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Abstract. A hierarchy of Lax-type flows on a dual space to the centrally extended Lie
algebra of integral-differential operators with matrix-valued coefficients is considered. By
means of a specially constructed Backlund transformation the Hamiltonian representations
for these flows coupled with suitable eigenfunctions and adjoint eigenfunctions evolutions of
associated spectral problems are obtained. The Hamiltonian description of the corresponding
set of additional symmetry hierarchies is represented. The relation of these hierarchies with
Lax integrable (3+1)-dimensional nonlinear dynamical systems and their triple Lax-type
linearizations is analysed.
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1. INTRODUCTION

For the first time Lax representations [8] for integrable (1+1)-dimensional nonlinear
dynamical system hierarchies [4, 13, 18] on functional manifolds were interpreted as
Hamiltonian flows on a dual space to the Lie algebra of integral-differential opera-
tors in [1]. An algebraic method for constructing Lax integrable (2+1)-dimensional
nonlinear dynamical systems by means of two commuting flows from the hierarchy
on the suitable coadjoint action orbit of an integral-differential operator with an
infinite integral part was proposed in [5, 27]. The relation of some Lax integrable
(1+1)- and (2+1)-dimensional systems with corresponding hierarchies of Hamiltonian
flows on dual spaces to centrally extended by means of the standard Maurer-Cartan
two-cocycle Lie algebras was intensively investigated in [6, 19,22,23].

Every Hamiltonian flow of such a type on a dual space either to the operator
Lie algebra or to its central extension can be written as a compatibility condition of
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the spectral relationship for the corresponding integral-differential operator and the
suitable eigenfunction evolution. If the above spectral relationship admits a finite set
of eigenvalues, an important problem of finding the Hamiltonian representation for
the Lax-type hierarchy coupled with the evolutions of eigenfunctions and appropriate
adjoint eigenfunctions naturally arises. It was partly solved in the papers [7, 16, 17,
20,25] for the Lie algebra of integral-differential operators and its supergeneralization
by means of the variational Casimir functionals property under some Lie-Backlund
transformation.

Section 2 deals with a general Lie-algebraic scheme for constructing a hierarchy
of Lax-type integrable flows as Hamiltonian ones on a dual space to the centrally
extended Lie algebra of integral-differential operators with matrix-valued coefficients.

In section 3 the Hamiltonian structure for the related coupled Lax-type hierarchy is
obtained by means of the Backlund transfrmation technique developed in [7,17,20,25].

In section 4 the corresponding hierarchies of additional or so called “ghost” sym-
metries [2, 7, 12] for the coupled Lax-type flows are stated to be Hamiltonian too.
It is established that the additional hierarchy of Hamiltonian flows is generated by
the Poisson structure being equal to the tensor product of the R-deformed canonical
Lie-Poisson bracket [4,14,17,20,25,28] and the standard Poisson bracket on the related
eigenfuction and adjoint eigenfunction space [3,17,20,25], and the corresponding nat-
ural powers of a suitable eigenvalue are their Hamiltonian functions. The method for
introducing another independent variable into (2+1)-dimensional nonlinear dynamical
systems by use of the additional symmetries, which preserves their Lax integrability,
is proposed and an integrable (3 + 1)-dimensional analog of the Davey-Stewartson
system [26,29] is constructed.

2. THE LIE-ALGEBRAIC STRUCTURE OF LAX-TYPE INTEGRABLE
(2+1)-DIMENSIONAL DYNAMICAL SYSTEMS

Let G̃ := C∞(S × S;G) be a Lie algebra of smooth mappings taking values in a
semi-simple matrix Lie algebra G. By means of G̃ one constructs a Lie algebra Ĝ of
matrix integral-differential operators:

a := ξm +
∑
j<m

ajξ
j ,

where aj ∈ G̃, j < m, j ∈ Z, m ∈ N, the symbol ξ := ∂/∂x denotes the differentiation
with respect to the independent variable x ∈ R/2πZ ' S. The Lie structure in Ĝ is
defined as

[a, b] := a ◦ b− b ◦ a

for all a, b ∈ Ĝ, where “◦” is the composition of integral-differential operators taking
the form:

a ◦ b :=
∑

α∈Z+

1
α!

∂αa

∂ξα

∂αb

∂xα
.
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On the Lie algebra Ĝ there exists the ad-invariant nondegerated symmetric bilinear
form:

(a, b) :=
∫ 2π

0

∫ 2π

0

Tr (a ◦ b) dxdy, (1)

where Tr-operation for all a ∈ Ĝ is given by the expression:

Tr a := resξ tr a = tr a−1,

and tr is the matrix trace. With use of scalar product (1) the Lie algebra Ĝ is
transformed into a metrizable one. As a consequence, its dual linear space of matrix
integral-differential operators Ĝ∗ is identified with the Lie algebra, that is, Ĝ∗ ' Ĝ.

The linear subspaces Ĝ+ ⊂ Ĝ and Ĝ− ⊂ Ĝ such that

Ĝ+ :=

a := ξn(â) +
n(â)−1∑

j=0

ajξ
j : aj ∈ G̃, j = 0, n(â)

 ,

Ĝ− :=

b :=
∞∑

j=0

ξ−(j+1)bj : bj ∈ G̃, j ∈ Z+

 ,

(2)

are Lie subalgebras in Ĝ and Ĝ = Ĝ+ ⊕ Ĝ−. Owing to splitting Ĝ into the direct sum
of its Lie subalgebras (2), one can construct a Lie-Poisson structure on Ĝ∗ by use of
the special linear endomorphism R of Ĝ [4, 14,28]:

R := (P+ − P−)/2, P±Ĝ := Ĝ±, P±Ĝ∓ = 0.

The central extended Lie commutator on Ĝc := Ĝ ⊕ C is given as [6, 19,23]:

[(a, α), (b, β)] := ([a, b], ω(â, b̂)), (3)

where α, β ∈ C, being generated by means of the standard Maurer-Cartan two-cocycle
on Ĝ:

ω(a, b) := (a, [∂/∂y, b]),

where ∂/∂y is the differentiation with respect to the independent variable y ∈ S and
[∂/∂y, b] := ∂b/∂y. Commutator (3) can be deformed by means of the endomorphism
R of Ĝ defined above:

[(a, α), (b, β)]R := ([a, b]R, ωR(a, b)), (4)

where the R-commutator takes the form:

[a, b]R := [Ra, b] + [a,Rb],

and the R-deformed two-cocycle is determined in the following way:

ω(a, b)R := ω(Ra, b) + ω(a,Rb) .
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For any Frechet smooth functionals γ, µ ∈ D(Ĝ∗c ) the Lie-Poisson bracket on Ĝ∗c related
with commutator (4) and the extended scalar product:

((a, α), (b, β)) := (a, b) + αβ,

where a, b ∈ Ĝ and α, β ∈ C, is given as

{γ, µ}R (l) = (l, [∇γ(l),∇µ(l)]R) + cωR(∇γ(l),∇µ(l)), (5)

where l ∈ Ĝ∗ and c ∈ C. Based on scalar product (1) the gradient ∇γ(l) ∈ Ĝ of some
functional γ ∈ D(Ĝ∗c ) at the point l ∈ Ĝ∗ is naturally defined as

δγ(l) := (∇γ(l), δl) .

Construct now the Casimir functionals γn ∈ I(Ĝ∗c ), n ∈ N, as

γn(l) :=
∫ 2π

0

∫ 2π

0

Tr (ξn l̂0)dxdy, (6)

being invariant with respect to Ad∗-action of the corresponding to Ĝ∗c abstract Lie
group Ĝc and satisfying the following condition [22]

(l − c∂/∂y) ◦ Φ = Φ ◦ (l0 − c∂/∂y) (7)

at a point l ∈ Ĝ∗. In (7)
l̂0 := ξm +

∑
j<m

cjξ
j ∈ Ĝ∗,

where cj ∈ G̃, [ξ, cj ] = 0, j < m, j ∈ Z and m ∈ N,

Φ = 1 +
∑
r>0

Φrξ
−r ∈ G−,

where Φr ∈ G̃, r ∈ N, and G− means the suitable abstract Lie group [5, 6, 22],
generated by the Lie subalgebra Ĝ−. As in [22] one can show that condition (7) is
equivalent to the following relationship

[l − c∂/∂y,∇γn(l)] = 0, (8)

for all n ∈ N. In the case of c = 0 the Casimir functionals take Adler’s form [1,17].
Lie-Poisson bracket (5) generates the hierarchy of Hamiltonian dynamical systems

on Ĝ∗c with Casimir functionals γn ∈ I(G∗c ), n ∈ N, as Hamiltonian functions taking
the form:

dl̂/dtn := [R∇γn(l), l − c∂/∂y] = [(∇γn(l))+, l − c∂/∂y] . (9)

where the subscript “+” denotes a differential part of the corresponding integral-diffe-
rential operator. The latter equation is equivalent to the usual commutator Lax-type
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representation. It is easy to verify that for every n ∈ N the above relationship is the
compatibility condition of the following system of linear integral-differential equations:

(l − c∂/∂y)f = λf, (10)

and
df/dtn = (∇γn(l))+f, (11)

where λ ∈ C is a spectral parameter, f ∈ W := W (S × S;H) and H is a matrix
representation space of the Lie algebra G. The dynamical system related to (11) on
the adjoint function space W ∗ := W ∗(S× S;H) takes the form:

df∗/dtn = −(∇γn(l))∗+f∗, (12)

where f∗ ∈ W ∗ is a solution of the adjoint spectral relationship

(l∗ + c∂/∂y)f∗ = νf∗, (13)

with a spectral parameter ν ∈ C.
Further we shall assume that spectral relationship (10) admits N ∈ N different

eigenvalues λi ∈ C, i = 1, N , and study algebraic properties of equation (9) combined
with N ∈ N copies of (11):

dfi/dtn = (∇γn(l̂))+fi, (14)

for the corresponding eigenfunctions fi ∈ W (S×S;H), i = 1, N , and the same number
of copies of (12):

df∗i /dtn = −(∇γn(l̂))∗+f∗i , (15)

for the suitable adjoint eigenfunctions f∗i ∈ W ∗(S × S;H) related with N different
eigenvalues νi ∈ C, i = 1, N of (13), being considered as a coupled evolution system
on the space Ĝ∗c ⊕ WN ⊕ W ∗N . The same problem has been studied for c = 0 and
N = 1 before in the papers [16,17].

3. THE POISSON BRACKET ON THE EXTENDED PHASE SPACE

To compactify the description below we shall use the following notation of the gradient
vector:

∇γ(l̃, f̃, f̃∗) := (δγ/δl̃, δγ/δf̃, δγ/δf̃∗)>,

where f̃ := (f̃1, . . . , f̃N ), f̃∗ := (f̃∗1 , . . . , f̃∗N ) and δγ/δf̃ := (δγ/δf̃1, . . . , δγ/δf̃N ),
δγ/δf̃∗ := (δγ/δf∗1 , . . . , δγ/δf̃∗N ), at a point (l̃, f̃, f∗)> ∈ Ĝ∗ ⊕ WN ⊕ W ∗N for any
smooth functional γ ∈ D(Ĝ∗c ⊕WN ⊕W ∗N ).

On the spaces Ĝ∗c and WN ⊕W ∗N there exist canonical Poisson structures in the
forms

δγ/δl̃ : θ̃→ [l̃ − c∂/∂y, (δγ/δl̃)+]− [l̃ − c∂/∂y, δγ/δl̃]+, (16)
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where θ̃ : T ∗(Ĝ∗c ) → T (Ĝ∗c ) is an implectic operator corresponding to (5) at a point
l̃ ∈ Ĝ∗ and

(δγ/δf̃, δγ/δf̃∗)> : J̃→ (−δγ/δf̃∗, δγ/δf̃)>, (17)

where J̃ : T ∗(WN⊕W ∗N ) → T (WN⊕W ∗N ) is an implectic operator corresponding to
the symplectic form ω(2) =

∑N
i=1 df̃∗i ∧ df̃i at a point (̃f, f̃∗) ∈ WN ⊕W ∗N . It should

be noted here that Poisson structure (16) generates equation (9) for any Casimir
functional γ ∈ I(Ĝ∗c ).

Thus, on the extended phase space Ĝ∗c ⊕ WN ⊕ W ∗N one can obtain a Poisson
structure as the tensor product Θ̃ := θ̃ ⊗ J̃ of (16) and (17).

Consider the following Backlund transformation:

(l̃, f̃, f̃∗)> : B→ (l(l̃, f̃, f̃∗), f = f̃, f∗ = f̃∗)>, (18)

generating some Poisson structure Θ : T ∗(Ĝ∗c ⊕WN ⊕W ∗N ) → T (Ĝ∗c ⊕WN ⊕W ∗N )
on Ĝ∗c ⊕WN ⊕W ∗N . The main condition imposed on mapping (18) is the coincidence
of the resulting dynamical system

(dl/dtn, df/dtn, df∗/dtn)> := −Θ∇γn(l, f, f∗) (19)

with equations (9), (14) and (15) in the case of γn ∈ I(Ĝ∗c ), n ∈ N, independent of
variables (f, f∗) ∈ WN ⊕W ∗N .

To satisfy that condition we shall find a variation of a Casimir functional γn :=
γn|l=l(l̃,f,f∗) ∈ D(Ĝ∗c ⊕WN ⊕W ∗N ), n ∈ N, under the constraint δl̃ = 0, taking into
account evolutions (14), (15) and Backlund transformation definition (18). There
follows

δγn(l̃, f̃, f̃∗)
∣∣∣
δl̃=0

=
N∑

i=1

(
〈δγn/δf̃i, δf̃i〉+ 〈δγn/δf̃∗i , δf̃∗i 〉

)
=

=
N∑

i=1

(
〈−df̃∗i /dtn, δf̃i〉+ 〈df̃i/dtn, δf̃∗i 〉

)∣∣∣
f̃=f, f̃∗=f∗

=

=
N∑

i=1

(
〈(δγn/δl)∗+f∗i , δfi〉+ 〈(δγn/δl)+fi, δf

∗
i 〉
)

=

=
N∑

i=1

(〈f∗i , (δγn/δl)+δfi〉+ 〈(δγn/δl)+fi, δf
∗
i 〉) =

=
N∑

i=1

(
(δγn/δl, (δfi)ξ−1 ⊗ f∗i ) + (δγn/δl, fiξ

−1 ⊗ δf∗i )
)

=

=

(
δγn/δl, δ

N∑
i=1

fiξ
−1 ⊗ f∗i

)
:= (δγn/δl, δl),

(20)

where γn ∈ I(Ĝ∗c ), n ∈ N and the brackets 〈., .〉 denote the paring of the spaces W ∗

and W .
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As a result of expression (20) one obtains the relationship:

δl|δl̃=0 =
N∑

i=1

δ(fiξ
−1 ⊗ f∗i ). (21)

If the linear dependence of l on l̃ ∈ Ĝ∗ are chosen, there directly follows from (21)
that

l = l̃ +
N∑

i=1

fiξ
−1 ⊗ f∗i . (22)

Thus, Backlund transformation (18) can be written as

(l̃, f̃, f̃∗)> : B→ (l = l̃ +
N∑

i=1

fiξ
−1 ⊗ f∗i , f, f∗)> . (23)

Expression (23) generalizes results obtained both for the scalar Lie algebra of
integral-differential operators in [20] and for the matrix one in [17]. The existence of
Backlund transformation (23) enables the following theorem to be proved.

Theorem 1. Dynamical system (19) on Ĝ∗c⊕WN⊕W ∗N is equivalent to the following
system of evolution equations:

dl̃/dtn = [(∇γn(l̃))+, l̃]− [∇γn(l̃), l̃]+,

df̃/dtn = δγn/δf̃∗, df̃∗/dtn = −δγn/δf̃,

where γn := γn|l=l(l̃,f,f∗) ∈ D(Ĝ∗c⊕WN⊕W ∗N ) and γn ∈ I(Ĝ∗c ) is a Casimir functional
at a point l ∈ G∗ for every n ∈ N, under Backlund transformation (23).

Now by means of simple calculations via the formula:

Θ = B
′
Θ̃B

′∗,

where B
′
: T (Ĝ∗c ⊕WN ⊕W ∗N ) → T (Ĝ∗c ⊕WN ⊕W ∗N ) is a Frechet derivative of (23),

one easily finds the following form of the Backlund transformed Poisson structure Θ
on Ĝ∗c ⊕WN ⊕W ∗N :

∇γ(l, f, f∗) : Θ→


[l − c∂/∂y, (δγ/δl)+]− [l − c∂/∂y, δγ/δl]+ +∑N

i=1(fiξ
−1 ⊗ (δγ/δfi)− (δγ/δf∗i )ξ−1 ⊗ f∗i )
−δγ/δf∗ − (δγ/δl)+f
δγ/δf + (δγ/δl)∗+f∗

 , (24)

where γ ∈ D(Ĝ∗c ⊕WN ⊕W ∗N ) is an arbitrary smooth functional. Thereby, one can
formulate the following theorem.

Theorem 2. The hierarchy of dynamical systems (9), (14) and (15) is Hamiltonian
with respect to the Poisson structure Θ as in (24) and the functionals γn := γn ∈
I(Ĝ∗c ), n ∈ N being Casimir invariants on Ĝ∗c .
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Based on expression (19) one can construct a new hierarchy of Hamiltonian
evolution equations describing commutative flows generated by Casimir invariants
γn ∈ I(Ĝ∗c ), n ∈ N, involutive with respect to Poisson bracket (5) on the extended
phase space Ĝ∗c ⊕WN ⊕W ∗N .

4. THE HIERARCHIES OF ADDITIONAL SYMMETRIES

Hierarchy (9), (14) and (15) of evolution equations possesses another natural set of
invariants including all higher powers of the eigenvalues λk, k = 1, N . They can be
considered as Frechet smooth functionals on the extended phase space Ĝ∗c ⊕ WN ⊕
W ∗N , owing to the evident representation:

λs
k = 〈f∗k , (l − c∂/∂y)sfk〉, (25)

where s ∈ N, holding under the normalizing constraints

〈f∗k , fk〉 = 1 .

In the case of Backlund transformation (22), where

l := l+ +
N∑

i=1

fiξ
−1 ⊗ f∗i (26)

formula (25) gives rise to the following variation of the functionals λs
k ∈ D(Ĝ∗c ⊕WN⊕

W ∗N ), k = 1, N :

δλs
k = 〈δf∗k , (l − c∂/∂y)sfk〉+

+ 〈f∗k , (δ(l − c∂/∂y)s)fk〉+ 〈f∗k , (l − c∂/∂y)s(δfk)〉 =

= (Ms
k , δl+) +

N∑
i=1

〈(−Ms
k + δi

k(l − c∂/∂y)s)∗f∗i , δfi〉+

+
N∑

i=1

〈(−Ms
k + δi

k(l − c∂/∂y)s)fi, δf
∗
i 〉,

where δi
k is the Kronecker symbol and the operators Ms

k , s ∈ N, are defined as follows:

Ms
k :=

s−1∑
p=0

((l − c∂/∂y)pfk)ξ−1 ⊗ ((l∗ + c∂/∂y)s−1−pf∗k ) .

Thus, one obtains the exact forms of gradients for the functionals λs
k ∈ D(Ĝ∗c ⊕WN ⊕

W ∗N ), k = 1, N :

∇λs
k(l+, f, f∗) = (Ms

k , (−Ms
k + δi

k(l − c∂/∂y)s)∗f∗i ,

(−Ms
k + δi

k(l − c∂/∂y)s)fi : i = 1, N)>.
(27)
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By means of expressions (27), (16) and (17) one finds a new hierarchy of coupled
evolution equations on Ĝ∗c ⊕WN ⊕W ∗N :

dl+/dτs,k = −[Ms
k , l+ − c∂/∂y]+ , (28)

dfi/dτs,k = (−Ms
k + δi

k(l − c∂/∂y)s)fi, (29)

df∗i /dτs,k = (Ms
k − δi

k(l − c∂/∂y)s)∗f∗i , (30)

where i = 1, N and τs,k ∈ R, s ∈ N, k = 1, N , are evolution parameters. Owing
to Backlund transformation (26), equation (28) can be rewritten in the following
equivalent commutator form:

dl/dτs,k = −[Ms
k , l − c∂/∂y] =

= −λp
kνs−1−p

k [M1
k , l − c∂/∂y] = λp

kνs−1−p
k dl/dτ1,k,

(31)

where p = 0, s− 1. Thereby, one can formulate the following theorem.

Theorem 3. For k = 1, N and s ∈ N dynamical systems (31), (29) and (30) are
Hamiltonian with respect to the Poisson structure Θ as in (24) and the invariant
functionals γs := λs

k ∈ D(Ĝ∗c ⊕WN ⊕W ∗N ).

Theorem 4. Dynamical systems (31), (29) and (30) describe flows on Ĝ∗c ⊕WN ⊕
W ∗N commuting both with each other and with the hierarchy of Lax-type dynamical
systems (9), (14) and (15).

Proof. To prove the latter theorem it is sufficient to show that

[d/dtn, d/dτ1,k] = 0, [d/dτ1,k, d/dτ1,q] = 0, (32)

where k, q = 1, N and n ∈ N. The first equality in formula (32) follows from the
identities:

d(∇γn(l))+/dτ1,k = [(∇γn(l))+,M1
1 ]+, dM1

1 /dtn = [(∇γn(l))+,M1
1 ]−,

and the second one is a consequence of the relationship:

dM1
k/dτ1,q − dM1

q /dτ1,k = [M1
k ,M1

q ] .

Thus, for every k = 1, N and all s ∈ N dynamical systems (31), (29) and (30) on
Ĝ∗c ⊕ WN ⊕ W ∗N form a hierarchy of additional homogeneous or so called “ghost”
symmetries for Lax-type flows (9), (14) and (15) on Ĝ∗c ⊕WN ⊕W ∗N . For the first
time the additional symmetry hierarchies for integrable (1|1+1)-dimensional nonlinear
dynamical systems associated with the Lie algebra of super-integral-differential oper-
ators were described as commutator-type flows in [2]. They were used to construct
Lax-type integrable (2|1 + 1)-dimensional dynamical systems in [12].

If N ≥ 2, one can obtain a new class of nontrivial Hamiltonian flows d/dTn :=
d/dtn ±

∑N−1
k=1 d/dτn,k, n ∈ N, on Ĝ∗c ⊕ WN ⊕ W ∗N in the Lax-type form by

use of the invariants considered above for the centrally extended Lie algebra Ĝc of
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integral-differential operators. Acting on the eigenfunctions (fi, f
∗
i ) ∈ W ⊕ W ∗,

i = 1, N , these flows generate some integrable (N + 1)-dimensional nonlinear dy-
namical systems.

For example, in the case of the element l := ∂/∂x + f1ξ
−1⊗ f∗1 + f2ξ

−1⊗ f∗2 ∈ Ĝ∗
with (f1, f2, f

∗
1 , f∗2 ) ∈ W 2 × W ∗2 the flows d/dτ := d/dτ1,1 and d/dT := d/dT2 =

d/dt2 + d/dτ2,1 on Ĝ∗c ⊕W 2⊕W ∗2 acting on the functions fi, f
∗
i , i = 1, 2, give rise to

such dynamical systems as

f1,τ = f1,x − cf1,y + f2u, f∗1,τ = f∗1,x − cf∗1,y + f∗2 ū, (33)

f2,τ = −f1ū, f∗2,τ = −f∗1 u,

and

f1,T = f1,xx + f1,ττ + wf1 + 2f1vτ ,

f∗1,T = −f∗1,xx − f∗1,ττ − wf∗1 − 2f∗1 vτ ,

f2,T = f2,xx + wf2 − f1,τ ū + f1ūτ ,

f∗2,T = −f∗2,xx − wf∗2 + f∗1,τu− f∗1 uτ ,

cwy = wx − 2(f1 ⊗ f∗1 + f2 ⊗ f∗2 )x,

ux = fT
1 f∗2 , ūx = f∗T1 f2, vx = fT

1 f∗1 ,

(34)

where one puts (∇γ2(l))+ := ∂2/∂x2+w for some function w ∈ G̃ depending paramet-
rically on variables τ, T ∈ R. Systems (33) and (34) represent a Lax-type integrable
(3+1)-dimensional generalization of the (2+1)-dimensional system being equivalent
to the Davey-Stewartson one [26, 29] with an infinite sequence of conservation laws
which can be derived from formula (6) in the form

γn(l) := tr

∫ 2π

0

∫ 2π

0

(f1∂
n−1f∗1 /∂xn−1 + f2∂

n−1f∗2 /∂xn−1)dxdy,

where n ∈ N. Its Lax-type linearization is given by spectral problem (10) and the
following evolution equations:

fτ = −M1
1 f, (35)

fT = ((∇γ2(l))+ −M2
1 )f, (36)

for an arbitrary eigenfunction f ∈ W (S× S;H). Relationships (35) and (36) give rise
to the additional nonlinear constraint:

wτ = 2(f1 ⊗ f∗1 )x. (37)
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In the case of dimH = 1 Lax-type representation (10), (35) and (36) for
above mentioned (3+1)-dimensional generalization (33), (34) and (37) of the
Davey-Stewartson system [26,29] has an equivalent matrix form:

dF

dx
=

 0 0 f∗1
0 0 f∗2
−f1 −f2 λ + c∂/∂y

F,

dF

dτ
=

 −(λ + c∂/∂y) ū f∗1
−u 0 0
−f1 0 0

F,

dF

dT
= CF,

where F = (F 1, F 2, F 3 = f)> ∈ W (S× S; C3), C := {Cmn ∈ gl(3; C) : m,n = 1, 3},
and

C11 = −(λ + c∂/∂y)2 − uū− 2f1f
∗
1 ,

C12 = −f1f
∗
2 − (λ + c∂/∂y)ū− ūτ ,

C13 = 2((λ + c∂/∂y)f∗1 − f∗1,x)− ūf∗2 ,

C21 = −(λ + c∂/∂y)u− uτ − f1f
∗
2 ,

C22 = −f2f
∗
2 + uū,

C23 = (λ + c∂/∂y)f∗2 − f∗2,x + uf∗1 ,

C31 = −(λ + c∂/∂y)f1 − f1,x − f1,τ ,

C32 = −(λ + c∂/∂y)f2 − f2,x + ūf1,

C33 = (λ + c∂/∂y)2 + w − f2f
∗
2 ,

to which one can effectively apply the standard inverse spectral transform method [9,
13].

The results obtained above can also be used to construct a wide class of inte-
grable (3+1)-dimensional nonlinear dynamical systems with triple Lax-type lineariza-
tions [17].

5. CONCLUSION

Several regular Lie-algebraic approaches [7,17,19,22,27] to constructing Lax-type in-
tegrable multi-dimensional (mainly 2+1) nonlinear dynamical systems on functional
manifolds and their supersymmetric generalizations are well known. In this paper
we have developed a new method for introducing another variable into Lax-type in-
tegrable (2+1)-dimensional dynamical systems arising as flows on dual spaces to the
centrally extended matrix Lie-algebra of integral-differential operators. It is based
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on the natural constructed hierarchy of additional invariants [18, 20]. The resulting
integrable (3+1)-dimensional dynamical systems obtained by means of this method
possess infinite sequences of conservation laws and related triple Lax-type lineariza-
tions. Owing to the latter property, their soliton type solutions can be found by means
of either the standard inverse spectral transform method [9,13] or Darboux-Backlund
transformations [11,21,24].

The structure of the constructed Lie-Backlund transformation (23), being a key
point of the devised method, strongly depends on an ad-invariant scalar product
chosen for an operator Lie algebra Ĝ and on a suitable Lie algebra decomposi-
tion (see [4, 18]). Since there exist other possibilities of choosing the corresponding
ad-invariant scalar products on Ĝ, such naturally decompositions give rise to other
Backlund transformations.

In an another paper this method will be developed for some special centrally
extended Lie algebras of super-integral-differential operators [10,15].
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