Tomasz Juszczyk, Irmina A. Ziolo

ON SOME FAMILIES OF ARBITRARILY VERTEX DECOMPOSABLE SPIDERS

Abstract. A graph G of order n is called arbitrarily vertex decomposable if for each sequence (n_1, \ldots, n_k) of positive integers such that $\sum_{i=1}^{k} n_i = n$, there exists a partition (V_1, \ldots, V_k) of the vertex set of G such that for every $i \in \{1, \ldots, k\}$ the set V_i induces a connected subgraph of G on n_i vertices. A spider is a tree with one vertex of degree at least 3. We characterize two families of arbitrarily vertex decomposable spiders which are homeomorphic to stars with at most four hanging edges.

Keywords: arbitrarily vertex decomposable graph, trees.

Mathematics Subject Classification: 05C05, 05C35.

1. INTRODUCTION

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. Let $|V(G)| = n$. A sequence $\tau = (n_1, \ldots, n_k)$ of positive integers is called admissible for G if $n_1 + \ldots + n_k = n$. We shall write $(\underbrace{n_1, \ldots, n_i}_{s_1}, \underbrace{n_1, \ldots, n_j}_{s_1})$ for the sequence $(n_1, \ldots, n_i, \ldots, n_j, \ldots, n_k)$. If $\tau = (n_1, \ldots, n_k)$ is an admissible sequence for the graph G and there exists a partition (V_1, \ldots, V_k) of the vertex set $V(G)$ such that for each $i \in \{1, \ldots, k\}$ the subgraph $G[V_i]$ induced by V_i is a connected graph on n_i vertices, then τ is called G-realizable or realizable in G and the sequence (V_1, \ldots, V_k) is said to be a G-realization of τ or a realization of τ in G. Each set V_i will be called a τ-part of a realization of τ in G. A graph G is called arbitrarily vertex decomposable (avd for short) if each admissible sequence for G is realizable in G.

Arbitrarily vertex decomposable graphs have been investigated in several papers ([1–5] for example). The problem originated from some applications to computer networks ([1]).

The investigation of avd trees is motivated by the fact that a connected graph is avd if its spanning tree is avd.
In [4] the authors proved that every tree of maximum degree at least 7 is not avd and conjectured that every tree with maximum degree at least 5 is not avd. This conjecture was proved in [2]:

Theorem 1.1. If tree \(T \) is arbitrarily vertex decomposable then \(\Delta(T) \leq 4 \). Moreover every vertex of degree four in \(T \) is adjacent to a leaf.

Let \(T = (V(T), E(T)) \) be a tree. A vertex \(v \in V(T) \) is called primary if \(d(v) \geq 3 \). A leaf is a vertex of degree one in \(T \). Let the path \(P \) be a subgraph of \(T \) such that one of its end vertices is a leaf in \(T \), the other one is a primary vertex in \(T \) and all internal vertices of \(P \) have degree two in \(T \). We will call such a path an arm of \(T \). Let \(v \) be a primary vertex of a tree \(T \) such that \(v \) is an end vertex of two arms \(A_1, A_2 \) of \(T \). Let \(y_i \) be the other end vertex of \(A_i \) and \(x_i \in V(A_i) \) the neighbour of \(v \), \(i = 1, 2 \). Define \(T(A_1, A_2) \) to be a tree with \(V(T(A_1, A_2)) = V(T) \) and \(E(T(A_1, A_2)) = E(T) \setminus \{vx_2\} \cup \{y_1y_2\} \).

In [1] and, independently, in [5] the authors observed that:

Lemma 1.2. Let \(T \) be an arbitrarily vertex decomposable tree and let \(A_1, A_2 \) be arms of \(T \) that share a primary vertex of \(T \). Then the tree \(T(A_1, A_2) \) is arbitrarily vertex decomposable, too.

That gives a reason for the investigation of avd trees which are homeomorphic to a star \(K_{1,q} \), where \(q \) is three or four. If \(q = 2 \) such a tree is a path which is avd.

A spider is a tree with one primary vertex. Such a tree has \(q \) arms \(A_i \), \(i = 1, \ldots, q \), where \(q \) is the degree of the primary vertex. Let \(a_i \) be the order of \(A_i \), \(i = 1, \ldots, q \). The structure of a spider is determined by the sequence of orders of its arms. Since the ordering of this sequence is not important, we will assume that \(a_1 \leq a_2 \leq \ldots \leq a_q \) and we will denote the above defined spider by \(S(a_1, \ldots, a_q) \).

The first result characterizing the avd spider was found in [1] and, independently, in [5].

We will denote by \(\gcd(a,b) \) the greatest common divisor of two positive integers \(a \) and \(b \).

Theorem 1.3. The spider \(S(2, b, c), 2 \leq b \leq c \) is arbitrarily vertex decomposable if and only if \(\gcd(b, c) = 1 \). Moreover, each admissible and non-realizable sequence in \(S(2, b, c) \) is of the form \((d)^k \), where \(b \equiv c \equiv 0 \pmod{d} \) and \(d \geq 2 \).

In [3] the authors investigated two families of spiders: \(S(2,2,b,c) \) and \(S(3,b,c) \):

Proposition 1.4. The spider \(S(2,2,b,c), 2 \leq b \leq c \) is arbitrarily vertex decomposable if and only if the following conditions hold:

1. The spider \(S(3,b,c) \) is arbitrarily vertex decomposable,
2. The numbers \(b, c \) are odd,
3. \(b \not\equiv 2 \pmod{3} \) or \(c \not\equiv 2 \pmod{3} \).

In [3] the authors investigated two families of spiders: \(S(2,2,b,c) \) and \(S(3,b,c) \).
Theorem 1.5. The spider $S(2,2,b,c)$ of order n, $3 \leq b \leq c$, is arbitrarily vertex decomposable if and only if the following conditions hold:

1. \(\gcd(b,c) = 1 \),
2. \(\gcd(b+1,c) = 1 \),
3. \(\gcd(b,c+1) = 1 \),
4. \(\gcd(b+1,c+1) = 2 \),
5. \(n \neq ab + \beta(b+1) \) for \(\alpha, \beta \in \mathbb{N} \).

Theorem 1.6. The spider $S(3,b,c)$ of order n, $3 \leq b \leq c$, is arbitrarily vertex decomposable if and only if the following conditions hold:

1. \(\gcd(b,c) \leq 2 \),
2. \(\gcd(b+1,c) \leq 2 \),
3. \(\gcd(b,c+1) \leq 2 \),
4. \(\gcd(b+1,c+1) \leq 3 \),
5. \(n \neq ab + \beta(b+1) \) for \(\alpha, \beta \in \mathbb{N} \).

The main result of this paper are Theorems 2.1 and 2.2 of Section 2 which give a complete characterization of avd spiders $S(2,3,b,c)$ and $S(4,b,c)$. To prove them we will also use the following results:

Proposition 1.7 ([1]). The spider $S(a_1,a_2,a_3)$, $a_1 \leq a_2 \leq a_3$, is arbitrarily vertex decomposable if and only if every admissible sequence $((q)^{s_1},(q+1)^{s_2})$, $s_2 > 0$, $q \leq a_1 + a_2 - 2$ and every admissible sequence $(m,(r)^{t_1},(r+1)^{t_2})$, $t_2 > 0$, $1 \leq m \leq r-1$, $r \leq a_1 - 3$, has a realization in $S(a_1,a_2,a_3)$.

Proposition 1.8 ([2]). The spider $S(2,a_1,a_2,a_3)$, $a_1 \leq a_2 \leq a_3$, is arbitrarily vertex decomposable if and only if the following conditions hold:

1. The spider $S(a_1,a_2,a_3)$, $a_1 \leq a_2 \leq a_3$, is arbitrarily vertex decomposable.
2. Every admissible sequence $((q)^{s_1},(q+1)^{s_2})$, $s_2 > 0$, $q \leq a_1 + a_2 - 2$ and every admissible sequence $(m,(r)^{t_1},(r+1)^{t_2})$, $t_2 > 0$, $0 < m \leq r-1$, $r \leq a_1 - 3$, has a realization in $S(2,a_1,a_2,a_3)$.

Proposition 1.9 ([6]). The graph G is arbitrarily vertex decomposable if and only if every admissible sequence (n_1,\ldots,n_k) with $n_i \geq 2$ for each $i = 1,\ldots,k$, has a realization in G.

Given an admissible sequence $\tau = (n_1,\ldots,n_k)$ for a graph G of order n, we will use the following convention to describe a realization (V_1,\ldots,V_k) of τ in G. We choose an ordering $s = (v_1,\ldots,v_n)$ of the vertex set of G. Then we define the τ-parts according to the sequence s, that is $V_1 = \{v_1,\ldots,v_{n_1}\}$, $V_2 = \{v_{n_1+1},\ldots,v_{n_1+n_2}\}$ and so on.

2. ARBITRARILY VERTEX DECOMPOSABLE SPIDERS $S(2,3,b,c)$ AND $S(4,b,c)$

Theorem 2.1. The spider $S(2,3,b,c)$ of order n, $3 \leq b \leq c$, is arbitrarily vertex decomposable if and only if the following conditions hold:

1. \(\gcd(b,c) = 1 \),
(2) \(\max\{\gcd(b+1,c), \gcd(b,c+1), \gcd(b+1,c+1), \gcd(b+2,c), \gcd(b,c+2)\} \leq 2, \)

(3) \(\max\{\gcd(b+1,c+2), \gcd(b+2,c+1), \gcd(b+2,c+2)\} \leq 3, \)

(4) \(n \neq \alpha b + \beta (b+1) + \gamma (b+2) \) for \(\alpha, \beta, \gamma \in \mathbb{N}, \)

(5) If \(b = 2h, h \in \mathbb{N}, h \geq 3 \) then \(n \neq \alpha h + \beta (h+1) \) for \(\alpha, \beta \in \mathbb{N}. \)

Proof. Necessity. If \(d_1 = \gcd(b,c) \geq 2 \) or \(d_2 = \max\{\gcd(b+1,c), \gcd(b,c+1)\} \geq 3 \) or \(d_3 = \max\{\gcd(b+1,c+1), \gcd(b+2,c), \gcd(b,c+2)\} \geq 3 \) or \(d_4 = \max\{\gcd(b+1,c+2), \gcd(b+2,c+1)\} \geq 4 \) or \(d_5 = \gcd(b+2,c+2) \geq 4 \) then the following sequences \((d_1)_{\infty}^{\alpha b}\) or \((d_2)_{\infty}^{\alpha b+1}, d_2 + 1)\) or \((d_3)_{\infty}^{\alpha b}\) or \((d_4)_{\infty}^{\alpha b+1}, d_4 + 1)\) or \((d_5)_{\infty}^{\alpha b+1}, (d_5)_{\infty}^{\alpha b+2}\), respectively, are admissible but not realizable. If \(n = \alpha b + \beta (b+1) + \gamma (b+2) \), where \(\alpha, \beta, \gamma \in \mathbb{N} \) then the sequence \((b(\alpha), (b+1)^{\alpha}, (b+2)^{\alpha})\) is admissible and not realizable. If \(n = \alpha h + \beta (h+1) \), where \(h = \frac{n}{2} \in \mathbb{N}, h \geq 3 \) then the sequence \((b(\alpha), (h+1)^{\beta})\) is admissible and not realizable.

Sufficiency. Let \(A_i, i = 1, \ldots, 4 \) be arms of \(S(2,3,b,c), \) \(3 \leq b \leq c, \) of orders \(2, 3, b, \) and \(c, \) respectively. Let \(v \) be a primary vertex of \(S(2,3,b,c). \) Set \(A_1 = \{v, v_1^1\}, A_2 = \{v, v_1^2, v_2^2\}, A_3 = \{v, v_1^3, \ldots, v_{c-1}^1\}, \) and \(A_4 = \{v, v_1^3, \ldots, v_{c-1}^2\}, \) such that \(v v_1^1, v v_1^2, v v_2^2, v v_1^3, v v_{c-1}^1, v v_{c-1}^2, v v_1^3 v_{c+1}^1 \) are edges of \(S(2,3,b,c), i = 1, \ldots, b-2, j = 1, \ldots, c-2. \) Let \(\tau = (n_1, \ldots, n_k) \) be an admissible sequence for \(S(2,3,b,c). \) We assume that \(n_1 \leq \ldots \leq n_k. \)

By Proposition 1.8, Proposition 1.9 and Theorem 1.6 we may assume that \(\tau = ((n_1)k_1, (n_1+1)k_2), \) where \(k_1, k_2 \in \mathbb{N} \) and \(2 \leq n_1 \leq b + 1. \)

If \(n_1 = 2 \) then by Theorem 1.3 there is the realization \((V_2, \ldots, V_k)\) of the sequence \((n_2, \ldots, n_k)\) in \(S(2,3,b,c) \) and hence \(((v_1^1, v_2^2), V_2, \ldots, V_k)\) is a realization of \(\tau \) in \(S(2,3,b,c). \) We may assume that \(n_1 \geq 3. \)

Since \(\max\{\gcd(b+1,c+1), \gcd(b+2,c), \gcd(b,c+2)\} \leq 2, \) we have \(\tau \neq ((3)^k) \) and hence especially \(n_k \geq 4. \) Since \(n_k \leq b + 2, \) by the condition (4), we obtain that \(n_1 \leq b - 2, n_k \leq b \). We define the sequence \((V_1, V_2, \ldots, V_k)\) of \(\tau \)-parts according to \(s^1 = (v_b^1, v_{b-1}^1, \ldots, v_2^1, v_1^2, v_2^2, v_3^3, v_4^3, v_5^3). \) Suppose that the construction does not give a realization of \(\tau \) in \(S(2,3,b,c). \) It follows that there is \(i_0 \) such that \(\gamma_{b-1}^1, v_{c-1}^1 \in V_{i_0}. \) Since \(n_k \leq b, n_1 \leq b - 1, \) we have \(2 \leq i_0 \leq k - 1. \)

If \(|V_{i_0} \cap V(A_3)| \leq n_k - 4 \) then we modify the ordering of elements of \(\tau, \) we obtain \(\tau = (n_{i_0}, n_{i_0+1}, n_{i_0+2}, n_{i_0+3}, \ldots, n_{i_0+1}, n_{i_0+1}, n_{i_0+1}-1) \) and we define the sequence of \(\tau \)-parts according to \(s^2 = (v_{c-1}^1, v_{c-2}^1, \ldots, v_1^2, v_0^2, v_1^3, v_2^4, v_3^5, v_4^5, \ldots, v_{i_0}^5) \) and we obtain a realization of \(\tau \) in \(S(2,3,b,c). \) Hence we may assume that \(|V_{i_0} \cap V(A_3)| \geq n_k - 3. \)

We will use the following notation: \(d = n_k - n_{i_0}, r = |V_{i_0} \cap V(A_3)| - (n_k - 4). \) It is easily seen that \(d + r + |V_{i_0} \cap V(A_4)| = 4. \) Since \(|V_{i_0} \cap V(A_4)| \geq 1, d \leq 1, \) we obtain that \(1 \leq r \leq 3 \) or \(1 \leq r \leq 2 \) for \(d = 0 \) or \(d = 1, \) respectively. Observe that \(b = \sum_{i=1}^{k-1} n_i + 1 + r + (n_k - 4) = \sum_{i=1}^{k-1} n_i + n_k + r - 3 \) and \(c = \sum_{i=0}^{k-1} n_i + 1 - r. \)

Let us suppose that \(n_{k-1} - n_1 \geq r. \) We modify the ordering of elements of \(\tau \) and we consider \(\tau = (n_{k-1}, n_2, \ldots, n_{k-2}, n_1, n_k). \) We define the sequence of \(\tau \)-parts according to \(s^1 \) and, since \(0 \leq |V_{i_0} \cap V(A_3)| - (n_{k-1} - n_1) \leq n_k - 4, \) either we obtain a realization of \(\tau \) or \(v_{c-1}^1 \in V_{i_0}, \) where \(j_0 = i_0 \) for \(i_0 < k - 1 \) and \(j_0 = 1 \) for \(i_0 = k - 1. \) In the second case we modify the ordering of elements of \(\tau \) such that \(\tau = (n_{i_0}, n_{i_0+1}, \ldots, n_1, n_k, n_{k-1}, n_2, \ldots, n_{i_0-1}) \) if \(i_0 < k - 1 \)
or \(\tau = (n_1, n_k, n_{k-1}, n_2, \ldots, n_{k-2}) \) if \(i_0 = k - 1 \) and we define the sequence of \(\tau \)-parts according to \(s^2 \). Since \(|V_{j_0} \cap V(A_3)| \leq n_k - 4 \), we obtain a realization of \(\tau \). Hence we may assume that \(n_{k-1} = n_1 > r \).

If \(\tau = ((n_1)^k) \) then \(b = i_0(n_1 + r - 3, c = (k - i_0)n_1 + 1 - r \) and hence \(\max\{\gcd(b, c + 2), \gcd(b + 1, c + 1), \gcd(b + 2, c)\} \geq n_1 \geq 3 \), contrary to (2). If \(\tau = ((n_1)^{k-1}, n_1 + 1) \) then \(d = 1 \) and hence \(r \in \{1, 2\} \). Since \(b = i_0(n_1 + r - 2, c = (k - i_0)n_1 + 1 - r \), we obtain that \(\max\{\gcd(b, c + 1), \gcd(b + 1, c)\} \geq n_1 \geq 3 \), contrary to (2). Therefore we may assume that \(n_{k-1} = n_1 + 1 \).

Let us suppose that \(\tau = (n_1, (n_1 + 1)^{k-1}) \). Then \(r \in \{2, 3\} \). Since \(b = i_0(n_1 + 1) + r - 4 \) and \(c = (k - i_0)(n_1 + 1) + 1 - r \), we obtain that \(\max\{\gcd(b + 1, c + 2), \gcd(b + 2, c + 1)\} \geq n_1 + 1 \geq 4 \), contrary to (3). Hence we may assume that \(n_2 = n_1 \).

Let us suppose that \(i_0 = 2 \). Then \(d = 1, r = 2 \) and \(b = 2n_1 \), contrary to (5). We may assume that \(i_0 \geq 3 \), and hence \(k \geq 4 \).

If \(i_0 = k - 1 \) then \(b = \sum_{i=1}^{k-2} n_i + n_k + r - 3 \geq n_k + r \) and \(c = n_k + 1 - r \), which contradicts the assumption \(b \leq c \). Hence we may assume that \(i_0 \leq k - 2 \) and hence \(k \geq 5 \).

Let us suppose that \((n_{k-1} + n_{k-2}) - (n_1 + n_2) \geq r \). We modify the ordering of elements of \(\tau \) and we consider \(\tau = (n_{k-1}, n_{k-2}, n_3, \ldots, n_{k-3}, n_2, n_1, n_k) \). We define the sequence of \(\tau \)-parts according to \(s^1 \). Combining condition \(n_{k-1} - n_1 < r \) with the values of \(d \) and \(n_i \), \(i = 2, k - 2, k - 1 \) we obtain that \(0 \leq |V_{i_0} \cap V(A_3)| - |(n_{k-1} + n_k) - (n_1 + n_2)| \leq n_k - 4 \). Then either we obtain a realization of \(\tau \) or \(v_{i-1}^j \in V_{j_0} \), where \(j_0 = i_0 \) for \(i_0 < k - 2 \) and \(j_0 = 2 \) for \(i_0 = k - 2 \). In the second case we modify the ordering of elements of \(\tau \) such that \(\tau = (n_{i_0}, n_{i_0 + 1}, \ldots, n_k, n_1, n_k, n_{k-1}, n_{k-2}, n_3, \ldots, n_{i_0 - 1}) \) if \(i_0 < k - 2 \) or \(\tau = (n_2, n_1, n_k, n_{k-1}, n_{k-2}, n_3, \ldots, n_{k-3}) \) if \(i_0 = k - 2 \) and we define the sequence of \(\tau \)-parts according to \(s^2 \). Since \(|V_{j_0} \cap V(A_3)| \leq n_k - 4 \), we obtain a realization of \(\tau \). Hence we may assume that \((n_{k-1} + n_{k-2}) - (n_1 + n_2) < r \).

It is not difficult to check that then we have two possibilities: either \(\tau = ((n_1)^{k-2}, (n_1 + 1)^2), r = 2 \) or \(n_1 = n_2, n_{k-2} = n_{k-1} = n_k = n_1 + 1, r = 3 \).

If \(\tau = ((n_1)^{k-2}, (n_1 + 1)^2) \) and \(r = 2 \) then \(b = i_0(n_1, c = (k - i_0)n_1 \) and hence \(\gcd(b, c) \geq n_1 \geq 3 \), contrary to (1). Hence \(n_1 = n_2, n_{k-2} = n_{k-1} = n_k = n_1 + 1 \) and \(r = 3 \). If \(\tau = ((n_1)^2, (n_1 + 1)^{k-2}) \) then \(b = i_0(n_1 + 1) - 2, c = (k - i_0)(n_1 + 1) - 2 \) and hence \(\gcd(b + 2, c + 2) \geq n_1 + 1 \geq 4 \), contrary to (3). Therefore we may assume that \(k \geq 6 \) and \(n_3 = n_1 \).

If \(i_0 = 3 \) then \(d = 1 \) and hence \(r \leq 2 \), a contradiction. Hence \(4 \leq i_0 \). If \(i_0 = k - 2 \) then \(4n_1 + 1 \leq b \leq c = 2n_1 \), a contradiction. Hence \(i_0 \leq k - 3 \) and \(k \geq 7 \). We obtain that \(n_1 = n_2 = n_3, n_{k-2} = n_{k-1} = n_k = n_1 + 1 \), \(r = 3 \) and \(4 \leq i_0 \leq k - 3 \). Then \(d = 0 \) and hence \(n_k = n_1 + 1 \). We modify the ordering of elements of \(\tau \) and we consider \(\tau = (n_{k-1}, n_{k-2}, n_{k-3}, n_4, \ldots, n_{k-4}, n_3, n_2, n_1, n_k) \). We define the sequence of \(\tau \)-parts according to \(s^1 \). Let us suppose that the construction does not give a realization of \(\tau \). Then we modify the ordering of elements of \(\tau \) and we consider \(\tau = (n_{i_0}, n_{i_0 + 1}, \ldots, n_{k-4}, n_3, n_2, n_1, n_k, n_{k-1}, n_{k-2}, n_{k-3}, n_4, \ldots, n_{i_0 - 1}) \) if \(i_0 < k - 3 \) or \(\tau = (n_3, n_2, n_1, n_k, n_{k-1}, n_{k-2}, n_{k-3}, n_4, \ldots, n_{k-4}) \) if \(i_0 = k - 3 \). We define the sequence of \(\tau \)-parts according to \(s^2 \) and obtain a realization of \(\tau \). \(\square \)
Theorem 2.2. The spider $S(4,b,c)$ of order n, $4 \leq b \leq c$, is arbitrarily vertex decomposable if and only if the following conditions hold:

1. $\gcd(b,c) = 1$ or $\gcd(b,c) = 3$,
2. $\max\{\gcd(b+1,c), gcd(b+2,c)\}$
3. $\max\{\gcd(b+1,c), gcd(b+2,c)\} \leq 3$,
4. $n \neq ab + \beta(b+1) + \gamma(b+2)$ for $\alpha, \beta, \gamma \in \mathbb{N}$,
5. If $b = 2h$, $h \in \mathbb{N}$, $h \geq 4$ then $n \neq \alpha h + \beta(h+1)$ for $\alpha, \beta \in \mathbb{N}$.

Proof. We will use the similar method to that in the proof of Theorem 2.1.

Necessity. If $d_1 = \gcd(b,c) \notin \{1, 3\}$ or $d_2 = \max\{\gcd(b+1,c), gcd(b+1,c)\}$
3. $d_3 = \gcd(b+1,c+1), gcd(b+2,c+1) \geq 4$ or $d_4 = \max\{\gcd(b+1,c), gcd(b+2,c)\} \geq 5$ then the following sequences $(2, (d_1) \frac{n-1}{d_1}-1$, $d_2 + 1)$ or $(d_3) \frac{n-1}{d_3}$ or $(d_4) \frac{n-1}{d_4}$, respectively, are admissible but not realizable. If $n = \alpha b + \beta(b+1) + \gamma(b+2)$, where $\alpha, \beta, \gamma \in \mathbb{N}$ then the sequence $((b)^{\alpha}, (b)^{\beta}, (b)^{\gamma})$ is admissible and not realizable.

Sufficiency. Let $A_1, i = 1, 2, 3$ be arms of $S(4,b,c)$, $4 \leq b \leq c$, of orders $4, b$ and c, respectively. Let v be a primary vertex of $S(4,b,c)$. Set $A_1 = \{v, v_1^4, v_1^3, v_1^3\}$, $A_2 = \{v, v_1^4, v_1^3, v_0^3\}$, $A_3 = \{v, v_1^4, v_1^3, v_0^3\}$, v_1^4, v_1^3, v_0^3 are edges of $S(4,b,c)$, $i = 1, 2, j = 1, \ldots, b-1, l = 1, \ldots, c-2$. Let $\tau = (n_1, \ldots, n_k)$ be an admissible sequence for $S(4,b,c)$. We assume that $n_k \leq \ldots \leq n_k$.

If there is $i_0 \in \{1, \ldots, k\}$ such that $n_{i_0} = 3$ then we set $V_{i_0} = \{v_1^4, v_1^4, v_1^3\}$ and obtain a realization of τ in $S(4,b,c)$. Hence we may assume that $n_i \neq 3$ for $i \in \{1, \ldots, k\}$.

Let us suppose that $n_{i_0} = 2$ for any $i_0 \in \{1, \ldots, k\}$. Since $\tau \neq (2, (3)^{k-1})$, if we set $V_{i_0} = \{v_1^4, v_1^4, v_1^3\}$ then by Theorem 1.3 we obtain a realization of τ in $S(4,b,c)$. Hence we may assume that $n_i \neq 2$ for $i \in \{1, \ldots, k\}$. Then by Proposition 1.9 and Proposition 1.7 we have that $\tau = ((n_1)k_1, (n_1+1)k_2)$, where $k_1, k_2 \in \mathbb{N}$ and $4 \leq n_1 \leq b+2$. If $n_k = b+3+1$ then the sequence V_1, V_2, V_3 such that $[V(A_1) \cup V(A_2)] \subseteq V_k$ and for $i = 1, \ldots, k-1, V_i \subseteq [V(A_3) \setminus \{v\}]$ is a realization of τ in $S(4,b,c)$. We may assume that $n_k \leq b+2$. By the condition (4) we obtain that $n_1 \leq b-1, n_k \leq b$. We define the sequence (V_1, \ldots, V_k) of τ-parts according to $s^i = (v_1^4, v_2^b, v_0^3, v_0^3, v_1^4, v_1^3, v_3^4)$. Suppose that the construction does not give a realization of τ in $S(4,b,c)$. It follows that there is i_0 such that $b_{i_0}^b, v_{i_0}^b \in V_{i_0}$. Since $n_k \leq b$ and $n_1 \leq b-1$, we have $2 \leq i_0 \leq k-1$. Using similar arguments to that in the proof of Theorem 2.1 we may assume that $|V_{i_0} \cap V(A_2)| \geq n_k - 3$. We will use the following notation: $d = n_k - n_{i_0}, r = |V_{i_0} \cap V(A_2)| - (n_k - 4)$. It is easily seen that $d + r + |V_{i_0} \cap V(A_3)| = 4$.

Since $|V_{i_0} \cap V(A_3)| \geq 1, d \leq 1$, we obtain that $1 \leq r \leq 3$ or $1 \leq r \leq 2$ for $d = 0$ or $d = 1$, respectively. Observe that $b = \sum_{i=1}^{n_k-1} n_i + n_k + r - 3, c = \sum_{i=i_0}^{n_k-1} n_i + 1 - r$.
If \(\tau = (n_1)^k \) then \(\max\{\gcd(b + 2, c), \gcd(b + 1, c + 1), \gcd(b + c + 2)\} \geq n_1 \geq 4 \), contrary to (2). If \(\tau = ((n_1)^{k-1}, n_1 + 1) \) then \(d = 1 \) and hence \(r \in \{1, 2\} \) and \(\max\{\gcd(b + 1, c), \gcd(b + c + 1)\} \geq n_1 \), contrary to (2). If \(\tau = (n_1, (n_1 + 1)^{k-1}) \) then \(r \in \{2, 3\} \) and hence \(\max\{\gcd(b + 2, c + 1), \gcd(b + 1, c + 2)\} \geq n_1 + 1 \geq 5 \), contrary to (3). Hence we may assume that \(k \geq 4 \) and \(n_1 = n_2, n_k = n_{k-1} = n_1 + 1 \).

Using similar method to that in the proof of Theorem 2.1 we may assume that \(k - 2 \geq i_0 \geq 3 \) and that \((n_k - 1 + n_k - 2) - (n_1 + n_2) < r \). Then we obtain that either \(\tau = ((n_1)^{k-2}, (n_1 + 1)^2) \), \(r = 2 \) or \(n_1 = n_2, n_k = n_{k-1} = n_k = n_1 + 1, r = 3 \). In the first case \(b = i_0 n_1, c = (k - i_0) n_1 \) and \(\gcd(b, c) \geq n_1 \geq 4 \) contrary to (1). We may assume that \(n_1 = n_2, n_k = n_{k-1} = n_k = n_1 + 1 \) and \(r = 3 \).

If \(\tau = ((n_1)^2, (n_1 + 1)^{k-2}) \) then \(b = i_0 (n_1 + 1) - 2, c = (k - i_0) (n_1 + 1) - 2 \) and \(\gcd(b + 2, c + 2) \geq n_1 + 1 \geq 5 \), contrary to (3). Hence we may assume that \(k \geq 6 \) and \(n_3 = n_1 \). Since \(r = 3 \), we obtain that \(d = 0 \) and hence \(i_0 \geq 4 \). If \(i_0 = k - 2 \) then \(4n_1 + 1 \leq b \leq c = 2n_1 \), a contradiction. Hence \(i_0 \leq k - 3 \) and \(k \geq 7 \).

Since \(r = 3 \), we have \(n_{i_0} = n_k = n_1 + 1 \) and especially \(n_{k-3} = n_1 + 1 \). Then, similarly to the proof of Theorem 2.1, we obtain a realization of \(\tau \) in \(S(4, b, c) \).

Corollary 2.3. The number of arbitrarily vertex decomposable spiders \(S(2, 3, b, c) \) and \(S(4, b, c) \) is infinite.

Proof. It is not difficult to check that for \(b \) and \(c \) such that \(b \in \{60s + 1, 60s + 13, 60s + 49, s \geq 0\} \), \(c = b + 3 \) the assumptions (1)–(5) of Theorem 2.1 and assumptions (1)–(5) of Theorem 2.2 hold.

Acknowledgments

The research was partially supported by AGH University of Science and Technology grant 1142004.

REFERENCES

Tomasz Juszczyk
tom.juszczyk@gmail.com

AGH University of Science and Technology
Faculty of Electrical Engineering, Automatics, Computer Science and Electronics
al. Mickiewicza 30, 30-059 Kraków, Poland

Irmina A. Ziolo
ziolo@agh.edu.pl

AGH University of Science and Technology
Faculty of Applied Mathematics
al. Mickiewicza 30, 30-059 Kraków, Poland

Received: October 10, 2007.
Revised: November 18, 2009.
Accepted: January 4, 2010.