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ON ELLIPTIC PROBLEMS
WITH A NONLINEARITY
DEPENDING ON THE GRADIENT

Abstract. We investigate the solvability of the Neumann problem (1.1) involving the non-
linearity depending on the gradient. We prove the existence of a solution when the right
hand side f of the equation belongs to L™ () with 1 < m < 2.
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1. INTRODUCTION

In this paper we investigate the solvability of the nonlinear Neumann problem with
a nonlinearity depending on the gradient. First we consider the following problem

—Au+|Vul?+ du= f(z) in Q,

@ =0 on 0f), 1)

v
where A > 0is a parameter, 1 < ¢ < 2and Q C RN, N > 3, is a bounded domain with
a smooth boundary 9. It is assumed that f € L1(Q). If f > 0 on Q, then solutions,
if they exist, are positive. In Section 3 we consider problem (1.1) with |Vu|? replaced
by a nonlinearity satisfying a sign condition. The boundary value problems with
data in L' has been studied quite extensively in recent years. The Dirichlet problem
with a nonlinearity depending only on u has been considered in papers [7,10]. Some
extensions to the Neumann problem can be found in paper [12]. These results has
been extended to the case where a nonlinearity depends on the gradient. In particular,
more general elliptic operators with more general nonlinearities with f € L'(Q) or
being a Radon measure have been investigated in [3-6,11]. Further extensions to the
Dirichlet problem with L? boundary data can be found in [11]. We refer to paper [2] for
the bibliographical references. It seems that less is known for the Neumann problem.
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By W1P(Q), 1 < p < oo, we denote the Sobolev space equipped with norm

lulyn, = / (IVaf? + [ul?) dz.
Q

Throughout this paper, in a given Banach space X, we denote strong convergence
by “—” and weak convergence by “—”. The norms in the Lebesgue spaces LP(Q2),
1 < p < o0, are denoted by | - ||Le-

The paper is organized as follows. In Section 2 we prove the existence of positive
solutions of (1.1) assuming that f is positive and belongs to L(£2). Section 3 is
devoted to the problem with a nonlinearity satisfying a sign condition, where we do
not assume that f is positive. The crucial point in our approach are estimates of
W4 - norm of solutions of (1.1) in terms of L™ — norm of f (see Lemmas 2.1, 3.1,
3.3). The estimates in terms of L™ norm of f (see Lemmas 3.1, 3.3) in a linear case
were given in [8] and are extended in this paper to solutions of (1.1). In these two
lemmas the important assumption is that g # %, which is due to the use of special
test functions in the proofs. We were unable to show whether these lemmas continue
to hold for ¢ = % In Section 4 we establish the higher integrability property for
positive solutions of (1.1).

The main results of this paper are Theorems 2.2, 3.2, 3.4. In the proofs we use
some ideas from paper [4].

2. EXISTENCE OF POSITIVE SOLUTIONS

In this section consider problem (1.1) assuming that f > 0 on Q. Then a solution, if
it exists, is positive on Q. We need the following definition of a solution of (1.1): let
f € LY(Q), then a function u € W4(Q) is a solution of (1.1) if

/Vqudx+/|Vu|qux+)\/uvdx:/fvdx (2.1)
Q Q Q Q

for every function v € WhH°°(Q).

Lemma 2.1. Let 1 < ¢ < 2 and f € L*>®(Q) with f > 0 on Q. Ifu € WH2(Q) is
a positive solution of (1.1), then

/(|vu|q+uq) d$§C1/fda:+Cg (/fdx)q, (2.2)

Q Q Q
where Cy,Cy > 0 are constants independent of u and f.

Proof. Testing (2.1) with the constant function 1 we get

/|Vu|qdac+)\/ud:r:/fd;v. (2.3)
Q Q

Q
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It is clear that equality (2.3) yields (2.2) if ¢ = 1. To proceed further we use a de-
composition W12(Q) = V @ span 1, where
V ={veWw"Q); /de = 0}.
Q

Then u =v+t, withv € V and t = ﬁ Jqudz > 0, because u is positive. From (2.3)

we deduce )
< — . 2.4
= 24
Q

We now observe that the Poincaré inequality is valid in V', that is, there exists a con-
stant C(©2) > 0 such that

/|v|qu < C(Q)/|Vv|qu
Q Q

for every v € V. Consequently, using (2.4), we can estimate the norm of u in W14(Q)
as follows

/(|Vu|q +u?) dz < / |Vo|?dx + 2971 /Q(vq + 1) dx <
Q Q
< / Vol? da + 27-10(Q) / V0| da + 2919,
Q Q
This combined with (2.4) and (2.3) implies (2.2). O
We are now in a position to formulate the first existence result.

Theorem 2.2. Let 1 < g <2 and f be a positive function in L*(2). Then problem
(1.1) admits a positive solution in W14(Q).

Proof. The proof will be given in 2 steps.
Step 1. Assume f € L*°(£2). Consider the problem

—Au+u=f(z) in Q
%_y on oo (2.5)
ov

u>0 on €.

This problem has a unique positive solution v € W12(Q) N L>(Q) (see [1]). We
now use some ideas from papers [5] and [6]. For each n € N we consider the following
problem

|Vw,|? _ .
_Awn + W + )\wn = f(a:) m Q,
2.
Own =0 on 09, (26)
v

Wy, >0 on .
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It is clear that v is a super-solution to problem (2.6) and 0 is a sub-solution. Thus
problem (2.6) admits a solution 0 < w,, < v. This fact is known for equation (2.6)
with the Dirichlet boundary conditions (see [5]). The result from [5] can be easily
extended to the Neumann problem (2.6). The sequence {w,} is uniformly bounded
in L>°(Q). Testing (2.6) with w,, we obtain

[ (9w + ) do < 2 o],
Q

which shows that the sequence {w,} is bounded in W12(Q). We may assume that
w, — w in WH2(Q), w, — w in L*(Q) and w,, — w a.e. on 2. We now show that
wy, — w in WH2(Q). We put ¢(s) = sexp(%) for s € R. We introduce notation
H,(s) = 1+|§rs\‘1' The function ¢ satisfies ¢/(s) — [¢(s)| > 3 for s € R. Testing (2.6)
with ¢(w, —w) we obtain

/ Vi (1w, — )V (1w — w) da + / Ho (V) S — w) der+
Q Q

+ )\/wngb(wn —w)dr = /f(x)(b(wn —w)dx.
Q Q
It is easy to check that

/anqb'(wn —w)V(w, —w)dr = / IV (w, —w)]*¢' (w, —w)dzx +o(1). (2.8)
Q o)

To estimate the second term on the left side of (2.7) we use the inequality: if 1 < g < 2,
then for every e > 0 there exists C > 0 such that

sl <es?+C. forevery s>0. (2.9)
We then have

/H (I wal) 6w —w|dm<e/\wn| e \dw+c/|¢ —w)|dz =
—e/\v » = WPl - w)ldz-
— ¢ [ 19uPlotw, - w)ldot (210)
Q

QG/anVw\gﬁ(w —w)| dz+

+c/|¢ w)|dz.



On elliptic problems with a nonlinearity depending on the gradient 381

Since

[Ivuliotw, —w)lde 0. [ Vu,Tulotw, - w)lds -0
Q Q

and

166w, —w)ldo 0

Q

as n — 0o, we derive from (2.10) that

/Hn(\an|)|¢>(wn —w)|dx < e/ Vwn — Vl2l¢(wn — w)|dz +o(1).  (2.11)
Q Q

If ¢ = 2, then instead of (2.10) we have

/ H, (V) 6wy — w)) di < / VS — w) de
Q

Q

and (2.11) holds with e = 1. We also have

/f(x)qﬁ(wn —w)dx — 0 and wyd(wy, —w)dr — 0 (2.12)
Q
Q

asn — oo. If 1 < ¢ < 2 we derive from (2.7), (2.8), (2.11) and (2.12) that

%/|V(wn —w)*dr < /(¢’(wn —w) — €|lp(w, — w)|)|V(w, — w)*dz = o(1).
)

Q

Thus w,, — w in WH2(Q). If ¢ = 2, the above inequality continues to hold with € = 1.
In this case we also have that w,, — w in W172(Q). Since 1 < ¢ < 2, Vw, — Vw in
L4(Q). For each ¢ € WH2(Q) N L>°(Q) and for each n we have

[Vw,|? _ '
/anv¢dx+/ ¢dm+AQ/wn¢dx Q/qudx

1+ 1| Vw,|d
Q Q

Letting n — oo we get

Q/Vqude—FQ/|Vw|q¢dx—|—/\Q/w¢dx:Q/fd)dx.

So w € WH2(Q) N L>(Q) is a weak solution of (1.1).
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Step 2. First we consider the case 1 < ¢ < 2. Let f € L'(Q2) and let {f,} C L>()
such that f, — f in L'(2). By Step 1 for each n € N there exists a solution
u, € WH2(Q) N L>(Q) to problem (1.1) with f = f,. For each k > 1 we put
Tk (s) = min(s, k) for 0 < s. Taking Tyu, as a test function in (1.1) we get

/|VTkun|2dx+A/|Tkun\2dx < /fnTkundac < k| fullzr
Q Q Q

Consequently, {Tjyu,} is bounded in W12(Q). By Lemma 2.1 we may assume that

Up — u in WH(Q2). We may also assume that Tju,, — Tpu in W12(Q) and Tju,, —

Tru in L?(Q). Let Gi(s) = s — Tx(s) and put ¥x_1(s) = T1(Gk_1(s)). Thus
Yr—1(un)|Vug|? > |vun‘qX(un>k)-

Using ¢;—1(un) as a test function in (2.1) (with f = f,,) we get

|Vwk71(un)|2dm+ wkfl<un)|vun‘qdl’+)‘ unwkfl(un) dx = fnwkfl(un) dx.
/ / / /

Q

Since {u,,} is bounded in LP(Q) for each p < ¢* = NN—fq we see that

Hre k—1<uy(z) <k} —0and {z €k <up(x)}| —0

as k — oo uniformly in n. So

klim / |Vu,|?dr =0 (2.13)
Un >k

uniformly in n. Using as a test function ¢(Tu,, — Txu) and repeating the argument
from Step 1 we show that Tju, — Tpu in WH2(Q). We now use this to show that
the sequence {|Vu,|?} is equi-integrable. This follows from (2.13) and the following
inequality: for every measurable subset E C {2 we have

/|Vun|qu < /\VTkun|qdm+ / |Vu,|?de.
E E (un>k)NE
Indeed, given € > 0, according to (2.13), we can find k large enough such that
/ |Vu,|?de < g
up>k

for all n. Since VTj(uy) — Tx(u) in L?(£2) there exists § > 0 such that
/|VTk(un)|qda: < g
E

provided |E| < ¢ and for all n. By Vitali’s theorem Vu,, — Vu in L9(Q2). Thus u is
a weak solution of (1.1). If ¢ = 2, then by Lemma 2.1 the sequence {u,} is bounded
in WH2(Q). An obvious modification of Step 2 completes the proof. O
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3. NONLINEARITY WITH A SIGN CONDITION

In this section we discuss the solvability of the following problem

—Au+ g(z,u, Vu) + du = f(z) in €,
ou (3.1)

520 on ON.

We assume that the nonlinearity g : QxR xRY — R is a Carathéodory function, that
is, g(-, s,€) is measurable on Q for every (s,£) € R x RN and g(x, -, ") is continuous
on R x RY for a.e. z € Q. Moreover, we assume that

(g91) there exist an increasing and continuous function b : [0, 00) — [0, c0) with b(0) = 0
and a positive function a € L*(£2) such that

lg(x,5,6) < b(|s]) (|¢]* + a(z))

for a.e. x € Q and for every (s,&) € R x RV,
(g2) g(x,8,€) sgn s >0 for a.e. x € Q and for every (s,£) € R x RV,

A typical example of a nonlinearity satisfying (g1) and (g2) is g(x, s,&) = s|¢|9.
We now consider equation (3.1) without assumption that f is positive on 2. Ob-
viously, it is assumed that f % 0 on 2. We assume that % < q < 2. Then there

exists 1 <m < ]\z,—fq such that ¢ = m* = % In this case m is given by m = NN—fq.
We also use notation ¢* = NN—_q. With these notations we establish the estimates of

norms ||u|| ;. and ||u|ly1.e of a solution w of (1.1) in terms of the norm || f||m.

Lemma 3.1. Let f € L®(Q) and i~ < ¢ < 2. Ifu € WH2(Q)NL>®(Q) is a solution
of (3.1), then

a*
q

/Iu\q* dr < C (/(quq+ Jul?) d:c) <

Q Q
a-—r) r
a* « 2 a* 2
<l ([ as) T (fasa) T ar)
Q Q
where r = Y(2=9)

N2:q and C1 > 0 and Cy > 0 are constants independent of u and f.

(3.2)
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Proof. We follow some ideas from [8], where the same estimate was proved for the
linear problem. Put ¢(x) = ( )% . Since {5 < ¢ < 2, we have 0 < r < 1. Since
14u?

u € L>®(R), ¢ is a legitimate test function. Upon the substitution we obtain
2 2
/ B T +/\/u7£dx§/|f7u|zdx§
2 2)2 2)2
1—|—u o (1—|—u) o (1—|—u)
2o (33)

< e [l )™
Q

where m/ = —=-. Here we used the fact that

(1)’

due to assumption (g2). In what follows we denote by C' > 0 a constant which is
independent of u and f and may vary from line to line. By the Sobolev inequality we

have
(/|u|q* da:)q < c/(|vu|q+ ful?) dzx =
Q Q

:C/(Nuqu(l'f'uz)?dx"‘

1—|—uz)4
2\ 7
+C’/ 1+u27q 1+u) dx < (3.4)
2 4 vy e

<C</de> (/(1+u2)2(2“”dx> +

4 (1+“2)2 4
—|—C’(/ zl ) (/1—|—u 2(§.qq>da:> 2.

5 (1+u A

Inserting (3.3) into (3.4) we derive

(/u|q* dx)q < c/(|vu|u ul?) de <
Q Q
< ClflE ( / — dm) g ( / (14 u?) 7D dx) .
Q

Q
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: — N(2—q)
Since r = N g

inequality becomes

/|u|q* dx < C(/(|Vu|‘1 + [u]9) dz) a -
Q Q

rq
2—q

*

= ¢* and (1 — r)m’ = ¢*. Therefore the above

we have

q* (2—a)q*
a* " 2m’ a* 29
<t ([ a) ™[4 ar)
Q Q
Since 23;, = 12i and % = 5, the result follows. O

We are now in a position to formulate the second existence result.

Theorem 3.2. Let % < qg<2and feL™Q) withm = NN—fq. Suppose that

assumptions (g1) and (ga) hold. Then problem (1.1) admits a solution in W9(Q).

Proof. The proof is similar to that of Theorem 2.2 except some technical modifica-
tions. First we assume that f € L>=°(Q). For every n € N we put

g(z,s,8)

gn(z,5,§) = 1+ Lg(z,5,6)]

and consider the following problem

—Au+ gn(z,u, Vu) + M = f(x) in Q,

ou 3.5

— =0 on Of). (8:3)
ov

Then the functions v; = % and vy = —% are a super-solution and a sub-solution

to problem (3.5), respectively. For every n problem (3.5) has a solution w,, satisfying
v < w, < vy on (). Hence the sequence {w,, } is bounded in L>(€2), that is, [|wy,|e <
M for some constant M > 0 and for all n € N. Testing (3.5) with w,, we show that
{w,} is bounded in W12(2). So we may assume that w, — w in W%(Q), w,, — w
in L2(Q) and w,, — w a.e. on €. Let ¢ be a function introduced in the proof of
Theorem 2.2. Testing (3.5) with ¢(w, — w) we obtain

/and>’(wn —w)V(w, —w)dz + /gn(x, Wi, Vwy ) d(wy, — w) do+
Q Q

2 [t - wyde = [ f)o(w, - w)da,

Q Q

It is clear that

/an¢'(wn —w)V(w, —w)dx = / IV (w, —w)]*¢' (w, —w)dx +o(1). (3.7)
Q o)
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We use inequality (2.9) and assumption (g;) to estimate the second integral on the
left side of (3.6)

/ |gn (w0 — w)| i < b(M) / Vw90 — w)| daz + / a(@)]$(wn — w)] de <
Q

Q Q

S b(M)G |an|2|¢(wn*w)|dz+cs |¢(wn*w)|dz+
/ /

+ [ a(@)|p(w, —w)| dz.
/

Since ¢p(w, —w) — 0 a.e. on © and sup,, |¢p(w, —w)| < oo by the Lebesgue dominated
convergence theorem we get

/ |gnd(w, —w)|dz < b(M)e/ |Vw, |?|p(w, —w)|dz + o(1).
Q Q

As in the proof of Theorem 2.2 we deduce from this that

/|gn¢>(wn —w)|dx < b(M)e/ |Vw,, — Vw|?|¢(w, —w)|dz + o(1). (3.8)
Q Q

Taking eb(M) < 1 we deduce from (3.6), (3.7) and (3.8) that

/|an — Vuw|*dz < /((b’(wn —w) — eb(M)|p(wy,, — w)])|Vw, — Vw|?dz = o(1).
) )

Thus w,, — w in WH2(Q). It is clear that w is a solution of (3.1). In the final step we
choose a sequence {f,} C L*(Q) such that f, — f in L™(). Then for every n € N
problem (3.1) with f = f,, admits a solution u,, € WH2(Q) N L>(Q). We now define
a sequence of truncations {Tj(u,)} for every k > 0, where T}, = max(—Fk, min(s, k)).
Let Gi(s) = s — Tx(s) and put ¢g_1(s) = T1(Gr-1(s)). Thus

’(/}kfl(un)|vun|2 > |vun|2X|un|2k

As in the proof of Theorem 2.2 we show that the sequence {T(u,)} is bounded in
Wh2(Q). Hence we can assume that Ty (u,) — Tyu in WH2(Q), Ti(u,) — Tyu in
L?(Q) and Ty(up) — Tk(u) a.e. on Q. By Lemma 3.1 we may also assume that
up — u in W9(Q). Using as a test function ¢;_1(u,) we show that Vu,, — Vu in
L7(Q) and u is a weak solution of (3.1). O
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We now turn our attention to positive solutions of (3.1). If f > 0 on , then a
solution obtained in Theorem 4.3 is positive. In this case we can also consider the
interval 1 < ¢ < % We commence with an apriori estimate.

Lemma 3.3. Suppose that 1 < q < %, f>00nQ and f € L*(Q). Ifu €
Wh2(Q) N L*(Q) is a positive solution of problem (3.1), then

*

/Uq*dac < (/(|Vu|q +uq)dx) q <
Q Q

2—a)q*
« a* (2—m)g*
<arf favara) " (E i)
Q

where C1,Cy > 0 are constants independent of f and v and r =

N(2—q)
N—q °

Proof. The proof is a modification of the argument used in the proof of Lemma 2.5
in [8]. We take as a test function ¢(z) = (14 u)'~". Since ¢ < &5, we have r > 1.
Also r < 2 because N > 3. Hence ¢(x) < 1 on £ and upon a substitution we obtain

ul?
(r1)/(1|Y|—1|L)de_/g(x7u’vu)(]‘+u)lTd$~|»
Q

2

+ )\/u(l +u) " de—
- (3.9)
- /f(l +u)'""dr <
Q

< /g(x,u, Vu)da:—t—A/udx.
Q Q

Testing equation (3.1) with a constant function 1 we obtain

/g(x,u,Vu) dx—f—)\/udm:h/fdx. (3.10)

Q Q

From (3.9) and (3.10) we derive

2
/(1|v+“1|l)r dr < ril /fdx and /udm < %/fdx (3.11)
Q Q Q Q
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By the Sobolev inequality we obtain

q

</uq* dx)q <C [ (IVul? + u?) do =
Q

4 rq q rq
_c/ [Vul? u)?dx+0/7u m(1+u)? dr <
14u)? J (I4+u)=z

<C<f{md$> (Q/(1+u)!_‘*qu>2+
+0(/(112)de>2(9/<1+%&>2§

Q

[SIS)

2—q

2 2
SC(/%CZ:E) /1+u2qu> +
Q Q
o) (o)
Q Q
Va2 \? Lo\
SC(/WCZ:B) (/(1+u)2qdac> +
Q Q

1) (2—27‘)<1 e %
</ |u dw) </(1 + u)2-a dx) .
Q Q

We now observe that g* . Hence combining the above estimate with (3.11) the
result follows. O

It is clear that Lemma 3.3 leads to the following existence result.

Theorem 3.4. Suppose that 1 < g < N 7, [ >00nQand f € LY(Q). The problem
(3.1) has a positive solution u € WH4(Q).

4. HIGHER INTEGRABILITY PROPERTY FOR SOLUTIONS OF (1.1)

The method used in the proof of Lemma 2.1 allows only to estimate the norm W14
of a positive solution, where ¢ is the exponent appearing in the equation. In the
case 1 < ¢ < 2, a question arises whether a solution to (1.1) belongs to W19(Q)
with ¢ < g. We distinguish two cases: (i) 1 < ¢ < 5 and (i) 375 < ¢ < 2. In
the case (i) assuming that f € L'(Q2) we show that a solution belongs to W7(Q) or
every ¢ < § < 5. In the case (ii) we show that a solution belongs W19((2) for some
q < @ < 2 under some additional assumption on f. According to Step 1 of the proof of
Theorem 2.2, if f € L>°(Q), then problem (1.1) has a solution u € W12(2) N L>(1Q).
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Lemma 4.1. Suppose that f > 0 on Q, f € L*(Q) and 1 < ¢ < 7 < %

If ue WH2(Q) N L*(Q) is a positive solution of (1.1), then there exist constants
C1,Cy > 0, independent of u and f such that

/u’j* dr < C (/(|Vu‘7 + uq) d:c) <
Q Q
e-aa*
< Cz(/(l +u‘?*)dx>
Q

-m‘a;

% <zf§>a*
I+ Ll s ;

where 7 = NJS,Q:? and §* = —]\vafq.
Proof. As in the proof of Lemma 3.3 we take as a test function ¢(z) = (1 + u)'~".
Since § < N 7, we have 7 > 1. Also 7 < 2 because N > 3. Hence ¢(z) < 1 on € and

upon a substitution we obtain

_ |V“|2 1-7 1-7
(F—1) AT uy de= [ |Vul!l+u)"de+ X [ w(l+u) " de—
Q Q Q (4.1)

—/f(l—l—u)l_?dxg/|Vu|qu+)\/udx.
Q Q Q

Testing (1.1) with a constant function 1 we obtain

/|Vu|q+)\/udx:/fd:v. (4.2)
Q Q Q

By the Sobolev inequality we obtain

( Q/ u? dac)

o

E3

Q

< C/ Vul? + u?) do =

q g q g
_C/ IVl % de +C/u75(1+u)7d <
(1+u)* (1+u)?
Q
< A (14 )™
_C</(1+ w7 dx +u) 7 dz +
Q

(!(Hu)!—qadx) .

M)

col [ )

Q
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Combining the above inequality with (4.1) and (4.2) we obtain

( Q/ u? dx)

’Q;‘-m

SC/(|VU|‘7+U’1) dr <
(/(1+u)q*dx> Ty

<o fre)
ol favaa) T (fuera) <

<o(fa+n” dw)zq (171 + 171278
Q

[N

[NIS]

This yields the desired estimate.

Lemma 4.2. Let f >0 on Q, f € L*=(Q) and % <q<q<?2 Ifue WhH3(Q)n
L°(Q) is a positive solution of (1.1), then

*

/uq* dx < C; (/(|Vu|q+uq) d.%') <
Q Q

m“a‘

[SIR]

< N T
< Col| fll 2 /uq dx /(1+u)2dac ,
Q Q
where C1,Cy > 0 are positive constants independent of uw and f, and 7 = Nji,gjqu),
_ Ng

The proof is similar to that of Lemma 3.1 and is omitted.
These two lemmas yield the following result.
Theorem 4.3. Suppose that f >0 on Q.
(i) If f € LY(Q) and 1 < q < &5, then problem (1.1) has a solution that belongs
to Wh4(Q) for every ¢ < ¢ < .
(ii) If f € L™(Q) with m :7NN7-EQ’ 5 < q < @ < 2, then problem (1.1) has a
solution belonging to WH9(Q).
Higher integrability property can also be established to solutions of problem (3.1).
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