Joanna Kowynia

BEST APPROXIMATION
IN CHEBYSHEV SUBSPACES OF $L(l_1^n, l_1^n)$

Abstract. Chebyshev subspaces of $L(l_1^n, l_1^n)$ are studied. A construction of a k-dimensional Chebyshev (not interpolating) subspace is given.

Keywords: interpolating subspace, Chebyshev subspace, strongly unique best approximation.

Mathematics Subject Classification: 41A50, 41A52.

1. INTRODUCTION

Let \mathbb{K} be the field of real or complex numbers and let $(X, \| \cdot \|)$ be a normed space over \mathbb{K}. Let $ext S_{X^*}$ denote the set of all extreme points of S_{X^*}, where S_{X^*} is the unit sphere in X^*.

For any $x \in X$, we put

$$E(x) = \{ f \in ext S_{X^*} : f(x) = \| x \| \}$$ (1)

and with any $Y \subset X$ we associate the set

$$P_Y(x) = \{ y \in Y : \| x - y \| = dist(x, Y) \}.$$

Note that, by the Hahn-Banach and Krein-Milman Theorems, $E(x) \not= \emptyset$.

A linear subspace $Y \subset X$ is called a Chebyshev subspace if for any $x \in X$ the set $P_Y(x)$ contains one element only.

If Y is a linear subspace of X, then the following holds

Theorem 1 ([3]). Assume X is a normed space, $Y \subset X$ is its linear subspace, and let $x \in X \setminus Y$. Then $y_0 \in P_Y(x)$ if and only if for every $y \in Y$ there exists $f \in E(x - y_0)$ with $ref(y) \leq 0$.

Let us recall a well-known definition
Definition 1 (see e.g. [7]). An element \(y_0 \in Y\) is called a strongly unique best approximation for \(x \in X\) if and only if there exists \(r > 0\) such that for every \(y \in Y\),
\[
\|x - y\| \geq \|x - y_0\| + r\|y - y_0\|.
\]

The largest constant \(r\) satisfying the above inequality is called the strong unicity constant. There exist two main applications of the strong unicity constant:

1. The error estimate of the Remez algorithm (see e.g. [10]).
2. The Lipschitz continuity of the best approximation mapping at \(x_0\) (assuming that there exists a strongly unique best approximation to \(x_0\)) (see e.g. [5, 8, 9]).

The following holds true:

Theorem 2 ([14]). Let \(x \in X \setminus Y\) and let \(Y\) be a linear subspace of \(X\). Then \(y_0 \in Y\) is a strongly unique best approximation for \(x\) with a constant \(r > 0\) if and only if for every \(y \in Y\) there exists \(f \in E(x - y_0)\) with \(\text{ref}(y) \leq -r\|y\|\).

In this paper, we consider \(X = L(l^n_1, l^n_1)\), \(n > 1\) (the space of all linear and continuous operators from \(l^n_1\) to \(l^n_1\) equipped with the operator norm denoted by \(\| \cdot \|_{op}\)), where
\[
l^n_1 = \left\{ x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n : \|x\| := \sum_{i=1}^{n} |x_i| \right\}.
\]

It is known [11] that for any operator \(A \in L(l^n_1, l^n_1)\):
\[
\|A\|_{op} = \max_{x \in \text{ext}S^n_1} \|Ax\|.
\]

Since (see [1])
\[
\text{ext}S^n_1 = \{ e_i = (\delta_i, \delta_2, \ldots, \delta_n), i = 1, 2, \ldots, n \},
\]
then for any \(A = [a_{ij}]_{i,j=1,2,\ldots,n} \in L(l^n_1, l^n_1)\), we obtain
\[
\|A\|_{op} = \max \left\{ \sum_{i=1}^{n} |a_{i1}|, \ldots, \sum_{i=1}^{n} |a_{in}| \right\}.
\]

The aim of this paper is to show that, for any \(k \leq n\), there exists a \(k\)-dimensional Chebyshev subspace of \(L(l^n_1, l^n_1)\) which is not an interpolating subspace.

This result is quite different from the result obtained for the space \(L(l^n_1, c_0)\) (see [6]), where any finite dimensional Chebyshev subspace is an interpolating subspace. Additionally, as the space \(L(l^n_1, l^n_1)\) is a finite dimensional space, we get (see [13]) that the unicity of best approximation is equivalent to the strong unicity of best approximation.
2. ONE-DIMENSIONAL CHEBYSHEV SUBSPACES OF $\mathcal{L}(l_1^n, l_1^n)$

Let an operator $A \in \mathcal{L}(l_1^n, l_1^n)$ be represented by a matrix $[a_{ij}]_{i,j=1,2,\ldots,n}$. Since (see [4,12])

$$extS_{\mathcal{L}^*}(l_1^n,l_1^n) = extS_{\mathcal{L}^*} \otimes extS_{\mathcal{L}^*},$$

(2)

where

$$l_1^n = \left\{ x = (x_1,x_2,\ldots,x_n) : \|x\| := \max_{i\in\{1,2,\ldots,n\}} |x_i| \right\},$$

we get

$$extS_{\mathcal{L}^*}(l_1^n,l_1^n) = \{ x \otimes e_j : j = 1,2,\ldots,n \},$$

where $e_j = (\delta_{1j}, \delta_{2j},\ldots,\delta_{nj})$, $j = 1,2,\ldots,n$, and $x = (x_1,x_2,\ldots,x_n)$, $x_i \in \{-1,1\}$, $i = 1,2,\ldots,n$. So, for any operator $A \in \mathcal{L}(l_1^n,l_1^n)$ represented by a matrix $[a_{ij}]_{i,j=1,2,\ldots,n}$, there is

$$(x \otimes e_j)(A) = \sum_{i=1}^{n} x_ia_{ij}.$$

Since $E(A) \neq \emptyset$, then by (1) and (2), we get that there exist $x \in l_{1\infty}^n$ and $j \in \{1,2,\ldots,n\}$ such that

$$\|A\|_{\text{op}} = (x \otimes e_j)(A).$$

Let us recall [2] that a k-dimensional subspace \mathcal{V} of the normed space X is called an interpolating subspace if and only if for any linearly independent $f_1,f_2,\ldots,f_k \in extS_{X^*}$ and for any $v \in \mathcal{V}$, the following holds: if $f_i(v) = 0$, $i = 1,2,\ldots,k$, then $v = 0$. It is known [2] that any finite dimensional interpolating subspace is a finite dimensional Chebyshev subspace.

Theorem 3. Let $\mathcal{V} \subset \mathcal{L}(l_1^n,l_1^n)$ be a k-dimensional ($k < n^2$) subspace such that $\mathcal{V} = \text{lin}\{V_1,V_2,\ldots,V_k\}$, $V_m \in \mathcal{L}(l_1^n,l_1^n)$, $m = 1,2,\ldots,k$ and V_1,V_2,\ldots,V_k are linearly independent. For any $m \in \{1,2,\ldots,k\}$, let the operator V_m be represented by the matrix $[(v_{mj})_{j=1,2,\ldots,n}]_{i,j=1,2,\ldots,n}$. Then \mathcal{V} is an interpolating subspace if and only if

$$\begin{vmatrix}
(x^{j_1} \otimes e_{j_1})(V_1) & \cdots & (x^{j_1} \otimes e_{j_1})(V_k) \\
\vdots & \ddots & \vdots \\
(x^{j_k} \otimes e_{j_k})(V_1) & \cdots & (x^{j_k} \otimes e_{j_k})(V_k)
\end{vmatrix} \neq 0,$$

where $(x^{j_l} \otimes e_{j_l})(x^{j_r} \otimes e_{j_r}) \in extS_{\mathcal{L}^*}(l_1^n,l_1^n)$ are linearly independent for $l \neq r$, $l,r \in \{1,2,\ldots,k\}$.

Proof. This is a consequence of (2), the definition of a k-dimensional interpolating subspace and the theory of linear equations.

Example 1. Let $\mathcal{V} \in \mathcal{L}(l_1^n,l_1^n)$ be represented by a matrix $[v_{ij}]_{i,j=1,2,\ldots,n}$, where $v_{1j} = j$, $v_{ij} = 0$, $i = 2,\ldots,n$, $j = 1,2,\ldots,n$. Then $\mathcal{V} = \text{lin}\{V\}$ is a one-dimensional interpolating subspace.
Theorem 4. Let \(\mathcal{V} = \text{lin}\{V\}, \ V \in \mathcal{L}(l_1^n, l_1^n), \) \(n > 1, \ V \neq 0, \ V = [v_{ij}]_{i,j=1,2,\ldots,n}. \) \(\mathcal{V} \) is a Chebyshev subspace of \(\mathcal{L}(l_1^n, l_1^n) \) if and only if \(\mathcal{V} \) is an interpolating subspace.

Proof. Let us assume that \(\mathcal{V} \) is not an interpolating subspace. Hence, there exists \(f = x^{jo} \odot e_{jo}, \) \(j_0 \in \{1, 2, \ldots, n\}, \ x^{jo} = ((x^{jo})_1, (x^{jo})_2, \ldots, (x^{jo})_n), \ (x^{jo})_i \in \{-1, 1\}, \) \(i = 1, 2, \ldots, n, \) such that \(f(V) = 0. \) Let us define \(A = [a_{ij}]_{i,j=1,2,\ldots,n} \) as follows:

\[
a_{ij} = -(x^{jo})_i, \quad a_{ij} = 0, \quad j \neq j_0, \ j \in \{1, 2, \ldots, n\}, \ i = 1, 2, \ldots, n.
\]

Note that \(\|A\| = n. \) Let us consider an operator \(A - \alpha V, \) where \(\alpha \in \mathbb{R}. \) For small enough \(\alpha \) we get \(\|A - \alpha V\| = \|A\|. \) The proof is complete. \(\square \)

3. \(k\)-DIMENSIONAL CHEBYSHEV SUBSPACES OF \(\mathcal{L}(l_1^n, l_1^n) \)

Theorem 5. Let \(\mathcal{V} = \text{lin}\{V_1, V_2, \ldots, V_k\} \subset \mathcal{L}(l_1^n, l_1^n), \) \(k < n^2, \ V_m \in \mathcal{L}(l_1^n, l_1^n) \) (where \(V_m \) are linearly independent for \(m = 1, 2, \ldots, k \)) be a \(k\)-dimensional subspace of \(\mathcal{L}(l_1^n, l_1^n). \) Let \(V_m, \ m \in \{1, 2, \ldots, k\} \) be represented by a matrix \([(v_m)_{ij}]_{i,j=1,2,\ldots,n}. \) If \(\mathcal{V} \) is a Chebyshev subspace, then vectors \(w_1, w_2, \ldots, w_h \) where

\[
\begin{align*}
 w_1 &= (f_1(V_1), \ldots, f_1(V_k)), \\
 w_2 &= (f_2(V_1), \ldots, f_2(V_k)), \\
 &\vdots \\
 w_h &= (f_h(V_1), \ldots, f_h(V_k))
\end{align*}
\]

are linearly independent for any \(f_1, \ldots, f_h \in \text{ext} S_{\mathcal{L}(l_1^n, l_1^n)} \) such that \(f_m = x^{j_m} \odot e_{j_m}, \) \(m = 1, 2, \ldots, h, \ j_m \neq j_r \) for \(m \neq r, \) where \(h = k \) if \(\dim \mathcal{V} = k \leq n, \ h = n \) if \(n < \dim \mathcal{V} = k < n^2. \)

Proof. Let us assume that (3) does not hold. From this assumption there follows that there exist \(f_1, \ldots, f_h \in \text{ext} S_{\mathcal{L}(l_1^n, l_1^n)} \) such that \(f_m = x^{j_m} \odot e_{j_m}, \) \(m = 1, 2, \ldots, h, \) where \(j_m \neq j_r \) for \(m \neq r \) and \(w_1, w_2, \ldots, w_h \) are linearly dependent. Hence, there exists \(l \in \{1, 2, \ldots, h\} \) and there exist \(\gamma_p \in \mathbb{R}, \ p \in \{1, 2, \ldots, h\}, \) such that

\[
(f_1(V_1), \ldots, f_l(V_k)) = \sum_{p \in \{1, 2, \ldots, h\}, \ p \neq l} \gamma_p(f_p(V_1), \ldots, f_p(V_k)).
\]

From (4) we obtain:

\[
f_l(V_m) = \sum_{p \in \{1, 2, \ldots, h\}, \ p \neq l} \gamma_p f_p(V_m), \ m = 1, 2, \ldots, k.
\]

We shall construct an operator \(A \in \mathcal{L}(l_1^n, l_1^n) \) which has more than one best approximation in \(\mathcal{V}. \) Let \([a_{ij}]_{i,j=1,2,\ldots,n} \) be a matrix representation for \(A. \) If in (4), \(\gamma_p < 0 \) for some \(p \in \{1, 2, \ldots, h\}, \) \(p \neq l, \) we put

\[
a_{ijp} = (x^{j_p})_i, \quad i = 1, 2, \ldots, n.
\]
If in (4), \(\gamma_p > 0 \) for some \(p \in \{1, 2, \ldots, h\} \), \(p \neq l \), we put
\[
a_{ijp} = -(x^j)_i, \quad i = 1, 2, \ldots, n.
\]
Additionally, we put
\[
a_{ij} = (x^j)_i, \quad i = 1, 2, \ldots, n.
\]
If \(j \neq j_p, \ j \in \{1, 2, \ldots, n\} \), we put \(a_{ij} = 0 \), \(i = 1, 2, \ldots, n \). Let us consider the operator
\[
A(\alpha_1, \alpha_2, \ldots, \alpha_k) := A - (\alpha_1 V_1 + \alpha_2 V_2 + \ldots + \alpha_k V_k), \quad \text{where} \quad \alpha_1, \alpha_2, \ldots, \alpha_k \in \mathbb{R}.
\]
For \((\alpha_1, \alpha_2, \ldots, \alpha_k) = (0, 0, \ldots, 0) \) there is \(\|A(0, 0, \ldots, 0)\| = \|A\| \). As we have assumed that (3) does not hold, we conclude that there exists \((\alpha_1, \alpha_2, \ldots, \alpha_k) \neq (0, 0, \ldots, 0) \) such that
\[
\|A(\alpha_1, \alpha_2, \ldots, \alpha_k)\| = \|A\|.
\]
For \(\alpha_i \) small enough for \(i = 1, 2, \ldots, k \), the norm of the operator \(A(\alpha_1, \alpha_2, \ldots, \alpha_k) \) is equal to the largest of the following values:
\[
\|A\| - [\alpha_1 f_p(V_1) + \alpha_2 f_p(V_2) + \ldots + \alpha_k f_p(V_k)],
\]
for some \(p \in \{1, 2, \ldots, h\} \), \(p \neq l \) for which \(\gamma_p < 0 \);
\[
\|A\| + [\alpha_1 f_p(V_1) + \alpha_2 f_p(V_2) + \ldots + \alpha_k f_p(V_k)],
\]
for some \(p \in \{1, 2, \ldots, h\} \), \(p \neq l \) for which \(\gamma_p > 0 \); or
\[
\|A\| - [\alpha_1 f_p(V_1) + \alpha_2 f_p(V_2) + \ldots + \alpha_k f_p(V_k)] =
\|A\| - \left[\sum_{p \in \{1, 2, \ldots, h\}, \ p \neq l} \gamma_p (\alpha_1 f_p(V_1) + \ldots + \alpha_k f_p(V_k)) \right]. \tag{5}
\]
From the above, if for some \(\alpha_1^0, \alpha_2^0, \ldots, \alpha_k^0 \) we want to obtain
\[
\|A(\alpha_1^0, \alpha_2^0, \ldots, \alpha_k^0)\| < \|A\|,
\]
we need the inequality
\[
[\alpha_1 f_p(V_1) + \alpha_2 f_p(V_2) + \ldots + \alpha_k f_p(V_k)] > 0
\]
to hold for \(p \in \{1, 2, \ldots, h\} \), \(p \neq l \) for which \(\gamma_p < 0 \), and
\[
[\alpha_1 f_p(V_1) + \alpha_2 f_p(V_2) + \ldots + \alpha_k f_p(V_k)] < 0
\]
for \(p \in \{1, 2, \ldots, h\} \), \(p \neq l \) for which \(\gamma_p > 0 \). But then, by (5), we get
\[
\|A(\alpha_1^0, \alpha_2^0, \ldots, \alpha_k^0)\| > \|A\|.
\]
\(\square \)
Note that (3) is satisfied for any \(k \)-dimensional interpolating subspace. But the condition presented in Theorem 5 is not sufficient for a \(k \)-dimensional subspace \((k \geq 2) \) to be Chebyshev.

Example 2. Let \(V = \text{lin}\{V_1, V_2\} \), where
\[
V_1 = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}, \quad V_2 = \begin{bmatrix} 3 & 1 \\ 0 & 0 \end{bmatrix}.
\]
Note that (3) is satisfied for \(V = \text{lin}\{V_1, V_2\} \). Let
\[
A = \begin{bmatrix} 0 & 0 \\ 100 & 0 \end{bmatrix}.
\]
Then \(\|A\| = 100 \). Let
\[
A(\alpha_1, \alpha_2) := A - (\alpha_1 V_1 + \alpha_2 V_2) = \begin{bmatrix} -\alpha_1 - 3\alpha_2 & -2\alpha_1 - \alpha_2 \\ 100 & 0 \end{bmatrix}.
\]

Hence, for \((\alpha_1, \alpha_2) = (0, 0) \), we get
\[
\|A(\alpha_1, \alpha_2)\| = \|A\| = 100 = \inf_{\alpha_1, \alpha_2 \in \mathbb{R}} \|A(\alpha_1, \alpha_2)\|.
\]

But for \((\alpha_1, \alpha_2) = (3, -1) \) we get \(\|A(\alpha_1, \alpha_2)\| = \|A\| = 100 \).

Now we shall construct a \(k \)-dimensional Chebyshev subspace of \(L(l^n_1, l^n_1) \) which is not an interpolating subspace.

Theorem 6. Let \(V_1, V_2, \ldots, V_k \in L(l^n_1, l^n_1) \), \(k \leq n \), \(n > 1 \) be linearly independent and let \(V_m \), \(m \in \{1, 2, \ldots, k\} \) be represented by a matrix
\[
V_m = \begin{bmatrix}
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0 \\
v_{m1} & v_{m2} & \ldots & v_{mn} \\
0 & 0 & \ldots & 0 \\
0 & 0 & \ldots & 0
\end{bmatrix},
\]
where \(v_{mj} \neq 0 \) for any \(j = 1, 2, \ldots, n \), \(m = 1, 2, \ldots, k \). \(\mathcal{V}(m_1, \ldots, m_r) := \text{lin}\{V_{m_1}, \ldots, V_{m_r}\} \), \(m_1, \ldots, m_r \in \{1, 2, \ldots, k\} \), \(m_p \neq m_q \), \(p \neq q \) is an \(r \)-dimensional Chebyshev subspace of \(L(l^n_1, l^n_1) \) for any \(1 \leq r \leq k \) if and only if
\[
det((x^m)_{l=1,2,\ldots,r} v_{m,j_l})_{m=1,2,\ldots,r, \ l=1,2,\ldots,r} \neq 0. \tag{6}
\]
Proof. Let us assume that (6) holds. If \(r = 1 \), then \(\mathcal{V}(m_1) = \text{lin}\{V_{m_1}\}, m_1 \in \{1,2,\ldots,k\} \) is a Chebyshev subspace, because it is an interpolating subspace. Let us now assume that for \(1 < r < k \) the space
\[
\mathcal{V}_r := \mathcal{V}(m_1, \ldots, m_r) = \text{lin}\{V_{m_1}, \ldots, V_{m_r}\},
\]
\[
m_1, \ldots, m_r \in \{1,2,\ldots,k\}, \; m_p \neq m_q, \; p \neq q
\]
is a Chebyshev subspace of \(\mathcal{L}(l_1^n, l_1^n) \) and let
\[
\mathcal{V}_{r+1} := \mathcal{V}(m_1, \ldots, m_r, m_{r+1}) = \text{lin}\{V_{m_1}, \ldots, V_{m_r}, V_{m_{r+1}}\},
\]
\[
m_1, \ldots, m_r, m_{r+1} \in \{1,2,\ldots,k\}, \; m_{r+1} \in \{1,2,\ldots,k\} \setminus \{m_1, \ldots, m_r\}
\]
be not a Chebyshev subspace. From this we conclude that there exists an operator \(A \in \mathcal{L}(l_1^n, l_1^n) \) such that \(\mathcal{P}_{\mathcal{V}_{r+1}}(A) > 1 \). We can assume that 0, \(W \in \mathcal{P}_{\mathcal{V}_{r+1}}(A) \), where \(W \neq 0 \). Let \(\mathcal{U} := \{j \in \{1,2,\ldots,n\} : \|A \circ e_j\| = \|A\|\} \), where \(e_j = (\delta_{ij}, \ldots, \delta_{nj}) \). For any \(j \in \mathcal{U} \), we put
\[
E_j := \{x = (x_1, x_2, \ldots, x_n) : x_i \in \{-1,1\}, \; i = 1,2,\ldots,n : (x \circ A)j = \|A\|\}.
\]
Since 0, \(W \in \mathcal{P}_{\mathcal{V}_{r+1}}(A) \), we conclude that for \(j \in \mathcal{U} \) and \(x \in E_j \) the following holds
\[
(x \otimes e_j)(W) \geq 0. \tag{7}
\]
Let
\[
\mathcal{U}_1 := \{j \in \mathcal{U} : \exists x \in E_j : (x \otimes e_j)(W) = 0\}.
\]
Since 0 \(\in \mathcal{P}_{\mathcal{V}_{r+1}}(A) \), then \(\mathcal{U}_1 \neq \emptyset \). Now we shall show that
\[
\forall j \in \mathcal{U}_1 \; \exists! x \in E_j : (x \otimes e_j)(W) = 0. \tag{8}
\]
Let us assume that (8) does not hold. Let \(x \neq y, \; x, y \in E_j \) be such that
\[
(x \otimes e_j)(W) = 0, \; (y \otimes e_j)(W) = 0.
\]
Without loss of generality, we may assume that
\[
x_i = y_i, \; i = 1,2,\ldots,p, \; p < r+1, \; x_i = -y_i, \; i = p+1, p+2,\ldots,r+1.
\]
Then we get
\[
\sum_{i=1}^{p} x_i(w)_{ij} = 0, \; \sum_{i=p+1}^{r+1} x_i(w)_{ij} = 0. \tag{9}
\]
Since \(x_i = -y_i, \; i = p+1, p+2,\ldots,r+1 \), we obtain \(a_{ij} = 0, \; i = p+1, \ldots, r+1 \). By (7) there follows:
\[
\sum_{i=p+1}^{r} x_i(w)_{ij} - x_{r+1}(w)_{r+1j} \geq 0,
\]
\[
\sum_{i=p+1}^{r} -x_i(w)_{ij} + x_{r+1}(w)_{r+1j} \geq 0,
\]
and then

\[\sum_{i=p+1}^{r} x_i(w)_{ij} = x_{r+1}(w)_{r+1j}. \]

Applying (9) we conclude that \(x_{r+1}(w)_{r+1j} = 0 \) and then \((w)_{r+1j} = 0 \). Hence \(W \in V_r := \text{lin}\{V_{m_1}, \ldots, V_{m_r}\} \). Additionally, 0 \(\in V_r := \text{lin}\{V_{m_1}, \ldots, V_{m_r}\} \). But \(V_r \) is a Chebyshev subspace and hence (8) is proved. We shall show that there exists \(\alpha_0 > 0 \) such that for any \(0 < \alpha \leq \alpha_0 \) the following holds:

\[E(A - \alpha W) = \{ x \otimes e_j : j \in \mathcal{U}_1, (x \otimes e_j)(W) = 0, (x \otimes e_j)(A) = \|A\| \}. \]

(10)

Let \(f \notin E(A) \). Then there exist \(\alpha_0 > 0, b > 0 \) such that for any \(0 < \alpha \leq \alpha_0 \) the following holds:

\[f(A - \alpha W) \leq b < \|A\| \leq \|A - \alpha W\|. \]

Let \(f \in E(A - \alpha W), \ f(A) = \|A\|. \) If \(f(W) > 0 \), we get

\[\|A - \alpha W\| = f(A - \alpha W) = \|A\| - \alpha f(W) < \|A\|. \]

From the above we conclude that if \(f \in E(A - \alpha W) \), then \(f \in E(A), \ f(W) = 0 \). Since

\[\|A - \alpha W\| = \|A\| = \text{dist}(A, V_{r+1}), \]

(10) is proved. Since \(\alpha W \in \mathcal{P}_{V_{r+1}}(A) \) we obtain (see [13]):

\[\exists 1 \leq q \leq r + 2, \ \exists \lambda_1, \ldots, \lambda_q > 0, \ \sum_{i=1}^{q} \lambda_i = 1, \]

such that

\[\sum_{i=1}^{q} \lambda_i (x^{j_i} \otimes e_{j_i})|_{V_{r+1}} = 0, \]

(11)

and \((x^{j_i} \otimes e_{j_i})(A - \alpha W) = \|A - \alpha W\|. \) By (8) we get \(j_i \neq j_l, \ i \neq l, \ i, l \in \{1, 2, \ldots, q\} \). Let us take the least \(q \) such that \(1 \leq q \leq r + 2 \) and (11) is satisfied. If \(q = r + 2 \), then (see [15]) we get that \(\alpha W \) is a strongly unique best approximation for \(A \) in \(V_{r+1} \). If \(1 \leq q \leq r + 1 \), we have a contradiction with (6).

Let us assume that \(V_r = \text{lin}\{V_{m_1}, \ldots, V_{m_r}\}, m_1, \ldots, m_r \in \{1, 2, \ldots, k\}, m_p \neq m_q, \ p \neq q \) is a Chebyshev subspace of \(L(l_1^n, l_1^n) \) for any \(1 \leq r \leq k \) and let (6) does not hold. Hence, there exist

\[1 \leq r \leq k, \ i_1, \ldots, i_r, \ j_1, \ldots, j_r \in \{1, 2, \ldots, n\}, \ x^1, x^2, \ldots, x^r \in \{-1, 1\}^n \]

such that

\[\det([x^m]_{m=1}^{l} |_{i_1, j_1})_{m=1, 2, \ldots, r, l=1, 2, \ldots, r} = 0. \]

From this we conclude that there exist

\[\lambda_1, \ldots, \lambda_r \in \mathbb{R}, \ \sum_{l=1}^{r} | \lambda_l | > 0. \]
such that
\[\sum_{i=1}^{r} \lambda_i (x^i \otimes e_{j_i})|_{\mathcal{V}_r} = 0. \] (12)

Without loss of generality, we may assume that \(\lambda_i > 0 \), \(l = 1, 2, \ldots, r \). Let us now define an operator \(B = [b_{ij}]_{i,j=1,2,\ldots,n} \) as follows:
\[b_{ij} = \text{sgn}(x^i)_1, \quad b_{ij} = 0, \quad j \neq j_i, \quad l \in \{1, 2, \ldots, r\}, \quad i \in \{1, 2, \ldots, n\}. \]
Then \((x^i \otimes e_{j_i})(B) = \|B\|, \quad l = 1, 2, \ldots, r \). By (12), there follows that \(0 \in \mathcal{P}_{\mathcal{V}_r}(B) \) and
\[\dim \text{span}\{x^i \otimes e_{j_i}|_{\mathcal{V}_r}\} < r, \]
where \(\dim \mathcal{V}_r = r \). It means that there exists \(V \in \mathcal{V}_r \setminus \{0\} \) such that
\[(x^i \otimes e_{j_i})(V) = 0, \quad l = 1, 2, \ldots, r. \]
Note that if \(f \notin E(B) \), then there exist \(\alpha_0 > 0 \), \(b > 0 \) such that for any \(\alpha \in (0, \alpha_0) \):
\[f(B - \alpha V) < \|B - \alpha V\|. \]

From the above we conclude that \(\|B - \alpha V\| = \|B\| \).

Corollary 1. Let \(\mathcal{V} \subset \mathcal{L}(l^1_1, l^1_n) \) be a \(k \)-dimensional subspace from Theorem 6. Any operator \(A \in \mathcal{L}(l^1_n, l^1_n) \) has a unique best approximation in \(\mathcal{V} \) if and only if \(A \) has a strongly unique best approximation in \(\mathcal{V} \).

Proof. It is a consequence of [13] and the fact that \(\mathcal{L}(l^1_n, l^1_n) \) is a finite dimensional space.

Example 3. We shall construct a \(k \)-dimensional Chebyshev subspace \(\mathcal{V} \subset \mathcal{L}(l^1_1, l^1_n) \), \(k \leq n \). The construction is as follows. Let \(0 < t_1 < t_2 < \ldots < t_{k-1} \). We put \(V_m = [(v_m)_{ij}]_{i,j=1,2,\ldots,n} , \quad m = 1, 2, \ldots, k - 1 \) as follows:
\[(v_m)_{mj} = t^m_j, \quad j = 1, 2, \ldots, n, \]
\[(v_m)_{ij} = 0, \quad i \neq m, \quad j = 1, 2, \ldots, n. \]
Let us assume that the subspace \(\mathcal{V}_{k-1} := \text{lin}\{V_1, V_2, \ldots, V_{k-1}\} \) satisfies formula (6) for any \(1 \leq r \leq k - 1 \). We shall construct an operator \(V_k \in \mathcal{L}(l^1_n, l^1_n) \) such that \(V_k := \text{lin}\{V_1, V_2, \ldots, V_{k-1}, V_k\} \) satisfies formula (6) for any \(1 \leq r \leq k \), which means that \(\mathcal{V}_k := \text{lin}\{V_1, V_2, \ldots, V_{k-1}, V_k\} \) is a Chebyshev subspace of \(\mathcal{L}(l^1_1, l^1_n) \). We are looking for such \(x \in \mathbb{R} \) that, for any \(r \in \{1, 2, \ldots, k\} \), there holds:
\[W(x, y^1, \ldots, y^r, j_1, \ldots, j_r, m_1, \ldots, m_{r-1}) := \begin{vmatrix} y^1_{j_1m_1} & \cdots & y^1_{j_1m_1} \\ \vdots & \ddots & \vdots \\ y^r_{j_rm_{r-1}} & \cdots & y^r_{j_rm_{r-1}} \\ y^r_{r,x^{j_1}} & \cdots & y^r_{r,x^{j_r}} \end{vmatrix} \neq 0, \]
(13)
for any $j_1, j_2, \ldots, j_r \in \{1, 2, \ldots, n\}$, $y_1, \ldots, y_r \in \{-1, 1\}^r$, $m_1, m_2, \ldots, m_{r-1} \in \{1, 2, \ldots, k-1\}$.

By the assumption, $W(x, y_1, \ldots, y_r, j_1, \ldots, j_r, m_1, \ldots, m_{r-1})$ is not identically equal to zero. Hence, the set of roots of $W(x, y_1, \ldots, y_r, j_1, \ldots, j_r, m_1, \ldots, m_{r-1})$ is finite for arbitrary fixed $y_1, \ldots, y_r, j_1, \ldots, j_r, m_1, \ldots, m_{r-1}$. Hence, the set of roots of $W(x, y_1, \ldots, y_r, j_1, \ldots, j_r, m_1, \ldots, m_{r-1})$, $y_1, \ldots, y_r, j_1, \ldots, j_r, m_1, \ldots, m_{r-1}$ is countable. But \mathbb{R} is not countable, so there exists $x \in \mathbb{R}$ which satisfies (13).

Acknowledgements
The author wishes to thank Professor Lewicki for his remarks and suggestions concerning this paper.
Research was supported by AGH grant No. 10.420.03.

REFERENCES
Best approximation in Chebyshev subspaces of $L(l^n_1, l^n_1)$

Joanna Kowynia
kowynia@wms.mat.agh.edu.pl

AGH University of Science and Technology
Faculty of Applied Mathematics
al. Mickiewicza 30, 30-059 Cracow, Poland

Received: January 25, 2008.
Revised: April 22, 2008.
Accepted: April 25, 2008.