Mohamed Bouzefrane, Mustapha Chellali

ON THE GLOBAL OFFENSIVE ALLIANCE NUMBER OF A TREE

Abstract. For a graph $G = (V,E)$, a set $S \subseteq V$ is a dominating set if every vertex in $V - S$ has at least a neighbor in S. A dominating set S is a global offensive alliance if for every vertex v in $V - S$, at least half of the vertices in its closed neighborhood are in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G, and the global offensive alliance number $\gamma_o(G)$ is the minimum cardinality of a global offensive alliance of G. We first show that every tree of order at least three with ℓ leaves and s support vertices satisfies $\gamma_o(T) \geq (n - \ell + s + 1)/3$ and we characterize extremal trees attaining this lower bound. Then we give a constructive characterization of trees with equal domination and global offensive alliance numbers.

Keywords: global offensive alliance number, domination number, trees.

Mathematics Subject Classification: 05C69.

1. INTRODUCTION

Let $G = (V,E)$ be a finite and simple graph of order n. The open neighborhood of a vertex $v \in V$ is $N_G(v) = N(v) = \{ u \in V \mid uv \in E \}$ and the closed neighborhoods of v is $N_G[v] = N[v] = N(v) \cup \{ v \}$. The degree of v, denoted by $\text{deg}_G(v)$, is the size of its open neighborhood. A vertex of degree one is called a pendant vertex or a leaf and its neighbor is called a support vertex. If v is a support vertex, then L_v will denote the set of the leaves attached at v. We also denote the set of leaves of a graph G by $L(G)$, the set of support vertices by $S(G)$, and let $|L(G)| = \ell$, $|S(G)| = s$. A tree T is a double star if it contains exactly two vertices that are not leaves. A subdivided star SS_q is obtained from a star $K_{1,q}$ by subdividing each edge by exactly one vertex.

For a graph $G = (V,E)$, a set S is a dominating set if every vertex in $V - S$ has at least a neighbor in S. A dominating set S is called a global offensive alliance if for every $v \in V - S$, $|N[v] \cap S| \geq |N[v] - S|$. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set of G, and the global offensive alliance number $\gamma_o(G)$ is the minimum cardinality of a global offensive alliance of G. Clearly for every graph $G,$
\(\gamma_o(G) \geq \gamma(G)\). Every graph has a global offensive alliance, since \(S = V\) is such a set. We abbreviate global offensive alliance as \(\text{goa}\). If \(S\) is a goa of \(G\) and \(|S| = \gamma_o(G)\), then we say that \(S\) is a \(\gamma_o(G)\)-set. Alliances in graphs were introduced by Hedetniemi, Hedetniemi, and Kristiansen in [5]. For the study of offensive alliances we cite for example [1] and [2]. For a comprehensive treatment of domination in graphs, see the monographs by Haynes, Hedetniemi, and Slater [3, 4]. In this paper, we show that every tree of order at least three with \(\ell\) leaves and \(s\) support vertices satisfies \(\gamma_o(T) \geq (n - \ell + s + 1)/3\) and we characterize extremal trees attaining this lower bound. We also give a constructive characterization of trees with equal domination and global offensive alliance numbers.

2. LOWER BOUND

We begin with a couple of observations.

Observation 2.1. If \(G\) is a connected graph of order at least three, then there is a \(\gamma_o(G)\)-set that contains all the support vertices.

Observation 2.2. Let \(T\) be a tree obtained from a nontrivial tree \(T'\) by attaching a star \(K_{1,t}\) of center \(x\) with an edge \(xz\) at a support vertex \(z\) of \(T'\). Then \(\gamma_o(T) = \gamma_o(T') + 1\) and \(\gamma(T) = \gamma(T') + 1\).

Proof. By Observation 2.1 there is a \(\gamma_o(T')\)-set \(D\) that contains all the support vertices. Hence \(x, z \in D\); so \(D - \{x\}\) is a goa of \(T'\) and \(\gamma_o(T') \leq \gamma_o(T) - 1\). Since every \(\gamma_o(T')\)-set can be extended to a goa of \(T\) by adding \(x\), \(\gamma_o(T) \leq \gamma_o(T') + 1\). It follows that \(\gamma_o(T) = \gamma_o(T') + 1\). If \(D'\) is any \(\gamma_o(T')\)-set, then \(D' \cup \{x\}\) is a dominating set of \(T\), implying that \(\gamma(T) \leq \gamma(T') + 1\). The equality comes by the fact that \(x, z\) belong to some \(\gamma(T')\)-set, and such a set minus \(x\) is a dominating set of \(T'\).

Let \(F\) be the family of trees of order at least three that can be obtained from \(r\) disjoint stars by first adding \(r - 1\) edges so that they are incident only with centers of the stars and the resulting graph is connected, and then subdividing each new edge exactly once.

Theorem 2.3. Let \(T\) be a tree of order \(n \geq 3\) with \(\ell\) leaves and \(s\) support vertices. Then \(\gamma_o(T) \geq (n - \ell + s + 1)/3\) with equality if and only if \(T \in F\).

Proof. Let \(T \in F\). Then \(T\) contains \(|S(T)| - 1\) vertices of degree two and the remaining vertices are leaves and support vertices. It follows that \(n = \ell + 2s - 1\) and so \(s = (n - \ell + s + 1)/3\). Now it is clear that every \(\gamma_o(T)\)-set contains at least \(|S(T)|\) vertices and so \(\gamma_o(T) \geq |S(T)|\). The equality follows from the fact that \(S(T)\) is a global offensive alliance of \(T\), implying that \(\gamma_o(T) = |S(T)| = (n - \ell + s + 1)/3\).

To prove that if \(T\) is a tree of order \(n \geq 3\), then \(\gamma_o(T) \geq (n - \ell + s + 1)/3\) with equality only if \(T \in F\), we use an induction on the order \(n\). If \(\text{diam}(T) = 2\), then \(T\) is a star with \(\gamma_o(T) = 1 = (n - \ell + s + 1)/3\) and so \(T \in F\). If \(\text{diam}(T) = 3\), then \(\gamma_o(T) = 2 > (n - \ell + s + 1)/3\). Assume that every tree \(T'\) of order \(n'\), \(3 \leq n' < n\), with \(\ell'\) leaves and \(s'\) support vertices satisfies \(\gamma_o(T') \geq (n' - \ell' + s' + 1)/3\) with equality
On the global offensive alliance number of a tree

if and only if \(T \in \mathcal{F} \). Let \(T \) be a tree of order \(n \) and diameter at least four having \(\ell \) leaves and \(s \) support vertices.

We now root \(T \) at a vertex \(r \) of maximum eccentricity \(\text{diam}(T) \geq 4 \). Let \(u \) be a support vertex at maximum distance from \(r \), \(v \) be the parent of \(u \), and \(w \) be the parent of \(v \) in the rooted tree. Note that \(\text{deg}_\mathcal{F}(w) \geq 2 \) and let \(D \) be a \(\gamma_o(T) \)-set that contains no leaves. Denote by \(T_u \) the subtree induced by a vertex \(x \) and its descendants in the rooted tree \(T \). We distinguish between three cases.

Case 1. \(v \) is a support vertex. Let \(T' = T - L_u \cup \{u\} \). Then \(n' = n - 1 - |L_u| \geq 3 \), \(\ell' = \ell - |L_u| \) and \(s' = s - 1 \). By Observation 2.2, \(\gamma_o(T') = \gamma_o(T) + 1 \) and by induction on \(T' \) we obtain \(\gamma_o(T) > (n - \ell + s + 1)/3 \).

Case 2. \(\text{deg}_\mathcal{F}(v) \geq 3 \) and \(v \) is not a support vertex. Thus every child of \(v \) is a support vertex. Let \(k \) be the number of children of \(v \) and \(B \) the set of leaves in \(T_v \). We first assume that \(\text{deg}_\mathcal{F}(w) \geq 3 \) and let \(T' = T - T_v \). Then \(n' = n - |B| - k - 1 \geq 3 \), \(\ell' = \ell - |B| \) and \(s' = s - k \). Since \(D \) contains all children of \(v \) and does not contain \(v \) (else replace it by \(w \)), \(D \cap V(T') \) is a goa of \(T' \). It follows \(\gamma_o(T') \leq \gamma_o(T) - k \) and by induction on \(T' \) we have

\[
\gamma_o(T) \geq (n' - \ell' + s' + 1)/3 + k \geq (n - \ell + s + 1 + k - 1)/3
\]

and therefore \(\gamma_o(T) > (n - \ell + s + 1)/3 \) since \(k \geq 2 \).

Now assume that \(\text{deg}_\mathcal{F}(w) = 2 \). Let \(T' = T - (T_v - \{v\}) \). Then \(n' = n - |B| - k \geq 3 \), \(\ell' = \ell - |B| + 1 \) and \(s' = s - k + 1 \). Clearly \(D \) contains all children of \(v \) and does not contain \(v \) (else replace it by \(w \)), and \(D \) must contain \(w \) for otherwise \(w \) would have one neighbor in \(D \) and itself and \(v \) not in \(D \). Thus \(D \cap V(T') \) is goa of \(T' \) and hence \(\gamma_o(T') \leq \gamma_o(T) - k \). By induction on \(T' \) we have

\[
\gamma_o(T) \geq (n' - \ell' + s' + 1)/3 + k \geq (n - \ell + s + 1 + k)/3
\]

and therefore \(\gamma_o(T) > (n - \ell + s + 1)/3 \).

Case 3. \(\text{deg}_\mathcal{F}(v) = 2 \). Then \(u, w \in D \) and \(v \notin D \). Assume that \(\text{deg}_\mathcal{F}(w) = 2 \) or \(\text{deg}_\mathcal{F}(v) \geq 3 \) and \(v \) is not a support vertex. Let \(T' = T - L_u \cup \{u\} \). Then \(D \cap V(T') \) is a goa of \(T' \) and so \(\gamma_o(T') \leq \gamma_o(T) - 1 \). Using the induction on \(T' \) and since \(n' = n - 1 - |L_u| \geq 3 \), \(\ell' = \ell - |L_u| + 1 \) and \(s' = s \), we obtain

\[
\gamma_o(T) \geq (n' - \ell' + s' + 1)/3 + 1 \geq (n - \ell + s + 1)/3.
\]

We finally assume that \(\text{deg}_\mathcal{F}(w) \geq 3 \) and \(w \) is a support vertex. Let \(T' = T - L_u \cup \{u, v\} \). Then \(D \cap V(T') \) is a goa of \(T' \), \(n' = n - 2 - |L_u| \geq 3 \), \(\ell' = \ell - |L_u| \) and \(s' = s - 1 \). Hence by induction on \(T' \), we have

\[
\gamma_o(T) \geq \gamma_o(T') + 1 \geq (n' - \ell' + s' + 1)/3 + 1 \geq (n - \ell + s + 1)/3.
\]

Further, if \(\gamma_o(T) \geq (n - \ell + s + 1)/3 \), then we have equality throughout this inequality chain. In particular, \(\gamma_o(T') = (n' - \ell' + s' + 1)/3 \). Thus by the inductive hypothesis on \(T' \), \(T' \in \mathcal{F} \). It follows that \(T \in \mathcal{F} \). \(\square \)
3. TREES T WITH $\gamma_0(T) = \gamma(T)$

Observation 3.1. Let T be a tree obtained from a nontrivial tree T' by attaching a subdivided star SS_k, $k \geq 2$, of center x with an edge edge xy at a vertex y of T'. Then:

(a) $\gamma_0(T') \leq \gamma_0(T) - k$, with equality if y belongs to some $\gamma_0(T')$-set or a strict majority of its closed neighborhood belong to some $\gamma_0(T')$-set.

(b) $\gamma(T) = \gamma(T') + k$.

Proof. (a) By Observation 2.1 there is a $\gamma_0(T)$-set S that contains all support vertices of the added subdivided star. Also we may assume that $x \notin S$ (else replace it by y). Thus $S \cap V(T')$ is a goa of T', and so $\gamma_0(T') \leq \gamma_0(T) - k$. Now if y belongs to some $\gamma_0(T')$-set or a strict majority of its closed neighborhood belong to some $\gamma_0(T')$-set, then such sets can be extended to a goa of T by adding the set of support vertices of SS_k. It follows that $\gamma_0(T) \leq \gamma_0(T') + k$ and the equality holds.

Item (b) is easy to show. □

In order to characterize trees with equal domination and global offensive alliance numbers we define the family F of all trees T that can be obtained from a sequence $T_1, T_2, \ldots, T_k (k \geq 1)$ of trees, where $T_1 = P_2$, $T = T_k$, and, if $k \geq 2$, T_{i+1} is obtained recursively from T_i by one of the four operations defined below. Let one the vertices of T_1 be considered a support and the other a leaf.

— **Operation O_1:** Attach a vertex by joining it to any support vertex of T_1.

— **Operation O_2:** Attach a path $P_3 = xy$ by joining x to any support vertex z of T_1.

— **Operation O_3:** Attach a subdivided star SS_k, $k \geq 2$, of center u by joining u to vertex v of T_1 with the condition that if v does not belong to a $\gamma_0(T_1)$-set D, then a strict majority of $N_{T_1}[v]$ are in D.

— **Operation O_4:** Attach a path $P_3 = xyz$ by joining x to any vertex of T_1 that belongs to a $\gamma_0(T_1)$-set.

Lemma 3.2. If $T \in F$, then $\gamma_0(T) = \gamma(T)$.

Proof. We use induction on the number of operations k performed to construct T. The property is true for $T_1 = P_2$. Suppose the property is true for all trees of F constructed with $k - 1 \geq 0$ operations. Let $T = T_k$ with $k \geq 2$, $T' = T_{k-1}$, and let D be a $\gamma_0(T)$-set that contains no leaf of T. We examine the following cases.

Clearly if T was obtained from T' by Operation O_1, then $\gamma_0(T') = \gamma_0(T)$, $\gamma(T') = \gamma(T)$ and so $\gamma_0(T) = \gamma(T)$.

If T was obtained from T' by Operation O_2, then by Observation 2.2, $\gamma_0(T) = \gamma_0(T') + 1$ and $\gamma(T) = \gamma(T') + 1$. Using the induction on T' it follows that $\gamma_0(T) = \gamma(T)$.

If T was obtained from T' by Operation O_3, then by Observation 3.1 $\gamma_0(T) = \gamma_0(T') + k$ and $\gamma(T) = \gamma(T') + k$. By induction on T', we obtain $\gamma_0(T) = \gamma(T)$.

Finally assume that T was obtained from T' by Operation O_4. Let $w \in V(T')$ be the neighbor of x. Then $y \in D$, and $x \notin D$ (else replace it by w). Thus $D \cap V(T')$ is a goa of T' and we have $\gamma_0(T') \leq \gamma_0(T) - 1$. Now since w belongs to a $\gamma_0(T')$-set,
such a set can be extended to goa of T by adding y; so $\gamma_o(T) \leq \gamma_o(T') + 1$ and the equality follows. Also it can be seen easily that, $\gamma(T) = \gamma(T') + 1$. By induction on T', we obtain the desired result.

Theorem 3.3. Let T be a tree. Then $\gamma_o(T) = \gamma(T)$ if and only if $T = K_1$ or $T \in \mathcal{F}$.

Proof. Clearly if $T = K_1$, then $\gamma_o(T) = \gamma(T)$. If $T \in \mathcal{F}$, then by Lemma 3.2, $\gamma_o(T) = \gamma(T)$. Now to prove the converse we use an induction on the order n of T.

It is obvious that $\gamma_o(K_1) = \gamma(K_1)$. Let us assume that $n \geq 2$. If $n = 2$, then $T = P_2$ and T belongs to \mathcal{F}. If $n = 3$, then $T = P_3$ that belongs to \mathcal{F} since it is obtained from P_2 by using Operation O_1. Assume that every tree T' of order $n' \geq 2$ satisfying $\gamma_o(T') = \gamma(T')$ is in \mathcal{F}.

Let T be a tree of order $n > n'$ such that $\gamma_o(T) = \gamma(T)$. If T is a star $K_{1,t}$, then $\gamma_o(T) = \gamma(T)$ and $T \in \mathcal{F}$ because it is obtained from P_2 by using Operation O_1. If T is a double star, then $\gamma(T) = \gamma(T')$ and $T \in \mathcal{F}$ because it is obtained from P_2 by using Operations O_2 and O_1. Thus we may assume that T has diameter at least four.

If any support vertex, say x, of T is adjacent to two or more leaves, then let T' be the tree obtained from T by removing a leaf adjacent to x. Then $\gamma(T') = \gamma_o(T)$, $\gamma(T') = \gamma(T)$ and so $\gamma_o(T') = \gamma(T')$. By induction on T', we have $T' \in \mathcal{F}$. Thus $T \in \mathcal{F}$ because it is obtained from T' by using Operation O_1. Henceforth, we can assume that every support vertex of T is adjacent to exactly one leaf.

We now root T at a vertex r of maximum eccentricity $\text{diam}(T) \geq 4$. Let v be a support vertex at maximum distance from r, u be the parent of v, and w be the parent of u in the rooted tree. Let v' be the unique leaf adjacent to v. Note that $\text{deg}_T(w) \geq 2$. Let D be a $\gamma_o(T)$-set that contains no leaves. We distinguish between three cases.

Case 1. u is a support vertex. Let $T' = T - \{v, v'\}$. Then by Observation 2.2, $\gamma_o(T) = \gamma_o(T') + 1$ and $\gamma(T) = \gamma(T') + 1$. Thus $\gamma(T') = \gamma(T')$ and by induction on T', we have $T' \in \mathcal{F}$. It follows that $T \in \mathcal{F}$ and is obtained from T' by using Operation O_2.

Case 2. u is not a support vertex but has at least one child besides v as a support vertex. Thus T_u is a subdivided star. Let $T' = T - T_u$. Then by Observation 3.1, $\gamma_o(T') \leq \gamma_o(T) - k$ and $\gamma(T) = \gamma(T') + k$, where k is the number of children of v. Assume now that $\gamma_o(T') < \gamma_o(T) - k$, then

$$\gamma_o(T') < \gamma_o(T) - k = \gamma(T) - k = (\gamma(T') + k) - k = \gamma(T')$$

and so $\gamma_o(T') < \gamma(T')$, a contradiction. Hence $\gamma_o(T') = \gamma_o(T) - k$ and $D' = D \cap V(T')$ is a $\gamma_o(T')$-set. It follows that $\gamma_o(T') = \gamma(T')$. Note that if $w \notin D'$, then since D is a $\gamma_o(T)$-set, $|N_{T'}[w] \cap D'| > |N_{T'}[w] - D'|$. Applying the inductive hypothesis T' belongs to \mathcal{F}, and so $T \in \mathcal{F}$ because it is obtained from T' by using Operation O_3.

Case 3. u has degree two. Let $T' = T - \{v', v, u\}$. It can be seen that $\gamma(T') = \gamma(T) - 1$. Also $v \in D$, $u \notin D$ (else replace it by w), and so $w \in D$. Thus $D \cap V(T')$ is a goa of T' and $\gamma_o(T') \leq \gamma_o(T) - 1$. Now if $\gamma_o(T') < \gamma_o(T) - 1$, then

$$\gamma_o(T') < \gamma_o(T) - 1 = \gamma(T) - 1 = (\gamma(T') + 1) - 1 = \gamma(T')$$
and hence \(\gamma_o(T') < \gamma(T') \), a contradiction. Therefore \(\gamma_o(T') = \gamma_o(T) - 1 \) and so \(D \cap V(T') \) is a \(\gamma_o(T') \)-set containing \(w \). It follows that \(\gamma_o(T') = \gamma(T') \), and by the inductive hypothesis \(T' \in \mathcal{F} \). Thus \(T \in \mathcal{F} \) and is obtained from \(T' \) by using Operation \(O_4 \).

REFERENCES

