Aurelian Cernea

ON AN EVOLUTION INCLUSION IN NON-SEPARABLE BANACH SPACES

Abstract. We consider a Cauchy problem for a class of nonconvex evolution inclusions in non-separable Banach spaces under Filippov-type assumptions. We prove the existence of solutions.

Keywords: Lusin measurable multifunctions, selection, mild solution.

Mathematics Subject Classification: 34A60.

1. INTRODUCTION

In this paper we study differential inclusions of the form

\[x'(t) \in A(t)x(t) + \int_0^t K(t,s)F(s,x(s))ds, \quad x(0) = x_0, \tag{1.1} \]

where \(F : [0,T] \times X \to P(X) \) is a set-valued map, Lipschitzian with respect to the second variable, \(X \) is a Banach space, \(A(t) \) is the infinitesimal generator of a strongly continuous evolution system of a two parameter family \(\{G(t,\tau), t \geq 0, \tau \geq 0\} \) of bounded linear operators of \(X \) into \(X \), \(D = \{(t,s) \in [0,T] \times [0,T]; t \geq s\} \), \(K(.,.) : D \to \mathbb{R} \) is continuous and \(x_0 \in X \).

The existence and qualitative properties of mild solutions of problem (1.1) have been obtained in [1,2–7,13] etc.. Most of the existence results mentioned above are obtained using fixed point techniques. In [9] it is shown that Filippov’s ideas ([11]) can suitably be adapted in order to prove the existence of solutions to problem (1.1). All these approaches are have proved successful the Banach space \(X \) separable.

De Blasi and Pianigiani ([10]) established the existence of mild solutions for semilinear differential inclusions on an arbitrary, not necessarily separable, Banach space \(X \). Even if Filippov’s ideas are still present, the approach in [10] is fundamental different: it consists in the construction of the measurable selections of the multifunction.
This construction does not use classical selection theorems such as Kuratowski and Ryb-Nardzewski’s ([12]) or Bressan and Colombo’s ([8]).

The aim of this paper is to obtain an existence result for problem (1.1) similar to the one in [10]. We will prove the existence of solutions for problem (1.1) in an arbitrary space \(X \) under Filippov-type assumptions on \(F \).

The paper is organized as follows: in Section 2 we present the notations, definitions and preliminary results to be used in the sequel, and in Section 3 we prove the main result.

2. PRELIMINARIES

Consider \(X \), an arbitrary real Banach space with norm \(||.|| \) and with the corresponding metric \(d(.,.) \). Let \(P(X) \) be the space of all bounded nonempty subsets of \(X \) endowed with the Hausdorff pseudometric

\[
d_H(A, B) = \max\{d^*(A, B), d^*(B, A)\}, \quad d^*(A, B) = \sup_{a \in A} d(a, B),
\]

where \(d(x, A) = \inf_{a \in A} |x - a|, \ A \subset X, x \in X \).

Let \(\mathcal{L} \) be the \(\sigma \)-algebra of the (Lebesgue) measurable subsets of \(R \) and, for \(A \in \mathcal{L} \), let \(\mu(A) \) be the Lebesgue measure of \(A \).

Let \(X \) be a Banach space and \(Y \) be a metric space. An open (resp., closed) ball in \(Y \) with center \(y \) and radius \(r \) is denoted by \(B_Y(y, r) \) (resp., \(\overline{B}_Y(y, r) \)). In what follows, \(B = B_X(0, 1) \).

A multifunction \(F : Y \to P(X) \) with closed bounded nonempty values is said to be \(d_H \)-continuous at \(y_0 \in Y \) if for every \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that for any \(y \in B_Y(y_0, r) \) there is \(d_H(F(y), F(y_0)) \leq \varepsilon \). \(F \) is called \(d_H \)-continuous if it is so at each point \(y_0 \in Y \).

Let \(A \in \mathcal{L} \), with \(\mu(A) < \infty \). A multifunction \(F : Y \to P(X) \) with closed bounded nonempty values is said to be \(\text{Lusin measurable} \) if for every \(\varepsilon > 0 \) there exists a compact set \(K_\varepsilon \subset A \), with \(\mu(A \setminus K_\varepsilon) < \varepsilon \) such that \(F \) restricted to \(K_\varepsilon \) is \(d_H \)-continuous.

It is clear that if \(F, G : A \to P(X) \) and \(f : A \to X \) are Lusin measurable, then so are \(F \) restricted to \(B \) (\(B \subset A \) measurable), \(F + G \) and \(t \to d(f(t), F(t)) \). Moreover, the uniform limit of a sequence of Lusin measurable multifunctions is Lusin measurable, too.

Let \(I \) stand for the interval \([0, T]\), \(T > 0 \).

In what follows, \(\{A(t); t \in I\} \) is the infinitesimal generator of a strongly continuous evolution system \(G(t, s), 0 \leq s \leq t \leq T \).

Recall that a family of bounded linear operators \(G(t, s) \) on \(X \), \(0 \leq s \leq t \leq T \) depending on two parameters is said to be a strongly continuous evolution system if the following conditions hold: \(G(s, s) = I \), \(G(t, r)G(r, s) = G(t, s) \) for \(0 \leq s \leq r \leq t \leq T \) and \((t, s) \to G(t, s) \) is strongly continuous for \(0 \leq s \leq t \leq T \), i.e., \(\lim_{t \to s, t > s} G(t, s)x = x \) for all \(x \in X \).
In what follows, we are concerned with the evolution inclusion
\[x'(t) \in A(t)x(t) + \int_0^t K(t,s)F(s,x(s))ds, \quad x(0) = x_0, \tag{2.1} \]

where \(F : I \times X \to \mathcal{P}(X) \) is a set-valued map, \(X \) is a Banach space, \(A(t) \) is the infinitesimal generator of a strongly continuous evolution system of a two parameter family \(\{ G(t,\tau), t \geq 0, \tau \geq 0 \} \) of bounded linear operators of \(X \) into \(X \), \(D = \{(t,s) \in I \times I; t \geq s \} \), \(K(\cdot,\cdot) : D \to \mathbb{R} \) is continuous and \(x_0 \in X \).

A continuous mapping \(x(\cdot) \in C(I,X) \) is called a mild solution of problem (2.1) if there exists a (Bochner) integrable function \(f(\cdot) \in L^1(I,X) \) such that
\[f(t) \in F(t,x(t)) \quad a.e. \ (I), \tag{2.2} \]
\[x(t) = G(t,0)x_0 + \int_0^t G(t,\tau) \int_0^\tau K(\tau,s)f(s)dsd\tau, \quad t \in I. \tag{2.3} \]

In this case, we shall call \((x(\cdot),f(\cdot))\) a trajectory-selection pair of (2.1). We note that condition (2.3) can be rewritten as
\[x(t) = G(t,0)x_0 + \int_0^t U(t,s)f(s)ds, \quad t \in I, \tag{2.4} \]

where \(U(t,s) = \int_s^t G(t,\tau)K(\tau,s)d\tau \).

In what follows, we assume the following hypotheses.

Hypothesis 2.1.

(i) \(\{A(t); t \in I\} \) is the infinitesimal generator of the strongly continuous evolution system \(G(t,s), 0 \leq s \leq t \leq T \).

(ii) \(F(\cdot,\cdot) : I \times X \to \mathcal{P}(X) \) has nonempty closed bounded values and, for any \(x \in X \), \(F(\cdot,x) \) is Lusin measurable on \(I \).

(iii) There exists \(l(\cdot) \in L^1(I,(0,\infty)) \) such that for each \(t \in I \):
\[d_H(F(t,x_1),F(t,x_2)) \leq l(t)|x_1 - x_2|, \quad \forall x_1, x_2 \in X. \]

(iv) There exists \(q(\cdot) \in L^1(I,(0,\infty)) \) such that for each \(t \in I \):
\[F(t,0) \subset q(t)B. \]

(v) \(D = \{(t,s) \in I \times I; t \geq s \} \), \(K(\cdot,\cdot) : D \to \mathbb{R} \) is continuous.

Set \(n(t) = \int_0^t l(u)du, t \in I, M := \sup_{t,s \in I} |G(t,s)| \) and \(M_0 := \sup_{(t,s) \in D} |K(t,s)| \) and note that \(|U(t,s)| \leq MM_0(t-s) \leq MM_0T. \)

The technical results summarized in the following lemma are essential in the proof of our result. For the proof, we refer the reader to [10].
Lemma 2.2 ([10] i)). Let $F_i : I \to \mathcal{P}(X)$, $i=1,2$, be two Lusin measurable multifunctions and let $\varepsilon_i > 0$, $i=1,2$ be such that

\[H(t) := (F_1(t) + \varepsilon_1 B) \cap (F_2(t) + \varepsilon_2 B) \neq \emptyset, \quad \forall t \in I. \]

Then the multifunction $H : I \to \mathcal{P}(X)$ has a Lusin measurable selection $h : I \to X$.

ii) Assume that Hypothesis 2.1 is satisfied. Then for any continuous $x(.) : I \to X$, $u(.) : I \to X$ measurable and any $\varepsilon > 0$ there is:

a) the multifunction $t \to F(t,x(t))$ is Lusin measurable on I,

b) the multifunction $G : I \to \mathcal{P}(X)$ defined by

\[G(t) := (F(t,x(t)) + \varepsilon B) \cap B_X(u(t), d(u(t), F(t,x(t))) + \varepsilon) \]

has a Lusin measurable selection $g : I \to X$.

3. THE MAIN RESULT

We are now ready to prove our main result.

Theorem 3.1. We assume that Hypothesis 2.1 is satisfied. Then, for every $x_0 \in X$, Cauchy problem (1.1) has a mild solution $x(.) \in C(I,X)$.

Proof. Let us first note that if $z(.) : I \to X$ is continuous, then every Lusin measurable selection $u : I \to X$ of the multifunction $t \to F(t,z(t)) + B$ is Bochner integrable on I. More precisely, for any $t \in I$, there holds

\[|u(t)| \leq d_H(F(t,z(t)) + B,0) \leq d_H(F(t,z(t)), F(t,0)) + d_H(F(t,0),0) + 1 \leq l(t)|z(t)| + q(t) + 1. \]

Let $0 < \varepsilon < 1$, $\varepsilon_n = \frac{\varepsilon}{n+1}$. Consider $f_0(.) : I \to X$, an arbitrary Lusin measurable, Bochner integrable function, and define

\[x_0(t) = G(t,0)x_0 + \int_0^t U(t,s)f_0(s)ds, \quad t \in I. \]

Since $x_0(.)$ is continuous, by Lemma 2.2 ii) there exists a Lusin measurable function $f_1(.) : I \to X$ which, for $t \in I$, satisfies

\[f_1(t) \in (F(t,x_0(t)) + \varepsilon_1 B) \cap B(f_0(t), d(f_0(t), F(t,x_0(t))) + \varepsilon_1). \]

Obviously, $f_1(.)$ is Bochner integrable on I. Define $x_1(.) : I \to X$ by

\[x_1(t) = G(t,0)x_0 + \int_0^t U(t,s)f_1(s)ds, \quad t \in I. \]
By induction, we construct a sequence \(x_n : I \to X \), \(n \geq 2 \) given by
\[
x_n(t) = G(t, 0)x_0 + \int_0^t U(t, s)f_n(s)ds, \quad t \in I,
\] (3.1)
where \(f_n(.) : I \to X \) is a Lusin measurable function which, for \(t \in I \), satisfies:
\[
f_n(t) \in (F(t, x_{n-1}(t)) + \varepsilon_n B) \cap B(f_{n-1}(t), d(f_{n-1}(t), F(t, x_{n-1}(t))) + \varepsilon_n). \quad (3.2)
\]

At the same time, as we saw at the beginning of the proof, \(f_n(.) \) is also Bochner integrable.

From (3.2), for \(n \geq 2 \) and \(t \in I \), we obtain
\[
|f_n(t) - f_{n-1}(t)| \leq d(f_{n-1}(t), F(t, x_{n-1}(t))) + \varepsilon_n \leq d(f_{n-1}(t), F(t, x_{n-2}(t))) + d_H(F(t, x_{n-2}(t)), F(t, x_{n-1}(t))) + \varepsilon_n \leq \varepsilon_n - l(t)|x_{n-1}(t) - x_{n-2}(t)| + \varepsilon_n.
\]
Since \(\varepsilon_n - l < \varepsilon_n - \varepsilon_n + \varepsilon_n \), for \(n \geq 2 \), we deduce that
\[
|f_n(t) - f_{n-1}(t)| \leq \varepsilon_n - l(t)|x_{n-1}(t) - x_{n-2}(t)|. \quad (3.3)
\]

Denote \(p_0(t) := d(f_0(t), F(t, x_0(t))) \), \(t \in I \). We next prove by recurrence, that for \(n \geq 2 \) and \(t \in I \):
\[
|x_n(t) - x_{n-1}(t)| \leq \sum_{k=0}^{n-2} \int_0^t \varepsilon_{n-2-k} \frac{(MM_0T)^{k+1}(n(t) - n(u))^k}{k!} \, du + \varepsilon_0 \int_0^t \frac{(MM_0T)^n(n(t) - n(u))^{n-1}}{(n-1)!} \, du + \int_0^t (MM_0T)^n(n(t) - n(u))^{n-1} \, du.
\]
(3.4)

We start with \(n = 2 \). In view of (3.1), (3.2) and (3.3), for \(t \in I \), there is
\[
|x_2(t) - x_1(t)| \leq \int_0^t |U(t, s)| \cdot |f_2(s) - f_1(s)| \, ds \leq MM_0T[\varepsilon_0 + l(t)|x_1(t) - x_0(s)|] \, ds \leq
\]
\[
\leq \varepsilon_0 MM_0T \cdot t + \int_0^t [MM_0Tl(s)] \cdot [U(s, r)|f_1(r) - f_0(r)|] \, dr \, ds \leq
\leq \varepsilon_0 MM_0T \cdot t + \int_0^t [(MM_0T)^2l(s)] \cdot (p_0(u) + \varepsilon_1) \, du \, ds \leq
\leq \varepsilon_0 MM_0T \cdot t + \int_0^t [(MM_0T)^2(p_0(u) + \varepsilon_1)] \, l(s) \, ds \, du =
\]
\[
= \varepsilon_0 MM_0T \cdot t + \int_0^t (MM_0T)^2(n(t) - n(s)) \, p_0(u) + \varepsilon_0 \, ds,
\]
i.e., (3.4) is verified for \(n = 2 \).
Using again (3.3) and (3.4), we conclude:

\[|x_{n+1}(t) - x_n(t)| \leq \int_0^t |U(t, s)| \cdot |f_{n+1}(s) - f_n(s)| ds \leq \]

\[\leq \int_0^t M M_0 T [\varepsilon_{n-1} + L(s)|x_n(s) - x_{n-1}(s)|] ds \leq \varepsilon_{n-1} M M_0 T + \]

\[+ \int_0^t L(s) \sum_{k=0}^{n-2} \int_0^s \varepsilon_{n-2-k} \frac{(M M_0 T)^{k+2}(n(s) - n(u))^k}{k!} du + \]

\[+ \int_0^s \frac{(M M_0 T)^{n+1}(n(s) - n(u))^{n-1}}{(n-1)!} (p_0(u) + \varepsilon_0) du | ds = \]

\[= \varepsilon_{n-1} M M_0 T + \sum_{k=0}^{n-2} \varepsilon_{n-2-k} \int_0^t \int_0^s \frac{(M M_0 T)^{k+2}(n(s) - n(u))^k}{k!} l(s) du ds + \]

\[+ \int_0^t L(s) \int_0^s \frac{(M M_0 T)^{n+1}(n(s) - n(u))^{n-1}}{(n-1)!} l(s) |p_0(u) + \varepsilon_0| du ds = \]

\[= \varepsilon_{n-1} M M_0 T + \sum_{k=0}^{n-2} \varepsilon_{n-2-k} \int_0^t \int_0^u \frac{(M M_0 T)^{k+2}(n(s) - n(u))^k}{k!} l(s) ds du + \]

\[+ \int_0^t (\int_0^u \frac{(M M_0 T)^{n+1}(n(s) - n(u))^{n-1}}{(n-1)!} l(s) ds |p_0(u) + \varepsilon_0| du) = \]

\[= \varepsilon_{n-1} M M_0 T + \sum_{k=0}^{n-2} \varepsilon_{n-2-k} \int_0^t \frac{(M M_0 T)^{k+2}(n(s) - n(u))^{k+1}}{(k+1)!} du + \]

\[+ \int_0^t \frac{(M M_0 T)^{n+1}(n(s) - n(u))^n}{n!} [p_0(u) + \varepsilon_0] du = \]

\[= \sum_{k=0}^{n-1} \varepsilon_{n-k} \int_0^t \frac{(M M_0 T)^{k+1}(n(s) - n(u))^k}{k!} du + \]

\[+ \int_0^t \frac{(M M_0 T)^{n+1}(n(s) - n(u))^n}{n!} [p_0(u) + \varepsilon_0] du, \]

and statement (3.4) it is true for \(n + 1 \).
From (3.4) it follows that for $n \geq 2$ and $t \in I$:
\[
|x_n(t) - x_{n-1}(t)| \leq a_n,
\]
where
\[
a_n = \sum_{k=0}^{n-2} \varepsilon_{n-2-k} \frac{(M'M_0T)^{k+1}n(T)^k}{k!} + \frac{(M'M_0T)^n n(T)^{n-1}}{(n-1)!} \int_0^1 p_0(u)du + \varepsilon_0,
\]

Obviously, the series whose n-th term is a_n converges. So, from (3.5) we infer that $x_n(.)$ converges to a continuous function, $x(.) : I \to X$, uniformly on I.

On the other hand, in view of (3.3) there is
\[
|f_n(t) - f_{n-1}(t)| \leq \varepsilon_{n-2} + l(t)a_{n-1}, \quad t \in I, n \geq 3
\]
which implies that the sequence $f_n(.)$ converges to a Lusin measurable function $f(.) : I \to X$.

Since $x_n(.)$ is bounded and
\[
|f_n(t)| \leq l(t)|x_{n-1}(t)| + q(t) + 1,
\]
we infer that $f(.)$ is also Bochner integrable.

Passing with $n \to \infty$ in (3.1) and using the Lebesgue dominated convergence theorem, we obtain
\[
x(t) = G(t, 0)x_0 + \int_0^t U(t, s)f(s)ds, \quad t \in I.
\]

On the other hand, from (3.2) we get
\[
f_n(t) \in F(t, x_n(t)) + \varepsilon_n B, \quad t \in I, n \geq 1
\]
and letting $n \to \infty$ we obtain
\[
f(t) \in F(t, x(t)), \quad t \in I,
\]
which completes the proof.

Remark 3.2. If $A(t) \equiv A$ and A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators $\{G(t); t \geq 0\}$ from X to X, then problem (1.1) reduces to the problem
\[
x'(t) = Ax(t) + \int_0^t K(t, s)F(s, x(s))ds, \quad x(0) = x_0,
\]
well known ([1,2-7,13] etc.) as an integrodifferential inclusion.

Obviously, a result similar to that of Theorem 3.1 may be obtained for problem (3.6).
REFERENCES

Aurelian Cernea
acernea@fmi.unibuc.ro

University of Bucharest
Faculty of Mathematics and Computer Science
Academiei 14, 010014 Buharest, Romania

Received: October 1, 2008.
Accepted: April 8, 2009.