ

ˇ

`

K1
d

˘

vj
pkq

ˇ

ˇ

ˇ
“ 2

for all k P N and j “ 1, . . . , d, where K1
n are the graph groupoids of circulant 1-regular

graphs K1
n with n-vertices for all n P N. Therefore, we obtain that

KK1
d
pvj , sq “

8
ÿ

k“0

ˇ

ˇ

`

K1
d

˘

v
pkq

ˇ

ˇ

3k s “ 1`
8
ÿ

k“1

ˇ

ˇ

`

K1
d

˘

v
pkq

ˇ

ˇ

3k s “ 1` 2
ˆ

1
3s ´ 1

˙

for all j “ 1, . . . , d, since N2 of (3.3) satisfies that N2 “ 2p1q ` 1 “ 3, where N is in
the sense of (3.2).

Let us extend the formula (7.1) to the general cases.

Theorem 7.2. Let KN
d be the circulant N -regular graph with d-vertices, for N P N,

d P NY t8u. Then

LKN
d
pv, sq “ 1` 2N

p2N ` 1qs

ˆ

1´ N

p2N ` 1qs

˙´1
(7.2)

for all v P V pKN
d q.

Proof. Observe that
ˇ

ˇ

`

KNd
˘

v
p1q

ˇ

ˇ “ |tvu| “ 1

and
ˇ

ˇ

`

KNd
˘

pkq
ˇ

ˇ “ 2Nk for all k P N,

whereKmn are the graph groupoids of the circulantm-regular graphsKm
n with n-vertices,

for all m P N and n P NY t8u.
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Thus, for each vertex v of KN
d ,

LKN
d
pv, sq “

8
ÿ

k“0

ˇ

ˇ

`

KNd
˘

pkq
ˇ

ˇ

p2N ` 1qks “ 1`
8
ÿ

k“1

2Nk

p2N ` 1qks ,

in LKN
d
. So, the formula (7.2) holds.

Consider now (proper) connected subgraphs KN :1
d of the circulant N -regular graph

KN
d of d-vertices with

V pKN :1
d q “ V pKN

d q

and

EpKN :1
d q “

"

e P EpKN
d q X

`

KNd
˘

1

ˇ

ˇ

ˇ

ˇ

e is a unique edge connecting
pairs of vertices in V pKN :1

d q

*

.

For example, if
K2

2 “ ‚
e1
Ñ
e2
‚,

then
K2:1

2 “ ‚
e1
Ñ ‚ or ‚ Ñ

e2
‚.

Recall that a graph G is said to be simplicial if

(i) G has no loop-edges, and
(ii) if there is an edge e “ vex connecting a vertex v to a vertex x, then it is the only

edge connecting v to x, for v, x P V pGq.

So, the subgraphs KN :1
d are simplicial (sub)graphs in KN

d . We call the subgraphs KN :1
d

of KN
d , the simplicial subgraphs of KN

d .

Remark 7.3. There are Nd-many simplicial subgraphs of KN
d .

The following theorem demonstrates not only the similarity of

lKN:1
d
pv, sq P LKN

d
and LK1

d
pv, sq P LK1

d
,

but also the difference of them.

Theorem 7.4. Let KN
d be the circulant N -regular graph with d-vertices, for N P N,

d P NYt8u, and let KN :1
d be a simplicial subgraph of KN

d . Let lKN:1
d
px, sq be elements

of LKN
d

in the sense of (5.11), for all x P V pKN :1
d q “ V pKN

d q. Then

lKN:1
d
pv, sq “ 1` 2

p2N ` 1qs

ˆ

1´ 1
p2N ` 1qs

˙´1
, (7.3)

in LKN
d
, for all v P V pKN :1

d q.
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Proof. By (5.9), one can get that

lKN:1
d
pv, sq “

ÿ

wPpKN:1
d
qv

1
$pwqs

,

with
$pwq “ p2N ` 1q|w| for all w P KN :1

d Ď KNd ,

where lKN:1
d
p‚, sq are subgraph zeta functions in LKN

d
in the sense of (5.11), and the

quantity 2N ` 1 is in the sense of (3.3). Then it is not difficult to check that, for any
v P V pKN :1

d q “ V pKN
d q,

lKN:1
d
pv, sq “

8
ÿ

k“0

ˇ

ˇ

`

KN :1
d

˘

v
pkq

ˇ

ˇ

p2N ` 1qk s

by (5.11)

“ 1`
8
ÿ

k“1

2
p2N ` 1qks

because
ˇ

ˇpKN :1
d qx p0q

ˇ

ˇ “ |txu| “ 1,

and
ˇ

ˇ

`

KN :1
d

˘

x
pkq

ˇ

ˇ “ 2,

for all x P V pKN :1
d q, as in (7.1), and k P N.

Therefore, one has that

lKN:1
d
pv, sq “ 1` 2

p2N ` 1qs

ˆ

1´ 1
p2N ` 1qs

˙´1
,

similar to (7.2). So, the computation (7.3) holds true in LKN
d
.

Let KN :1
d be a simplicial subgraph of KN

d as above, for N P N, d P NY t8u. Then,
we have

lKN:1
d
pv, sq “ 1` 2

p2N ` 1qs

ˆ

1´ 1
p2N ` 1qs

˙´1
,

by (7.3), for all v P V pKN :1
d q, and

LK1
d
px, sq “ 1` 2

3s

ˆ

1´ 1
3s

˙´1
,

by (7.1), for all x P V pK1
dq.

Observe now that the functions lKN:1
d
p‚, sq are obtained by replacing 3 to 2N ` 1

in the computations of the graph zeta functions LK1
d
p‚, sq.
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By (7.2), one has
LKN

d
px, sq “

Ns
2 `N

Ns
2 ´N

for all x P V pKN
d q, and, by (7.3), we have

lKN:1
d
pv, sq “

Ns
2 ` 1

Ns
2 ´ 1

for all v P V pKN
d q “ V pKN :1

d q, in LKN
d
, where N and N2 are in the sense of (3.2)

and (3.3).

Theorem 7.5. Let LKN
d
px, sq be the graph zeta function of KN

d , and let lKN:1
d
pv, sq

be the elements of LKN
d

in the sense of (5.11) for the simplicial subgraphs
KN :1
d in LKN

d
, for all x, v P V pKN

d q. Now, let us understand LKN
d
px, sq and lKN:1

d
pv, sq

as complex-valued functions in s on C. Then there exists a C-valued function

fpsq “

ˆ

p2N ` 1qs `N
p2N ` 1qs ` 1

˙ˆ

p2N ` 1qs ´ 1
p2N ` 1qs ´N

˙

,

such that
LKN

d
px, sq “ pfpsqq

´

lKN:1
d
pv, sq

¯

for all x, v P V pKN
d q. (7.4)

Proof. By the straightforward computation, one has

LKN
d
px, sq “

ˆ

p2N ` 1qs `N
p2N ` 1qs ` 1

˙ˆ

p2N ` 1qs ´ 1
p2N ` 1qs ´N

˙

´

lKN:1
d
pv, sq

¯

,

as C-valued functions.

The above relation (7.4) shows the relations between our graph-zeta-functional
study and complex function theory.

8. GLUING NON-FACTORIZABLE GRAPHS AND GRAPH ZETA FUNCTIONS

In this section, we study how to construct factorizable graphs from non-factorizable
graphs, and consider corresponding graph zeta functions.

Let NF be the collection of all non-factorizable finite connected graphs,

NF
def
“

"

G

ˇ

ˇ

ˇ

ˇ

G is a non-factorizable, finite,
connected graphs

*

. (8.1)

Define now a sub-family,

NFNd “

"

K P NF

ˇ

ˇ

ˇ

ˇ

K is a graph with N of (3.2),
and d-many vertices

*

, (8.2)

of NF, for d,N P N.
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Without loss of generality, we define the families (8.1) and (8.2) “up to
graph-isomorphisms”, i.e. if G1 and G2 are graph-isomorphic in NF (or NFNd ), then
we regard them as the same element in NF (resp., in NFNd , for all d,N P N).

Then, under the above assumption, one can re-define NFNd by the identical
family KNd ,

KNd
def
“

#

K P NF

ˇ

ˇ

ˇ

ˇ

ˇ

K is a subgraph of yKN
d

with V pKq “ V pKN
d q

+

, (8.3)

under graph-isomorphisms, whereKN
d are theN -regular circulant graph with d-vertices,

by the non-factorizability (6.2).
For instance, if

K2
3 “

‚ Ñ ‚

ÔÔ Ó

‚

,

then the collection K2
3 of (8.3) contains not only K2

3 , itself, but also, the graphs

‚ Ñ ‚

Ô Ó

‚

,
‚ Ñ ‚

ÔÔ Ó

‚

,
‚ Ñ ‚

ÔÔ Ó

‚

, (8.4)

‚ Ñ ‚

ÔÔ Ó

‚

,
‚ Ñ ‚

Ô Ó

‚

,
‚ Ñ ‚

Ô Ó

‚

,
‚ Ñ ‚

Ô Ó

‚

,

and all other graphs obtained by changing the direction of each edge of the graphs of
(8.4) one-by-one. Then, by (6.2), this family K2

3 of (8.3) is identical to the family NF2
3

of (8.2), up to graph-isomorphisms.
We naturally obtain the following classification theorem by (6.2).

Proposition 8.1. Let NF and NFNd be given as in (8.1) and (8.2), respectively, for
pd,Nq P Nˆ N. Then

NF “
ğ

pd,NqPN8ˆN
KNd , (8.5)

where KNd are in the sense of (8.3).

Proof. By the very definitions (8.1) and (8.2),

NF “
ğ

pd,NqPNˆN
NFNd .

By the characterization (6.2), the set NFNd is equipotent to KNd of (8.3), for all
d,N P N. Thus, the classification (8.5) holds.
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8.1. GLUING ON NF

Let G1 and G2 be arbitrary two finite connected graphs such that

V pG1q X V pG2q “ ∅ “ EpG1q X EpG2q.

Fix vertices vj P V pGjq for j “ 1, 2. Now, let us identify these two vertices as a single
ideal vertex, denoted by v1,2. Such an identified vertex v1,2 is called the glued vertex
of v1 and v2.

Understand now the graphs G1 and G2 as the corresponding graphs G11 and G12
with

V pG1jq “ pV pG1q z tvjuq Y tv1,2u (8.6)

and
EpG1jq “ EpGjq,

with identification: if e P EpGjq satisfies either e “ vje or e “ evj , then identify it as
e “ v1,2e, respectively, e “ ev1,2 in EpG1jq, for all j “ 1, 2.

Definition 8.2. Let G1j be the graphs in the sense of (8.6) induced by fixed graphs
Gj , for j “ 1, 2, where v1,2 is the glued vertex of v1 and v2. Then the graph union
G1,2 “ G11 YG

1
2 is called the glued graph of G1 and G2 with its glued vertex v1,2.

For example, let
G1 “ ‚ Ñ ‚v1

and

G2 “
v2‚ Ñ ‚

Œ

‚,

then

G1,2 “

‚ Ñ ‚
v1,2

Ñ ‚

Œ

‚.

The above construction of glued graphs is called the gluing (process) on graphs.
We do gluings on the family NF of (8.1), satisfying (8.5). Take now K1 ‰ K2 in NF.

More precisely, let
Kj P NF

Nj

dj
for j “ 1, 2.

(Note here that pdj , Njq are not necessarily distinct, if Nj ‰ 1 in N. Remark that

NF1
d “ K1

d “ tK
1
du

for all d P N.)
Fix vertices vj P Kj , for j “ 1, 2, and glue these vertices to the glued vertex

v1,2, and with respect to this glued vertex v1,2, construct the glued graph K1,2 of K1
and K2.
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Theorem 8.3. Let KNj

dj
be the Nj-regular circulant graph with dj-vertices in NF

Nj

dj

in NF, for j “ 1, 2, and a fixed N P N. Let K1,2 be the glued graph with its glued
vertex v1,2. Then

LK1,2pv1,2, sq “

ˆ

p2N1 ` 1qs `N1
p2N1 ` 1qs ´N1

˙ˆ

p2N2 ` 1qs `N2
p2N2 ` 1qs ´N2

˙

in LK1,2 , (8.7)

where LGp‚, sq means the graph zeta functions at vertices of G in LG, for any locally
finite connected graphs G.

Proof. If K 1j are in the sense of (8.6) induced from K
Nj

dj
P NFNdj

, for j “ 1, 2, the
corresponding graph zeta functions LK1

j
p‚, sq satisfy

LK1
j
px, sq “ L

K
Nj
dj

py, sq, as C-valued functions, (8.8)

for all x P V pK 1jq and y P V pKjq, by the non-factorizability (6.2) of KNj

dj
, j “ 1, 2.

Now, by (5.13), one has that

LK1,2pv1,2, sq “
`

LK11pv1,2, sq
˘ `

LK12pv1,2, sq
˘

, (8.9)

since the v1,2-ray factorization Gv1,2 “ tK
1
1,K

1
2u, by the non-factorizability of KN1

d1

and KN2
d2

.
Therefore, by (8.8) and (8.9), we obtain that

LK1,2pv1,2, sq “ pLK1pv1, sqq pLK2pv2, sqq in LK1,2 .

By applying the computation (7.3), one can get the formula (8.7).

By (8.7), we obtain the following corollary.

Corollary 8.4. Let KNj

dj
P NF

Nj

dj
be the Nj-regular circulant graphs with dj-vertices,

for j “ 1, . . . , n, for n P Nzt1u. Fix vertices vj P V pKNj

dj
q, for j “ 1, . . . , n, and

construct the iterated glued vertex v1,...,n, i.e. identify all vertices v1, . . . , vn. Let
K1,...,n be the iterated glued graph with its glued vertex v1,...,n. Then

LK1,...,n
pv1,...,n, sq “

n
ź

j“1

ˆ

p2Nj ` 1qs `Nj
p2Nj ` 1qs ´Nj

˙

in LK1,...,n
. (8.10)

Proof. The formula (8.10) is obtained by induction on (8.7).

Also, by (8.7) and (8.10), the following rough estimation among C-valued functions
is obtained.
Corollary 8.5. Let Kj P NF

Nj

dj
in NF, for j “ 1, 2, and let K1,2 be the glued graph

of K1 and K2 with its glued vertex v1,2. Let LK1,2pv1,2, sq be the graph zeta function
at v1,2. Then

ˇ

ˇLK1,2pv1,2, sq
ˇ

ˇ ď

ˇ

ˇ

ˇ

ˇ

ˆ

p2N1 ` 1qs `N1
p2N1 ` 1qs ´N1

˙
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

p2N2 ` 1qs `N2
p2N2 ` 1qs ´N2

˙
ˇ

ˇ

ˇ

ˇ

. (8.11)



252 Ilwoo Cho

Proof. Similar to the proof of (8.7), one has that

LK1,2pv1,2, sq “
`

LK11pv1, sq
˘ `

LK12pv2, sq
˘

“ pLK1pv1, sqq pLK2pv2, sqq . (8.12)

So,
ˇ

ˇLK1,2pv1,2, sq
ˇ

ˇ “ |pLK1pv1, sqq pLK2pv2, sqq|

by (8.12)

ď |pLK1pv1, sqq| |pLK2pv2, sqq| (8.13)

ď

ˇ

ˇ

ˇ

ˇ

ˆ

L
K

N1
d1
px, sq

˙
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

L
K

N2
d2
pv, sq

˙
ˇ

ˇ

ˇ

ˇ

for any x P V pKN1
d1
q and v P V pKN2

d2
q, by the non-factorizability of KNj

dj
, for all j “ 1, 2.

By (7.3), one has

LKN
d
px, vq “

p2N ` 1qs `N
p2N ` 1qs ´N for all x P V pKN

d q,

for all d,N P N. So, the estimation (8.13) goes to

ˇ

ˇLK1,2pv1,2, sq
ˇ

ˇ ď

ˇ

ˇ

ˇ

ˇ

ˆ

p2N1 ` 1qs `N1
p2N1 ` 1qs ´N1

˙
ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˆ

p2N2 ` 1qs `N2
p2N2 ` 1qs ´N2

˙
ˇ

ˇ

ˇ

ˇ

.

Therefore, we obtain the estimation (8.11).

8.2. GLUED GRAPHS AND lKN:1
d
p‚, sq

In this section, we apply our gluing process of Section 8.1, to other functions lKN:1
d
p‚, sq

in the sense of (7.3) in LKN
d
. Recall now that the simplicial subgraphs KN :1

d of
KN
d introduced in Section 7 is also contained in NF, because KN :1

d , themselves,
are independent non-factorizable graphs. Indeed, for any KN

d P NFNd , one obtains
KN :1
d P NF1

d in NF.
Also, recall that

lKN:1
d
px, sq “

ÿ

wPpKN:1
d q

x

1
$pwqs

“
p2N ` 1qs ` 1
p2N ` 1qs ´ 1 , (8.14)

in LKN
d
, by (7.3), for all x P V pKN :1

d q “ V pKN
d q and pd,Nq P Nˆ N.

Now, let us take two graphs

Kj “ K
Nj :1
dj

P NF
Nj

dj
, (8.15)

and let l
K

Nj :1
dj

pvj , sq be the corresponding elements in L
K

Nj
dj

in the sense of (7.11), for

j “ 1, 2.
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Suppose K1,2 is the glued graph of KN1:1
d1

and KN2:1
d2

. Then one has

LK1,2pv1,2, sq “

ˆ

l
K

N1:1
d1

pv, sq

˙ˆ

l
K

N2:1
d2

px, sq

˙

by (8.12)

“

˜

1` 2
p2N1 ` 1qs

ˆ

1´ 1
p2N1 ` 1qs

˙´1
¸˜

1` 2
p2N2 ` 1qs

ˆ

1´ 1
p2N2 ` 1qs

˙´1
¸

“ 1` 2
p2N1 ` 1qs

ˆ

1´ 1
p2N1 ` 1qs

˙´1
`

2
p2N2 ` 1qs

ˆ

1´ 1
p2N2 ` 1qs

˙´1

`

ˆ

2
p2N1 ` 1qs

˙ˆ

2
p2N2 ` 1qs

˙ˆ

1´ 1
p2N1 ` 1qs

˙´1 ˆ

1´ 1
p2N2 ` 1qs

˙´1

“ l
K

N1:1
d1

pv, sq `

ˆ

l
K

N2:1
d2

px, sq ´ 1
˙

`

ˆ

2
p2N1 ` 1qs

˙ˆ

2
p2N2 ` 1qs

˙ˆ

1´ 1
p2N1 ` 1qs

˙´1 ˆ

1´ 1
p2N2 ` 1qs

˙´1
.

(8.16)

Define a new C-valued function ϕK1,2psq by

ϕK1,2psq
def
“ LK1,2pv1,2, sq ´ lKN1:1

d1
pv1, sq ´

ˆ

l
K

N2:1
d2

pv2, sq ´ 1
˙

. (8.17)

Now, let KNj :1
dj

P NF
Nj

dj
, and choose vertices vj P V pKNj :1

dj
q, for j “ 1, 2, 3. By

doing iterated gluing processes, obtain the glued graph K1,2,3 of KN1:1
d1

,KN2:1
d2

and
KN3:1
d3

with its glued vertex v1,2,3 of v1, v2 and v3. Then, by (5.13) and (8.12), one
obtains

LK1,2,3pv1,2,3, sq “
3
ź

j“1

ˆ

l
K

Nj :1
dj

pvj , sq

˙

, (8.18)

since the v1,2,3-ray factorization Gv1,2,3 “ tK 11,K
1
2,K

1
3u, where each element K 1j is

graph-isomorphic to KNj :1
dj

, for all j “ 1, 2, 3, and the corresponding graph groupoids
K11,K12 and K13 share their only common element v1,2,3, the glued vertex.

Then, as in (8.16), the product which is the right-hand side of (8.18) contains the
term

˜

3
ź

j“1

2
p2Nj ` 1qs

¸˜

3
ź

j“1

ˆ

1´ 1
p2Nj ` 1qs

˙´1
¸

,

i.e.
3
ź

j“1

ˆ

l
K

Nj :1
dj

pvj , sq

˙

“

˜

3
ź

j“1

2
p2Nj ` 1q s

¸˜

3
ź

j“1

ˆ

1´ 1
p2Nj ` 1qs

˙´1
¸

` rRest termss.
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Define a C-valued function ϕK1,2,3psq by

ϕK1,2,3psq “ LK1,2,3pv1,2,3, sq ´ rRest termss, (8.19)

as in (8.17), where rRest termss of (8.19) is from the right-hand side of (8.18), as in
the above paragraph.

Inductively, one can have the glued graph K1,...,n of KNj :1
dj

with its glued vertex
v1,...,n, for j “ 1, . . . , n, for some n P Nzt1u, and the corresponding C-valued function
ϕK1,...,npsq,

ϕK1,...,npsq “

˜

n
ź

j“1

2
p2Nj ` 1qs

¸˜

n
ź

j“1

ˆ

1´ 1
p2Nj ` 1qs

˙´1
¸

. (8.20)

Define now new functions ζK1,...,npsq by

ζK1,...,n
psq “

˜

n
ź

j“1

2
p2Nj ` 1qs

¸´1

ϕK1,...,n
psq, (8.21)

where ϕK1,...,npsq are in the sense of (8.20). So, by the very definition (8.21), the
functions EK1,...,n

psq are simply identical to

ζK1,...,n
psq “

n
ź

j“1

ˆ

1´ 1
p2Nj ` 1qs

˙´1
. (8.22)

Definition 8.6. The functions ζK1,...,n
psq of (8.22) are called the Riemann-zeta parts

of the glued graphs K1,...,n of KNj :1
dj

P NF
Nj

dj
for j “ 1, . . . , n and n P Nzt1u.

Let Nj be “distinct” numbers in N such that 2Nj ` 1 are “odd primes” for
j “ 1, . . . , n and for some n P N, and let

Kj “ K
Nj :1
dj

P NF
Nj

dj
, for j “ 1, . . . , n, (8.23)

as above.
From below, let us take Nj as natural numbers, making 2Nj ` 1 be prime in N. In

such a case, we denote these primes 2Nj`1 by pj . IfNj has odd prime pj “ 2Nj`1 in N,
we will say Nj has odd prime property.

For instance, if Nj “ 2, then 2Nj ` 1 becomes a prime 5 in N, but if Nj “ 4, then
2Nj ` 1 becomes a composite number 9. So, the quantity 2 has odd prime property,
but the quantity 5 does not have odd prime property.

The Riemann-zeta part ζK1,...,n
of the graph zeta function LK1,...,n

pv1,...,n, sq at
the glued vertex v1,...,n for the glued graph K1,...,n of the graphs K1, . . . ,Kn of (8.23)
satisfies that

ζK1,...,n
“

n
ź

j“1

˜

1´ 1
psj

¸´1

for odd primes p1, . . . , pn, with pj “ 2Nj ` 1.
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Lemma 8.7. Let Kj “ K
Nj :1
dj

be the elements (8.23) of NF
Nj

dj
for j “ 1, . . . , n, and

n P N, and let K1,...,n be the glued graph of K1, . . . ,Kn with its glued vertex v1,...,n.
Let LK1,...,npv1,...,n, sq be the corresponding graph zeta function at v1,...,n in LK1,...,n ,
and ζK1,...,n

psq, the Riemann-zeta part of it as a C-valued function in the sense of
(8.22). If Nj have odd prime property in N, for all j “ 1, . . . , n, then

ζK1,...,n
psq “ pζpsqq

¨

˝

ź

qPP z tp1,...,pnu

ˆ

1´ 1
qs

˙

˛

‚. (8.24)

where ζpsq is the Riemann zeta function
ř8

n“1
1
ns .

Proof. The proof of (8.24) is clear by the very construction (8.22) of Riemann-zeta
parts where Nj have odd prime property, for all j “ 1, . . . , n, i.e. under hypothesis,
one has that

ζK1,...,n
psq “

n
ź

j“1

˜

1´ 1
psj

¸´1

“

˜

ź

pPP

ˆ

1´ 1
ps

˙´1
¸

¨

˝

ź

qPP z tp1,...,pnu

ˆ

1´ 1
qs

˙´1
˛

‚

´1

“ pζpsqq

¨

˝

ź

qPP z tp1,...,pnu

ˆ

1´ 1
qs

˙´1
˛

‚

´1

“ pζpsqq

¨

˝

ź

qPP z tp1,...,pnu

ˆ

1´ 1
qs

˙

˛

‚,

where ζpsq is the Riemann zeta function, and P is the set of all primes in N.

So, if we choose suitably big number n and n-many quantities Nj , having odd
prime property, for j “ 1, . . . , n, then the Riemann-zeta part ζK1,...,n

psq of the
glued-graph zeta function LK1,...,n

pv1,...,n, sq at the glued vertex v1,...,n approximates
to the Riemann zeta function ζpsq. It demonstrates the connections between our
(non-factorizable-)graph zeta functions and the Riemann zeta function ζpsq.

By (8.24), one can get the following corollary.
Theorem 8.8. Under the same hypothesis with the above lemma, we obtain that

˜

n
ź

j“1

2
psj

¸´1
`

LK1,...,npv1,...,n, sq ´ rRest termss
˘

“ pζpsqq

¨

˝

ź

qPP z tp1,...,pnu

ˆ

1´ 1
qs

˙

˛

‚,

(8.25)

where rRest termss is in the sense of (8.19).
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Proof. The proof of (8.25) is identical to that of (8.24), because the left-hand side
of (8.25) is nothing but the Riemann-zeta part ζK1,...,npsq.

By expressing (8.24) as (8.25), we can directly see the relation between
the glued-graph zeta function LK1,...,npv1,...,n, sq at the glued vertex v1,...,n and the
Riemann zeta function ζpsq, whenever Kj “ K

Nj :1
dj

, with 2Nj ` 1 “ pj are odd primes,
for j “ 1, . . . , n.

Independently, recall now an arithmetic function φ P A, defined by

φpnq “ |tk P N : k ď n, gcdpk, nq “ 1u| (8.26)

for all n P N, where “gcd” means the greatest common divisor, i.e. the image φpnq is
counting the number of all relative primes with a fixed number n, which are less than
or equal to n, for all n P N. This arithmetic function φ of (8.26) is the well-known
Euler totient function.

For any n P N, one has

φpnq “ n

¨

˝

ź

pPP, p|n

ˆ

1´ 1
p

˙

˛

‚. (8.27)

So, we obtain the following number-theoretic characterization of a specific functional
value LK1,...,n

pv1,...,n, 1q of the graph zeta function LK1,...,npv1,...,n, sq of the glued graph
K1,...,n of K1, . . . ,Kn in the sense of (8.23).

Theorem 8.9. Let Kj “ K
Nj :1
dj

be non-factorizable subgraphs of KNj

dj
in NF

Nj

dj
in the

sense of (8.23) for all j “ 1, . . . , n, and n P Nzt1u. Assume that Nj have odd prime
property, for j “ 1, . . . , n. Let K1,...,n be the iterated glued graph of K1, . . . ,Kn with
its glued vertex v1,...,n, and LK1,...,npv1,...,n, sq, the corresponding graph zeta function
at v1,...,n in LK1,...,n . If ζK1,...,npsq is the Riemann-zeta part of LK1,...,npv1,...,n, sq, then
there exists t0 P N such that

t0 “
n
ź

j“1
pj “

n
ź

j“1
p2Nj ` 1q , (8.28)

and
ζK1,...,n

p1q “ t0 pφpt0qq
´1
.

Proof. By (8.22), one has

ζK1,...,np1q “
n
ź

j“1

˜

1´ 1
p1
j

¸´1

“

n
ź

j“1

ˆ

1´ 1
pj

˙´1

where pj “ 2Nj ` 1 for all j “ 1, . . . , n

“
1

śn
j“1

´

1´ 1
pj

¯ “
t0

t0

ˆ

n
ś

j“1

´

1´ 1
pj

¯

˙
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where t0 “
śn
j“1 pj in N

“
t0

φpt0q
“ t0 pφpt0qq

´1
,

i.e. there exists t0 “
śn
j“1 p2Nj ` 1q such that

ζK1,...,np1q “ t0
`

φpt0q
´1˘ .

The above characterization (8.28) shows that the ratio between a natural number
t0, and the corresponding Euler totient functional value φpt0q, can be measured by
the functional value ζK1,...,n

p1q of a Riemann-zeta part ζK1,...,n
psq of the glued-graph

zeta function LK1,...,n
pv1,...,n, sq at the glued vertex v1,...,n of certain non-factorizable

graphs K1, . . . ,Kn.

8.3. MORE ABOUT (8.25)

In this section, we concentrate on refining the relation (8.25), which is equivalent to
(8.24). In (8.25) and (8.28), we showed a relation between glued-graph zeta functions
induced by non-factorizable graphs, and the Riemann zeta function. Even though the
formulas (8.24) and (8.25) are interesting, it seems not clear enough to understand in
details, because of rRest termss of (8.19), in (8.25). So, here, we analyze rRest termss
of (8.19) as a summand in (8.25).

First, recall that how we obtain the rRest termss in (8.19). Let

Kj “ K
Nj :1
dj

P NF
Nj

dj

be non-factorizable graphs, for j “ 1, . . . , n, for some fixed n P Nzt1u, and let K1,...,n
be the corresponding iterated glued graph of Kj ’s with its glued vertex v1,...,n, having
its graph zeta function LK1,...,npv1,...,n, sq at the vertex v1,...,n. Assume further that
Nj have odd prime property with

pj “ 2Nj ` 1 P P, in N

for all j “ 1, . . . , n, where P is the set of all primes in N.
By the factorizability (5.13), one has

LK1,...,npv1,...,n, sq “
n
ź

j“1

`

lKj pvj , sq
˘

(8.29)

with

lKj
pvj , sq “ 1` 2

psj

˜

1´ 1
psj

¸´1

“
psj ` 1
psj ´ 1

for all j “ 1, . . . , n, by (7.3), where lKj pvj , sq are in the sense of (5.11). Let

αj
denote
“ αjpsq

def
“

2
psj

˜

1´ 1
psj

¸´1

, j “ 1, . . . , n, (8.30)
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i.e.
lKj pvj , sq “ 1` αj , j “ 1, . . . , n,

by (8.29).
Recall now that, for arbitrary x1, . . . , xn P C and n P N, the polynomial

F pzq “
n
ź

j“1
pz ` xjq P Crzs

satisfies that
F pzq “ 1`

n
ÿ

k“1
σkz

n´k, (8.31)

where the coefficients

σk “ σkpx1, . . . , xnq “
ÿ

1ďi1ăi2ă...ăikďn

˜

k
ź

l“1
xil

¸

.

By defining
σ0 “ σ0px1, . . . , xnq “ 1,

the expression (8.31) can be re-written by

F pzq “
n
ÿ

k“0
σkz

n´k. (8.32)

Generally, if we understand x1, . . . , xn as arbitrary algebraically independent inde-
terminants, then the coefficients σk of (8.31) and (8.32) are said to be the elementary
symmetric polynomials. Recall that a n-variable function fpx1, . . . , xnq is symmetric if

f
`

xσp1q, . . . , xσpnq
˘

“ fpx1, . . . , xnq

for all σ P Sn, where Sn is the symmetric group over t1, . . . , nu.
It is trivial that, for x1, . . . , xn P C, the coefficients σk “ σkpx1, . . . , xnq of (8.31)

are symmetric for all k “ 1, . . . , n.
Now, apply such computations and notations to our cases.
By (8.29),

lKj pvj , sq “ 1` αj ,
where αj “ αjpsq are in the sense of (8.30), for all j “ 1, . . . , n. So, one has that

n
ź

j“1
lKj
pvj , sq “

n
ź

j“1
p1` αjq “

n
ÿ

k“0
σkpα1, . . . , αnq1n´k

by (8.31) or (8.32)

“

n
ÿ

k“0
σkpα1, . . . , αnq,

where σkpα1, . . . , αnq are in the sense of (8.31) for all k “ 1, . . . , n.



Non-factorizable C-valued functions induced by finite connected graphs 259

Theorem 8.10. Let Kj be the simplicial subgraphs KNj :1
dj

of KNj

dj
in NF

Nj

dj
for

j “ 1, . . . , n, and let K1,...,n be the iterated glued graph of them with its glued vertex
v1,...,n. Then

LK1,...,npv1,...,n, sq “
n
ÿ

k“0
σkpα1, . . . , αnq, (8.33)

where σk are in the sense of (8.32) and αk are in the sense of (8.30) for all k “ 1, . . . , n.
Moreover, one obtains that

ϕK1,...,n
psq “ σn pα1, . . . , αnq “

2n
´

śn
j“1 pj

¯s

¨

˝

n
ź

j“1

˜

1´ 1
psj

¸´1
˛

‚ (8.34)

and

ζK1,...,npsq “ 2´n
˜

n
ź

j“1
pj

¸´s

σn pα1, . . . , αnq ,

where ϕK1,...,n
psq is in the sense of (8.20) and ζK1,...,n

psq is the Riemann-zeta part of
LK1,...,n

pv1,...,n, sq in the sense of (8.21).
Proof. The proof of (8.33) is done by (8.31). Indeed, by the construction (8.20) of

ϕK1,...,n
psq from LK1,...,n

pv1,...,n, sq,

one has

ϕK1,...,npsq “
n
ź

k“1
αk “ σn pα1, . . . , αnq “

n
ź

j“1

2
psj

˜

1´ 1
psj

¸´1

“
2n

´

śn
j“1 pj

¯s

¨

˝

n
ź

j“1

˜

1´ 1
psj

¸´1
˛

‚.

Thus, the first formula of (8.34) holds true. Since the formula (8.34) holds, the
Riemann-zeta part ζK1,...,n

psq satisfies

ζK1,...,n
psq “

¨

˝

n
ź

j“1

˜

1´ 1
psj

¸´1
˛

‚“

¨

˚

˚

˝

2n
ˆ

n
ś

j“1pj

˙s

˛

‹

‹

‚

´1

`

ϕK1,...,n
psq

˘

“ 2´n
˜

n
ź

j“1
pj

¸´s

σn pα1, . . . , αnq ,

i.e. one obtains that

ζK1,...,n
psq “

´

śn
j“1 pj

¯s

2n σn

ˆ

1´ 1
p2N1 ` 1qs , 1´

1
p2N2 ` 1qs , . . . , 1´

1
p2Nn ` 1qs

˙

.

(8.35)
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By the above theorem, in particular, by the formulas (8.34) and (8.35), we obtain
the following conclusion.

Corollary 8.11. The rRest termss of (8.19) is identified with

rRest termss “
n´1
ÿ

k“0
σkpα1, . . . , αnq, (8.36)

where σkpα1, . . . , αnq are in the sense of (8.34), k “ 1, . . . , n´ 1.

This means that by (8.34), we can not only clarify rRest termss of (8.19) by (8.36),
but also re-characterize the Riemann-zeta parts ζK1,...,n

of LK1,...,n
pv1,...,n, sq by (8.35).

Now, under the same hypothesis, assume k ‰ n, and let

σk “ σkpα1, . . . , αnq for k ‰ n,

i.e.

σk “
ÿ

1ďi1ăi2ă...ăikďn

˜

k
ź

l“1
αil

¸

for such k. (8.37)

Proposition 8.12. Let us denote the summands
śk
l“1 αil of (8.37) simply by

σi1,...,ik , for k š n. Then

σi1,...,ik “ σk pαi1 , αi2 , . . . , αikq “

¨

˝

2n
´

śk
l“1 pil

¯s

˛

‚

´

ζKi1,i2,...,ik
psq

¯

, (8.38)

and hence, σk of (8.37) satisfies that

σk “ σkpα1, . . . , αnq “
ÿ

1ďi1ăi2ă...ăikďn

¨

˝

2n
´

śk
l“1 pil

¯s

˛

‚

´

ζKi1,i2,...,ik
psq

¯

, (8.39)

where ζKi1,...,ik
psq are the Riemann-zeta parts of the glued-graph zeta function

LKi1,...,ik
pvi1,...,ik , sq with its glued vertex vi1,...,ik , where Ki1,...,ik is the glued graph of

Kil “ K
Nil

:1
dil

P NF
Nil

dil
, for l “ 1, . . . , k.

Proof. For k P t1, . . . , n´ 1u,

σi1,...,ik “ σk pαi1 , αi2 , . . . , αikq

“
2n

´

śk
l“1 pil

¯s

˜

k
ź

l“1

ˆ

1´ 1
psil

˙´1
¸

“

¨

˚

˚

˚

˝

2n
ˆ

k
ś

l“1
pil

˙s

˛

‹

‹

‹

‚

´

ζKi1,i2,...,ik
psq

¯

.
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So, the formula (8.38) holds. Thus, by (8.37) and (8.38), one obtains that

σk “ σkpα1, . . . , αnq “
ÿ

1ďi1ăi2ă...ăikďn

˜

k
ź

l“1
αil

¸

“
ÿ

1ďi1ăi2ă...ăikďn
σk pαi1 , αi2 , . . . , αikq

“
ÿ

1ďi1ăi2ă...ăikďn

¨

˝

¨

˝

2n
´

śk
l“1 pil

¯s

˛

‚

´

ζKi1,i2,...,ik
psq

¯

˛

‚

for all k “ 1, . . . , n´ 1. Therefore, the formula (8.39) holds.

So, by (8.38) and (8.39), one obtains the following result of this section.

Theorem 8.13. Let Kj “ K
Nj :1
dj

P NF
Nj :1
dj

be non-factorizable graphs for j “ 1, . . . , n
and n P Nzt1u, and let K1,...,n be the iterated glued graph of K1, . . . ,Kn with its glued
vertex v1,...,n. Assume that Nj have odd prime property, j “ 1, . . . , N . Then the graph
zeta function LK1,...,n

pv1,...,n, sq satisfies that

LK1,...,npv1,...,n, sq “
n
ÿ

k“0

¨

˝

ÿ

1ďi1ăi2ă...ăikďn

¨

˝

¨

˝

2n
´

śk
l“1 pil

¯s

˛

‚

´

ζKi1,i2,...,ik
psq

¯

˛

‚

˛

‚,

(8.40)
where ζKi1,...,ik

psq are the Riemann-zeta parts of the glued graph zeta functions
LKi1,...,ik

pvi1,...,ik , sq, for all k-tuples pi1, . . . , ikq, such that 1 ď i1 ă i2 ă . . . ă ik ď n,
and where pj “ 2Nj ` 1, for all j “ 1, . . . , n.

Proof. The proof of (8.40) is done by (8.33), (8.38) and (8.39).

8.4. THE RIEMANN-ZETA PARTS ζK1,...,npsq

In this section, we fix N1, . . . , Nn P N, having odd prime property with

pj “ 2Nj ` 1 P P, j “ 1, . . . , n,

for n P Nzt1u. And let
Kj “ K

Nj :1
dj

P NF
Nj

dj
“ K

Nj

dj
,

be simplicial subgraphs of KNj

dj
for all j “ 1, . . . , n, generating the iterated glued

graph K1,...,n with its glued vertex v1,...,n. Then one can have the corresponding graph
zeta function LK1,...,npv1,...,n, sq equipped with its Riemann-zeta part ζK1,...,npsq in the
sense of (8.22). By (8.34) and (8.35),

ζK1,...,n
psq “

´

śn
j“1 pj

¯s

2n σn

ˆ

1´ 1
ps1
, 1´ 1

ps2
, . . . , 1´ 1

psn

˙
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satisfying

ζK1,...,n
psq “ pζpsqq

¨

˝

ź

qPP z tp1,...,pnu

ˆ

1´ 1
qs

˙

˛

‚, (8.41)

by (8.24), where ζpsq is the Riemann zeta function. By (8.41), clearly, one can verify
that if nÑ8, then

ζK1,...,n
psq Ñ 2ζpsq.

Equivalently to (8.41), one has that

ζK1,...,n
psq

ζpsq
“

ź

qPP z tp1,...,pnu

ˆ

1´ 1
qs

˙

. (8.42)

Therefore, one can obtain the following ratio determined by primes.

Theorem 8.14. Under the above hypothesis, we have
´

śn
j“1

2
ps

j

¯´1
`

LK1,...,npv1,...,n, sq ´ rRest termss
˘

ζpsq
“

ź

qPPztp1,...,pnu

ˆ

1´ 1
qs

˙

, (8.43)

where rRest termss is in the sense of (8.19), characterized by (8.36).

Proof. The proof of (8.43) is done by the identity

ζK1,...,n
psq “

˜

n
ź

j“1

2
psj

¸´1
`

LK1,...,n
pv1,...,n, sq ´ rRest termss

˘

,

by (8.42).

So, by (8.40) and (8.43), we have the following corollary.

Corollary 8.15. Under the same hypothesis with the above theorem, we obtain
the following relation between our glued-graph zeta function of non-factorizable graphs
at the glued vertex, and the Riemann zeta function ζpsq.

LK1,...,npv1,...,n, sq “
n
ÿ

k“0

˜

ÿ

1ďi1ăi2ă...ăikďn
σi1,...,ikpsq

¸

, (8.44)

with

σi1,...,ikpsq “

¨

˝

¨

˝

2n
´

śk
l“1 pil

¯s

˛

‚

¨

˝pζpsqq

¨

˝

ź

qPP z tpi1 ,...,pik
u

ˆ

1´ 1
qs

˙

˛

‚

˛

‚

˛

‚.

Proof. The proof of (8.44) is done by (8.40) and (8.43).
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