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Abstract. The degenerate parabolic Cauchy problem is considered. A functional argument
in the equation is of the Hale type. As a limit of piecewise classical solutions we obtain
a viscosity solution of the main problem. Presented method is an adaptation of Tonelli’s
constructive method to the partial differential-functional equation. It is also shown that this
approach can be improved by the vanishing viscosity method and regularization process.
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1. INTRODUCTION

In this paper we study the Cauchy problem for parabolic differential-functional equa-
tions. The model presented covers retarded and deviated arguments at the unknown
function. The proof of the existence theorem is based on the following observation: by
introducing an additional constant delay α under an unknown function in the equation
we can reduce our problem to the problem of solving a finite number of nonfunctional
equations with given initial dates. Next by letting α → 0 we obtain a viscosity so-
lution of the main problem. This idea comes from L. Tonelli, who introduced it in
order to solve a Volterra integral equation (see [17]). In paper [3] the reader can find
a spectrum of Tonelli’s method applied to partial differential equations. In particular,
the Cauchy problem for first order partial differential equation is studied in [2]. The
paper [5] deals with the Darboux problem. Quasilinear systems of hyperbolic type are
considered in [4]. In the proof of the existence theorem we combine Tonelli’s method
with the vanishing viscosity method ([7, 21]).

One of the first papers with functional dependence in parabolic problems is [16].
Some special forms of delayed equations modelling real life problem were considered
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earlier (e.g. [23] where an automatically controlled furnace is investigated). For more
applications of partial functional differential equations we refer the reader to [24].
Viscosity solutions for differential-functional problems were first considered indepen-
dently in [12] and in [18]. According to the author’s knowledge this paper is the first
where Tonelli’s constructive method is applied to the differential-functional PDE.

There are two main ways of dealing with differential-functional equations. Some-
times we generalize the techniques used in the nonfunctional case (see for instance
in [18, 19, 21]). Sometimes we reduce the original problem to the nonfunctional case
and we use a fixed point technique ([12, 20, 22]). In this paper we present the second
approach, but instead of constructing special spaces and operators with the fixed
point property, we apply a modification of the Arzela-Ascoli theorem. Our approach
is based on a priori estimations (Section 3). We put a special stress on assumptions.
They are general enough to cover the model presented in Section 5. Moreover, they
cover the model used in [13] (“deviated Hale’s operator”).

Tonelli’s method seems to be particulary interesting when we study viscosity solu-
tions. It is due to the fact that they have good limit properties. By using this method
we prove an existence result for the differential-functional problem, where the delay
depends on the space variable. (In contrary to [22] where fixed point method was
applied).

Put Θ = (0, T ] × Rn, Θ0 = [−τ, 0] × Rn, E = Θ ∪ Θ0, τ ≥ 0, T > 0 and
D = [−τ, 0]×B(r), where B(r) = {x ∈ Rn : |x| ≤ r}, r ≥ 0.

Definition 1.1 (Hale’s operator). For u : E → R and (t, x) ∈ Θ̄ we define
u(t,x) : D→ R by u(t,x)(s, y) = u(t+ s, x+ y) (see [11] for ordinary equations).

Let f : Θ̄×C(D)×Rn → R be continuous. We consider the initial-value problem:

Pu = f(t, x, u(t,x), Du) in Θ, (1.1)
u = ψ in Θ0. (1.2)

Here P is a linear degenerate parabolic operator of constant coefficient, i.e.

Pu = Dtu−
n∑

i,j=1

aijDiju, aij ∈ R, where
n∑

i,j=1

aijξiξj ≥ 0 for all ξi ∈ R.

We writeDu forDxu andDiju forDxixj
u. To underline the functional dependence

described by the symbol u(t,x) we write u,Du, Pu in place of u(t, x),Du(t, x), Pu(t, x).
Functional dependence in (1.1) means that the right hand side of (1.1) depends on
the restriction of u to (t, x) + D.

Notice that if Pu = Dtu then problem (1.1), (1.2) reduces to the first order Cauchy
problem.

It is important that many kinds of functional dependence can be derived from our
model by specializing the function f (see Section 5).
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2. VISCOSITY SOLUTIONS

The notion of viscosity solutions (with no functional dependence) was first introduced
by M.G. Crandall and P.L. Lions (see [7] for first order differential equations and [1,6]
for second order). For viscosity solutions of differential-functional equations we refer
the reader to [12,14,18,19,21,22].

We write u ∈ C1,2(Θ) if Dtu,D
2u,Du exist and are continuous in Θ.

Definition 2.1. A function u ∈ C(E) is a viscosity subsolution (resp. supersolution)
of (1.1), (1.2) provided for all φ ∈ C1,2(Θ) if u − φ attains a local maximum (resp.
minimum) at (t, x) ∈ Θ, then

Pφ(t, x) ≤ f(t, x, u(t,x), Dφ(t, x))

(resp. Pφ(t, x) ≥ f(t, x, u(t,x), Dφ(t, x))),
(2.1)

and
u ≤ ψ in Θ0 (resp. u ≥ ψ in Θ0). (2.2)

Definition 2.2. A function u ∈ C(E) is a viscosity solution of (1.1), (1.2) if u is
both a viscosity subsolution and supersolution of (1.1), (1.2).

Following the arguments given in the classical theory of viscosity solutions we may
assume that the maximum (resp. minimum) in Definition 2.1 is strict. Moreover we
set φ ∈ C1(Θ) (Dtφ,Dφ exist and are continuous in Θ) instead of u ∈ C1,2(Θ) if P
has no second order part.

Let a = [ai,j ]i,j=1,...,n. We use the symbol SOL(f, ψ, a) for the set of all viscosity
solutions of (1.1), (1.2). We say that u is a classical solution if u ∈ C(E), u ∈ C1,2(Θ)
and (1.1), (1.2) are satisfied everywhere.

Remark 2.3. If u ∈ C(E) ∩ C1,2(Θ) then u is viscosity subsolution (v. supersolu-
tion, v. solution) of (1.1), (1.2) if and only if u is a classical solution (subsolution,
supersolution) of (1.1), (1.2).

Theorem 2.4. Suppose that:

1) X(E) ⊂ C(E), X(D) ⊂ C(D) such that: u ∈ X(E) ⇒ u(t,x) ∈ X(D) for all
(t, x) ∈ Θ,

2) f, fk : Θ × C(D) × Rn → R are continuous, ψk ∈ C(Θ0), uk ∈ SOL(fk, ψk, a
k) ∩

X(E), ak = [aki,j ]i,j=1,...,n for k ∈ N,
3) fk → f in Θ×X(D)×Rn uniformly on bounded subsets, uk → u almost uniformly,

aki,j → ai,j, i, j = 1, . . . , n as k →∞.

Then u ∈ SOL(f, ψ, a), where ψ = u|Θ0
, a = [ai,j ]i,j=1,...,n.

Proof. The proof generalizes the method used in the nonfunctional case. Let us assume
that u−φ has a strict local maximum at (t, x) ∈ Θ. Then uk−φ has a local maximum
at (tk, xk) ∈ Θ and (tk, xk)→ (t, x). Notice that

‖uk(tk,xk) − u(t,x)‖D ≤ ‖uk(tk,xk) − u(tk,xk)‖D + ‖u(tk,xk) − u(t,x)‖D.
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By the fact that uk ⇒ u in some neighborhood of (t, x) + D, the first part on the
right hand side tends to 0. The second part tends to 0 by the continuity of u (D is
bounded). This gives

‖uk(tk,xk) − u(t,x)‖D → 0. (2.3)

Moreover, Pkφ(tk, xk) → Pφ(t, x) and Dφ(tk, xk) → Dφ(t, x) by regularity of φ and
by the assumption aki,j → ai,j .

Since uk ∈ SOL(fk, ψk, a
k), we can write

Pkφ(tk, xk) ≤ fk(tk, xk, u
k
(tk,xk), Dφ(tk, xk)). (2.4)

We claim that

fk(tk, xk, u
k
(tk,xk), Dφ(tk, xk))→ f(t, x, u(t,x), Dφ(t, x)).

Indeed,

|fk(tk, xk, u
k
(tk,xk), Dφ(tk, xk))− f(t, x, u(t,x), Dφ(t, x))| ≤

≤ |fk(tk, xk, u
k
(tk,xk), Dφ(tk, xk))− f(tk, xk, u

k
(tk,xk), Dφ(tk, xk))|+

+ |f(tk, xk, u
k
(tk,xk), Dφ(tk, xk))− f(t, x, u(t,x), Dφ(t, x))|

Note that the sequence (tk, xk, u
k
(tk,xk), Dφ(tk, xk)) is contained in some bounded sub-

set of Θ × X(D) × Rn. Thus the first part on the right tends to 0 by 3). The second
part tends to 0 by (2.3) and by the continuity of f . Now letting k → ∞ in (2.4) we
get (2.1). Thus u is a viscosity subsolution of (1.1), (1.2). In a similar way we can
show that u is a viscosity supersolution of (1.1), (1.2). Thus u ∈ SOL(f, ψ, a).

As an important example of X(E) we can take a set of all Lipschitz continuous
functions in E with a given constant L.

If D = {(0, 0)} (no functional dependence in the equation) we have X(D) = R (real
functions on the one point set) and every X(E) ⊂ C(E) satisfies 1). We set X(E) = R
(constant functions) and see that 1) is superfluous.

Remark 2.5. If aki,j = εkδi,j , δij = 0, i 6= j, δii = 1, εk > 0, εk → 0 as k → ∞ and
if uk are classical solutions then Theorem 2.4 is a functional version of the “vanishing
viscosity” method (see [7, 21]).

3. A PRIORI ESTIMATIONS

We define a modulus as a function ω : R+ → R+ such that ω(0+) = ω(0) = 0. We
write BUC(E) for the set of all bounded and uniformly continuous functions in E.

Definition 3.1. We write σ ∈ OM , M ≥ 0 if σ : [0, T ] × R+ → R+ is continuous,
nondecreasing in both variables, and if a maximal solution of the problem

z′(t) = σ(t, z(t)), z(0) = M. (3.1)

exists in [0, T ]. We write µσ(·,M) for this solution.
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Put µσ(T,M) = R(σ,M).

Definition 3.2. Let σ ∈ OM . We write f ∈ Xσ,M if

(i) f(t, x, w, 0) sgnw(0, 0) ≤ σ(t, ‖w‖D) in Θ× C(D)× Rm.
(ii) For every R ≥ 0 there exists a modulus ωR such that:

|f(t, x, w, p)− f(t, x, w, 0)| ≤ ωR(|p|) in Θ×K(R)× Rm.

In view of Theorem 2 of [19] we can write the following proposition.

Proposition 3.3. If f ∈ Xσ,M , ‖ψ‖Θ0
≤M and u ∈ SOL(f, ψ, a) ∩BUC(E), then

‖u‖Et ≤ µσ(t,M) ≤ R(σ,M) for t ∈ [0, T ]. (3.2)

In the linear case we have the following remark.

Remark 3.4. Let σ(t, z) = γ(t) + Cz, γ : [0, T ] → R nondecreasing C ≥ 0,
‖ψ‖Θ0

= M , f ∈ Xσ,M , u ∈ SOL(f, ψ, a) ∩BUC(E). Then for t ∈ [0, T ]

‖u‖Et
≤ eCt

(
‖ψ‖Θ0

+

t∫
0

γ(s)ds
)
≤ R(σ,M), (3.3)

where R(σ,M) = eCT
(
M +

∫ T
0
γ(s)ds

)
.

Proof. We apply Proposition 3.3 to the sequence {γk} of continuous majorants of γ
such that

∫ t
0
γk(s)ds→

∫ t
0
γ(s)ds. Next we pass to the limit.

Let Y ⊂ E. For every z : Y → R, we define

Lx[z](t) = sup
{ |z(s, x)− z(s, x̄)|

|x− x̄|
: x 6= x̄, s ≤ t

}
,

Lt[z](t) = sup
{ |z(s, x)− z(s̄, x)|

|s− s̄|
: s 6= s̄, s, s̄ ≤ t

}
.

We write Lx[z] = Lx[z](T ), Lt[z] = Lt[z](T ).
Define

CL,L(Y ) = {z ∈ C(Y ) : Lt[z] <∞, Lx[z] <∞},
CL,0(Y ) = {z ∈ C(Y ) : Lt[z] <∞}

and

C0,L(Y ) = {z ∈ C(Y ) : Lx[z] <∞}.

In the next theorem we will use the following proposition.
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Proposition 3.5. Let k ∈ N, P0, P1 ∈ Rk+, M ∈ Mk×k(R) with nonnegative coeffi-
cients. Suppose that for some integrable l : [0, T ]→ Rk+

l(t) ≤ P0 +

t∫
0

[P1 +Ml(s)]ds, t ∈ [0, T ].

Then

l(t) ≤ etM
(
P0 +

t∫
0

e−sMP1ds
)
, t ∈ [0, T ].

Proof. We apply a standard method for monotone integral system of inequalities.

For R > 0, we define K(R) = {w ∈ C(D) : ‖w‖D ≤ R}.

Assumption 3.6. Suppose that:

1) f ∈ Xσ,M , σ ∈ OM and R = R(σ,M),
2) there exists C ≥ 0, such that

|f(t, x, w, p)− f(t, x, w̄, p)| ≤ C‖w − w̄‖D in Θ×K(R)× Rm,

3) there exist Ak ≥ 0, k = 1, 2, 3, 4, such that

|f(t, x, w, p)− f(t, x̄, w, p)| ≤ (A1 +A2Lx[w] +A3Lt[w] +A4|p|)|x− x̄|

in Θ×K(R) ∩ CL,L(D)× Rn for i ∈ I,
4) there exists Bk ≥ 0, k = 1, 2, 3, 4, such that

|f(t, x, w, p)− f(t̄, x, w, p)| ≤ (B1 +B2Lx[w] +B3Lt[w] +B4|p|)|t− t̄|

in Θ̄×K(R) ∩ CL,L(D)× Rn for i ∈ I,
5) for every L̃ ≥ 0 there exists a modulus ωL̃ such that

|f(t, x, w, p)− f(t, x, w, p̄)| ≤ ωL̃(|p− p̄|) in Θ×K(R)×B(L̃).

Remark 3.7. It follows from Definition 3.2 and continuity of f that |f(t, x, 0, 0)| ≤
σ(T, 0) in Θ. Moreover, under Assumption 3.6 1),2) in view of Proposition 3.3 using
the standard retraction argument, we may assume, without loss of generality, that
|f(t, x, w, 0)| ≤ σ(T,R) in Θ× C(D), where R = R(σ,M). By the same argument in
view of Proposition 3.3 we may assume, without loss of generality, that Assumption 3.6
is satisfied globally in w (i.e. we may consider C(D) in place of K(R)).

We write u ∈ C1,2
b (Θ̄) if Dtu,D

2u,Du exist, are continuous in Θ̄ and Dtu,Du are
bounded in Θ̄.

Define

γ0 = sup
x∈Rm

{∣∣∣ n∑
i,j=1

aijDijψ(0, x) + f(0, x, ψ(0,x), Dψ(0, x))
∣∣∣}. (3.4)
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Lemma 3.8. Suppose that f satisfies Assumption 3.6, ‖ψ‖Θ0
≤ M , ψ ∈ CL,L(Θ0)

and u ∈ C1,2
b (Θ̄) is a solution of (1.1), (1.2). Then there exist L, L̃ depending on

σ,M, γ0, Lt[ψ], Lx[ψ]Ai, Bi, i = 1, . . . , 4, such that Lx[u] ≤ L, Lt[u] ≤ L̃.
Proof. Let u ∈ C1,2

b (Θ̄) be a solution of (1.1), (1.2). Define F [u](t, x, p) =
f(t, x, u(t,x), p). Since u ∈ CL,L(E), the following estimations hold:

|F [u](t, x, p)− F [u](t, x̄, p)| ≤
≤
{
A1 + (A2 + C)Lx[u](t) +A3Lt[u](t) +A4|p|

}
|x− x̄|

(3.5)

and for t̄ ≤ t

|F [u](t, x, p)− F [u](t̄, x, p)| = |f(t, x, u(t,x), p)− f(t̄, x, ū(t̄,x), p)| ≤
≤
{
B1 +B2Lx[u](t) + (C +B3)Lt[u](t) +B4|p|

}
|t− t̄|.

(3.6)

Fix ξ ∈ Rn. Since v(t, x) = u(t, x+ ξ)− u(t, x) is a solution of

Pv = g(t, x,Dv) in Θ, (3.7)

v = ψ̃ in E0, (3.8)

where
g(t, x, p) = F [u](t, x+ ξ, p+Dv)− F [u](t, x,Dv))

and
ψ̃(t, x) = ψ(t, x+ ξ)− ψ(t, x).

By (3.5) and Remark 3.4, we obtain

|u(t, x+ξ)−u(t, x)| ≤ ‖ψ̃‖0+

t∫
0

{
A1+(A2+C)Lx[u](s)+A3Lt[u](s)+A4‖Du‖s

}
ds|ξ|

and consequently

Lx[u](t) ≤ Lx[ψ] +

t∫
0

{
A1 + (A2 + C +A4)Lx[u](s) +A3Lt[u](s)

}
ds. (3.9)

In a similar way we obtain an inequality for Lt[u](t). Indeed, fix h0 > 0 and set
h0 > h > 0. Of course, v̄(t, x) = u(t + h, x) − u(t, x) is a solution of (3.7), (3.8) in
ΘT−h0

with g(t, x, p) = F [u](t+ h, x, p+Dv)− F [u](t, x,Dv)).
By (3.6) and Remark 3.4, we obtain

|u(t+ h, x)− u(t, x)| ≤

≤ |u(h, x)− u(0, x)|+ h

t∫
0

{
B1 +B2Lx[u](s) + (C +B3)Lt[u](s) +B4‖Du‖s

}
dt ≤

≤
[
‖Dtu‖h +

t∫
0

{
B1 + (B2 +B4)Lx[u](s) + (C +B3)Lt[u](s)

}
dt
]
h.
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After dividing both sides by h and letting h→ 0(‖Dtu‖h → ‖Dtu‖0) we see that

‖Dtu‖t = ‖Dtu‖t ≤ γ0 +

t∫
0

{
B1 + (B2 +B4)Lx[u](s) + (C +B3)Lt[u](s)

}
dt

for t ∈ [0, T − h0]. This gives

Lt[v](t) ≤ γ0 +

t∫
0

{
B1 +B2Lx[u](s) + (C +B3)Lt[u](s) +B4‖Dv‖s

}
dt. (3.10)

in [0, T ]. By Proposition 3.5, we get

[
Lx[u](t)
Lt[u](t)

]
≤ etM

([ Lx[ψ]
γ0

]
+

t∫
0

e−sM
[
A1

B1

]
ds
)
, t ∈ [0, T ],

where

M =

[
A2 + C +A4, A3

B2 +B4, C +B3

]
.

The proof is completed by setting t = T .

Since we use the space CL,L(D) in Assumption 3.6 3), 4), we can apply our re-
sults to equations with a retarded and deviated argument. It would be impossible if
we considered the space C(D) instead of CL,L(D) leaving out Lx[u], Lt[u] in 3), 4).
Of course, the assumption would be stronger in this case, general enough to cover
only differential-integral equation and constant retarded and deviated argument (see
Section 5).

Remark 3.9. If Assumption 3.6 3) is satisfied with A3 = 0, then Assumption 3.6
1)–3), 5) implies that there exists L depending only on A1, A2, A4, C, L0, T such that
Lx[u] ≤ L. In this case we can assume that Assumption 3.6 4) holds with Lx[w],
|p| ≤ L and B2 = B4 = 0.

Proof. In case A3 = 0 we can treat (3.9) and (3.10) separately. First we obtain a
uniform bound on Lx[u] using (3.9).

Remark 3.10. By a similar argument, we can assume that Assumption 3.6 3) is
satisfied locally in Lt[w] (A3 = 0) if Assumption 3.6 4) is satisfied with B2 = B4 = 0.

4. THE EXISTENCE THEOREM

Let D̃ = [−τ − 1, 0] × B(r) and 0 ≤ α < 1. For w ∈ C(D̃) we define w−α ∈ C(D) by
the formula: w−α(s, y) = w(s− α, y) (in this notation w−0 = w|D).
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We define fα : Θ× C(D̃)× Rn → R by fα(t, x, w, p) = f(t, x, w−α, p).
Put Θ̃0 = [−τ − 1, 0]×Rn, Ẽ = Θ̃0 ∪Θ. Let ψ̃ : Θ̃0 → R be equal to ψ in Θ0 and

ψ̃(t, x) = ψ(−τ, x) in Θ̃0 \Θ0. Consider the problem:

Pu = fα(t, x, u(t,x), Du) in Θ, (4.1)

u = ψ̃ in Θ̃0, (4.2)

where the Hale operator is defined for D̃ and solutions are defined in Ẽ.

Remark 4.1. The initial-value problem (1.1), (1.2) is equivalent to (4.1), (4.2) with
α = 0 i.e. solutions of both problems are equal in E.

Proposition 4.2. If f(t, x, w, p) is Lipschitz in w ∈ C(D) with a constant C ≥ 0 and
α, β ≥ 0. Then for w ∈ CL,0(D̃)

|fα(t, x, w, p)− fβ(t, x, w, p)| ≤ CLt[w]|α− β|.

Proof.

|fα(t, x, w, p)− fβ(t, x, w, p)| = |f(t, x, w−α, p)− f(t, x, w−β , p)| ≤
≤ C‖w−α − w−β‖D =

= C sup
(s,y)∈D

|w(s− α, y)− w(s− β, y)| ≤

≤ CLt[w]|α− β|.

Let CL,0(D̃, L1) = {w ∈ CL,0(D̃) : Lt[w] ≤ L1}.
Corollary 4.3. By setting β = 0 we obtain fα ⇒ f0 in Θ × CL,0(D̃, L1) × Rn as
α→ 0, where L1 ≥ 0.

Remark 4.4. If f satisfies Assumption 3.6, then fα satisfies Assumption 3.6 with
the same constants (with D̃ in place of D). A global estimation on the solution and
its Lipschitz constant is valid for the problem (4.1), (4.2).

We say that P defined in Section 1 is a strictly parabolic operator if there exists
κ > 0 such that

n∑
i,j=1

aijξiξj ≥ κ|ξ|2, ξ = (ξ1, . . . ξn).

We denote by C1+β/2,2+β(Θ̄), β ∈ (0, 1), the space of all functions u ∈ C1,2(Θ̄) such
that Du,D2u,Dtu exist and are continuous in Θ̄, D2u satisfies a Hölder condition in
x with an exponent β and Dtu satisfies a Hölder condition in t with an exponent β/2.
It is well known that C1+β/2,2+β(Θ̄) is a Banach space with some norm ‖ · ‖2+β (see
[15]). It is important here that C1+β/2,2+β(Θ̄) ⊂ C1,2

b (Θ̄). We write z ∈ C2+β(Rm) if
z̃ defined by z̃(t, x) = z(x) belongs to C1+β/2,2+β(Θ̄).

Theorem 4.5. Suppose that P is strictly parabolic, ψ ∈ CL,L(Θ0), ψ(0, ·) ∈
C2+β(Rm) for some β ∈ (0, 1). Let M = ‖ψ‖Θ. If Assumption 3.6 with wL̃(r) = CL̃r,
CL̃ ≥ 0 in 5) is satisfied, then for every 0 < α < 1 the problem (4.1), (4.2) has exactly
one solution uα ∈ C1+β/2,2+β(Θ̄) ∩ CL,L(Ẽ).
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Proof. Fix 0 < α < 1. We apply a step by step method to problem (4.1), (4.2). Set
u0 = ψ̃ in Θ̃0 and u0(t, x) = u0(0, x) in Θ = Ẽ \ Θ̃0.

Let N ∈ N such that (N − 1)α < T ≤ Nα. Define ti = iα for i = 0, 1, . . . , N − 1
and tN = T . Put Θi = (ti−1, ti] × Rn, Θ̃0

i = [ti−1 − τ, ti−1] × Rn for i = 1, 2 . . . , N .
Consider the problem

Pu = fα(t, x, ui−1
(t,x), Du) in Θi, (4.3)

u = ui−1 in Θ̃0
i . (4.4)

for i = 1, . . . , N . In view of the classical theory of nonfunctional equations (see [15])
problem (4.3), (4.4) has a solution ui in C1+β/2,2+β(Θ̄i) for each i = 1, 2 . . . , N . Set
ui(t, x) = ui(ti, x) in (ti, T ]×Rn and ui(t, x) = ui−1(t, x) for t ≤ ti−1. Define uα = uN .
It is immediate that uα ∈ C1+β/2,2+β(Θ̄) and uα is a classical solution of (4.1), (4.2).

The uniqueness follows from Proposition 3.3. Indeed, if u, v ∈ C1+β/2,2+β(Θ̄) ∩
CL,L(Ẽ) are classical solutions of (4.1), (4.2), then u− v is a classical solution of the
problem

Pz = g(t, x, z(t,x), Dz) in Θ, (4.5)

z = 0 in Θ̃0, (4.6)

where
g(t, x, w, p) = fα(t, x, w + v(t,x), p+Dv)− fα(t, x, v(t,x), Dv).

It is not difficult to verify that the hypothesis of Proposition 3.3 is satisfied for g. (see
Remark 4.4)

The idea of passing to the limit α→ 0 in (4.1), (4.2) is an adaptation of the Tonelli
method. In the following we will combine this method with a regularization process
where the “vanishing viscosity” method plays an important role.

Theorem 4.6. Suppose that P is a degenerate parabolic operator. Let ψ ∈ BUC(Θ0),
M = ‖ψ‖Θ0

and there exists a sequence of fk such that fk ⇒ f and fk satisfies
Assumption 3.6 with σ and C independent of k. Then there exists a viscosity solution
of (1.1), (1.2).

Proof. Let ψk ∈ CL,L(Θ0) such that ψk ⇒ ψ and ‖ψk‖Θ0
≤M .

Fix δ > 0. Define ρδ ∈ C∞0 (Rn) such that
∫
Rn

ρδ = 1, supp ρδ ⊂ B(δ), B(δ) ball of

radius δ in Rn. For L > 0, define

fLkδ (t, x, w, p) = ωpδ ∗ f
L
k (t, x, w, ·)(p),

where fLk (t, x, w, p) = fk(t, x, w, IL(p)), IL(p) = p if |p| ≤ L and IL(p) = L
|p|p if

|p| ≥ L.
Set fLkδ,α = (fL,kδ )α. We can verify that for each k fL,kδ,α → fk almost uniformly as

δ, α→ 0, L→∞. Moreover, fL,kδ,α ⇒ fLδ,α as k →∞ uniformly in δ, α, L.
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For ε > 0 consider problem

Pεu = fL,kδ,α (t, x, u(t,x), Du) in Θ, (4.7)

u = ψ̃k in Θ̃0, (4.8)

where Pε is a strictly parabolic operator defined by

Pεu = Dtu−
n∑

i,j=1

(εδij + aij)Diju, δij = 0, i 6= j, δii = 1.

We can verify that for each k fL,kδ,α satisfy Assumption 3.6 with constants in
2), 3), 4) and comparison function σ independent of δ, α, L. Moreover, for each k the
hypothesis of Theorem 4.5 is satisfied with P replaced by Pε, ψ replaced by ψk and f
replaced by fL,kδ,α . Then there exists a unique classical solution of (4.7), (4.8). Denote
this solution by uL,ε,kα,δ . By Proposition 3.3 a family of functions {uL,ε,kα,δ } is uniformly
bounded. By Lemma 3.8 it is also equicontinuous for fixed k.

Note that uL,ε,kα,δ − uL,ε,k̄α,δ ∈ SOL(g, ψk − ψk̄, a
ε) (since it is in fact a classical

solution), where aεij = εδij + aij and

g(t, x, w, p) = fL,kδ,α (t, x, w+(uL,ε,k̄α,δ )(t,x), p+DuL,ε,k̄α,δ )−fL,k̄δ,α (t, x, (uL,ε,k̄α,δ )(t,x), Du
L,ε,k̄
α,δ ).

Moreover, for every ρ > 0 there exists δ1 such that for 0 < k, k̄ < δ1

|g(t, x, w, 0)| ≤ ρ+ C‖w‖D, ‖ψk − ψk̄‖Θ0
< ρ, ‖fL,kα,δ − f

L,k̄
α,δ ‖Θ̄×C(D)×Rn < ρ.

In view of Proposition 3.3 we obtain

‖uL,ε,kα,δ − u
L,ε,k̄
α,δ ‖E ≤ e

CT (ρ+ Tρ). (4.9)

Define umk = u
m, 1

m ,k
1
m , 1

m

, fmk = fm,k1
m , 1

m

, where m, k ∈ N. Since um1 is equicontinuous and
uniformly bounded then by the Arzela-Ascoli theorem in unbounded domains there
exists a subsequence σm(1) of 1

m such that uσm(1)
1 → u1 almost uniformly. Since

u
σm(1)
2 is equicontinuous and uniformly bounded then by a similar argument there

exists a subsequence σm(2) of σm(1) such that uσm(2)
2 → u2 almost uniformly. In this

way we define σm(k) such that σm(k) → 0 and uσm(k)
k → uk almost uniformly. It is

not difficult to verify that for each k f
σm(k)
k → fk as m → ∞ in a bounded subset

of Θ × Xk(D) × Rn as m → ∞, where Xk(D) = CL,0(D̃, Lk) and Lk is a constant
L̃ given in Lemma 3.8 applied to fk (see Corollary 4.3). By Theorem 2.4, we have
uk ∈ SOL(fk, ψk, a).

Setting α = ε = δ = σm(k) k > k̄, in (4.9) and letting m → ∞ we conclude that
for every ρ > 0 ‖uk−uk̄‖E ≤ eCT (ρ+Tρ) if k, k̄ are large. (σm(k) is a subsequence of
σm(k̄) hence uσm(k)

k̄
→ uk̄). This gives uk ⇒ u and by Theorem 2.4 u ∈ SOL(f, ψ,Θ).

This completes the proof.
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Remark 4.7. If P is a strictly parabolic operator we set ε = 0. If ψ ∈ CL,L(Θ0)
than the solutions are in CL,L(Θ0) (we set ψk = ψ). If f satisfies Assumption 3.6, we
set fk = f .

Proposition 4.8. Suppose that Assumption 3.6 1), 2), 5) holds and there exists
modulus ω such that

|f(t, x, w, p)− f(t, x̄, w, p)| ≤ ω((1 + |p|)(|t− t̄|+ |x− x̄|))

in Θ̄×K(R) ∪C(D)×Rn. Then there exists a sequence fk such that fk ⇒ f and fk
satisfies Assumption 3.6 with σ and C independent of k.

Proof. Since we can assume that ω(z) is nondecreasing and subadditive, we have the
following

ω(z) ≤ ω(d)

d
z + ω(d), z ≥ 0, d > 0. (4.10)

We can also assume that for every k there exists dk > 0 such that

mk =
ω(dk)

dk
→∞, dk → 0+.

Indeed, if this not true, (4.10) implies that ω(z) ≤ Az for some A ≥ 0 and Assump-
tion 3.6 3),4) is satisfied. In this case we set fk = f . Define

gk(s, y, t, x, w, p) = f(s, y, w, p) +mk(1 + |p|)(|t− s|+ |x− y|).
fk(t, x, w, p) = inf

(s,y)∈Θt

gk(s, y, t, x, w, p).

We can verify that for every k fk satisfies Assumption 3.6. First we demonstrate 1)

gk(s, y, t, x, w, 0) = f(s, y, w, 0) +mk(|t− s|+ |x− y|).

For w(0, 0) > 0, we have

gk(s, y, t, x, w, 0) ≤ σ(s, ‖w‖D) +mk(|t− s|+ |x− y|).

Taking infimum in (s, y) ∈ Θt we get fk(t, x, w, 0) ≤ σ(t, ‖w‖D).
For w(0, 0) < 0, we have

gk(s, y, t, x, w, 0) ≥ −σ(s, ‖w‖D) +mk(|t− s|+ |x− y|) ≥ −σ(t, ‖w‖D)

and fk(t, x, w, 0) ≥ −σ(t, ‖w‖D).
Point (ii) of Definition 3.2 follows from the fact that for w ∈ K(R),

−ωR(|p|) +mk|p| ≤ gk(s, y, t, x, w, p)− gk(s, y, t, x, w, 0) ≤ ωR(|p|) +mk|p|.

Consider now Assumption 3.6 2). Since

fk(t, x, w, p)− gk(s, y, t, x, w̄, p) ≤ gk(s, y, t, x, w, p)− gk(s, y, t, x, w̄, p) ≤ C‖w− w̄‖D,
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we obtain by taking supremum in (s, y) ∈ Θt

fk(t, x, w, p)− fk(t, x, w̄, p) ≤ C‖w − w̄‖D.

By replacing w and w̄ we obtain Assumption 3.6 2) with C independent of k.
By a similar argument Assumption 3.6 3), 4) can be derived from

gk(s, y, t, x, w, p)− gk(s, y, t̄, x̄, w, p) ≤ mk(1 + |p|)(|t− t̄|+ |x− x̄|)

and Assumption 3.6 5) follows from

gk(s, y, t, x, w, p)− gk(s, y, t, x, w, p̄) ≤ ωL̃(|p− p̄|) +mk|p− p̄|

for p, p̄ ∈ B(L̃). Now we will show that fk ⇒ f uniformly in Θ× C(D)× Rn.
Indeed, we see that fk(t, x, w, p) ≤ f(t, x, w, p) and

fk(t, x, w, p)− f(t, x, w, p) =

= inf
(s,y)∈Θt

{f(s, y, w, p)− f(t, x, w, p) +mk(1 + |p|)(|t− s|+ |x− y|)} ≥

≥ inf
(s,y)∈Θ

{−ω( (1 + |p|)(|s− t|+ |y − x|)) +mk(1 + |p|)(|t− s|+ |x− y|)} ≥

≥ inf
(s,y)∈Θ

{
− ω(dk)

dk
(1 + |p|)(|t− s|+ |x− y|)− ω(dk)+

+mk(1 + |p|)(|t− s|+ |x− y|)
}

=

= −ω(dk).

Of course the method presented in this paper does not guarantee that the viscosity
solutions of (1.1), (1.2) are unique. For the uniqueness results we refer to [18,22].

Remark 4.9. It is possible to obtain result similar to this in Theorem 4.6 by adopting
the method used in [8] to the functional equations. The proof is however much more
complicated (only the first order equation is considered).

5. INTEGRO-DIFFERENTIAL EQUATION WITH A RETARDED ARGUMENT

Let D̃ = [−τ1, 0] × B(r1), τ1, r1 ≥ 0. Given are: K : Θ × D̃ × R → R of variable
(t, x, s, y, u), F : Θ×R×R×Rn → R of variable (t, x, q, p) and µ : Θ→ R, ν : Θ→ Rn
such that t − τ2 ≤ µ(t, x) ≤ t, |ν(t, x) − x| ≤ r2, where τ2, r2 ≥ 0. Put τ = τ1 + τ2
and define Θ0,Θ, E. We consider the equation:

Pu = F
(
t, x, u,

∫
D̃

K(t, x, s, y, u(µ(t, x) + s, ν(t, x) + y))dsdy, Du
)

in Θ. (5.1)

Set D = [−τ, 0]×B(r), where r = r1 + r2. We reduce the initial-value problem for
(5.1) to (1.1), (1.2) by setting f : Θ× C(D)× Rn → R:
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f(t, x, w, p) =

= F
(
t, x, w(0, 0),

∫
D̃

K(t, x, s, y, w(µ(t, x)− t+ s, ν(t, x)− x+ y))dsdy, p
)
. (5.2)

It is easily seen that putting µ(t, x) = t, ν(t, x) = x we obtain an integro-differe-
ntial equation. In the similar way we can treat equations with a retarded argument
(with no integrals).

In the following we will assume that ψ ∈ BUC(Θ0), M = ‖ψ‖Θ0 , and f defined
by (5.2) belongs to Xσ,M . This gives the existence of the uniform bound R for the
solutions of (5.1), (1.2) and makes possible that all the assumptions on F will be
restricted to the set Θ̄× [−R,R]× [−R,R]×Rn and all the assumptions on K to the
set Θ̄× [−R,R]× [−R,R].

Theorem 5.1. Suppose that:

1) There exists modulus ω such that

|F (t, x, u, v, p)− F (t̄, x̄, u, v, p)| ≤ ω((1 + |p|)(|t− t̄|+ |x− x̄|)).

F (t, x, ·, ·, p) is Lipschitz continuous in with a constant C independent of (t, x, p).
F (t, x, u, v, ·) is locally uniformly continuous with a modulus independent of
(t, x, u, v).

2) K(·, ·, s, y, u) is uniformly continuous with moduli independent of (s, y, u). For each
(t, x, u) K(t, x, ·, ·, u) is integrable. K(t, x, s, y, ·) is Lipschitz continuous with a
constant CK independent of (t, x, s, y).

3) µ(·, ·), ν(·, ·) are Lipschitz continuous.

Then there exists a viscosity solution of (5.1), (1.2).

Proof. It is not difficult to verify that if µ(t, x)− t, ν(·, ·)−x are constant then we can
apply Proposition 4.8 and then Theorem 4.6. In a general case we precede as follows.

Let Fk ⇒ F , Kk ⇒ K (existence of such Fk,Kk can be derived from Proposi-
tion 4.8). We define fk by formula (5.2) with F,K replaced by Fk,Kk. It is easy to
show that fk ⇒ f . Since other points of Assumption 3.6 are rather easy we will show
only that fk satisfies Assumption 3.6 3) 4)

|fk(t, x, w, p)− fk(t̄, x̄, w, p)| ≤

≤
∣∣∣Fk(t, x, w(0, 0),

∫
D̃

Kk(t, x, s, y, w(µ(t, x)− t+ s, ν(t, x)− x+ y))dsdy, p
)
−

− Fk
(
t̄, x̄, w(0, 0),

∫
D̃

Kk(t̄, x̄, s, y, w(µ(t̄, x̄)− t̄+ s, ν(t̄, x̄)− x̄+ y))dsdy, p
)∣∣∣ ≤
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≤
∣∣∣Fk(t, x, w(0, 0),

∫
D̃

Kk(t, x, s, y, w(µ(t, x)− t+ s, ν(t, x)− x+ y))dsdy, p
)
−

− Fk
(
t̄, x̄, w(0, 0),

∫
D̃

Kk(t, x, s, y, w(µ(t, x)− t+ s, ν(t, x)− x+ y))dsdy, p
)∣∣∣+

+
∣∣∣Fk(t̄, x̄, w(0, 0),

∫
D̃

Kk(t, x, s, y, w(µ(t, x)− t+ s, ν(t, x)− x+ y))dsdy, p
)
−

− Fk
(
t̄, x̄, w(0, 0),

∫
D̃

Kk(t̄, x̄, s, y, w(µ(t̄, x̄)− t̄+ s, ν(t̄, x̄)− x̄+ y))dsdy, p
)∣∣∣ ≤

≤ Lk(1 + |p|)(|t− t̄|+ |x− x̄|))+
+ CCK |D̃||w(µ(t, x)−t+s, ν(t, x)−x+y))−w(µ(t̄, x̄)− t̄+s, ν(t̄, x̄)− x̄+y)| ≤
≤ Lk((1 + |p|)(|t− t̄|+ |x− x̄|))+

+ CCK |D̃|(Lt(w)|µ(t, x)− t− µ(t̄, x̄) + t̄|+ Lx(w)|ν(t, x)− x− ν(t̄, x̄) + x̄|) ≤
≤ Lk((1 + |p|)(|t− t̄|+ |x− x̄|))+

+ CCK |D̃|(Lt[w](Lt[µ− idt]|t− t̄|+ Lx[µ]|x− x̄|) + Lx[w])×
× (Lt[ν]|t− t̄|+ Lx[ν − idx]|x− x̄|),

where idt(t, x) = t, idx(t, x) = x.

Now we give a simple example, where we can apply Theorem 5.1.

Example 5.2. Let µ(t, x) = t − t2 sin |x1x2|, ν(t, x) = (x1 + t cosx2, x2 + t sinx1),
x = (x1, x2).

Dtu−D2
x1
u = sin

√
Dx2

u

1∫
−1

1∫
−1

0∫
−1

u2(µ(t, x) + s, ν(t, x) + y)dsdy1y2 in (0, 1]× R2,

u = ψ in [−2, 0]× R2,

y = (y1, y2) (we consider the maximum norm in R2). It is easily seen that a priori
bound for the solutions is R = ‖ψ‖Θ <∞.

Remark 5.3. Considering Assumption 3.6 in the case of the model presented in this
section we see that A2 = 0 means that ν(t, x) must have the form x + ν̃(t), A3 = 0
means that µ(t, x) = µ(t), B2 = 0 means that ν(t, x) = ν(x) and B3 = 0 means that
µ(t, x) = t+ µ̃(x).
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