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COMPARISON OF PROPERTIES OF SOLUTIONS
OF DIFFERENTIAL EQUATIONS
AND RECURRENCE EQUATIONS

WITH THE SAME CHARACTERISTIC EQUATION
(ON EXAMPLE OF THIRD ORDER LINEAR EQUATIONS

WITH CONSTANT COEFFICIENTS)

Abstract. Third order linear homogeneous differential and recurrence equations with con-
stant coefficients are considered. We take the both equations with the same characteristic
equation. We show that these equations (differential and recurrence) can have solutions with
different properties concerning oscillation and boundedness. Especially the numbers of su-
itable types of solutions taken out from fundamental sets are presented. We give conditions
under which the asymptotic properties considered are the same for the both equations.
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1. INTRODUCTION

Concurrently with the development of modern computational methods, discrete equ-
ations, so-called recurrences, have acquired a great importance. They often repla-
ce differential equations in mathematical modelling. For example, the logistic equ-
ation describing population increase is written in the form of a differential equation
y′ = y(b − ay) (Verhulst–Pearl equation) or in the form of a recurrence equation
un+1 = un(b− aun) (Pielou equation) (see [4] and [13]).
It appears that application of a discrete mathematical model instead of the

continuous one can lead to qualitatively different solutions, particularly with respect
to oscillation or boundedness. Different quantities of solutions can be seen even in
the case of linear equations with constant coefficients. Oscillation of such third order
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equations is investigated in [11] and boundedness in [10]. In this paper we present
the numbers of suitable types of solutions taken out from fundamental sets. We also
give conditions under which the asymptotic properties considered are the same for
two equations: differential and recurrence ones.
We consider a third order linear homogeneous equation with constant coefficients

written in the continuous and discrete form, namely the differential equation

d3f

dt3
+ a

d2f

dt2
+ b

df

dt
+ cf = 0 (1)

and the recurrence equation

un+3 + aun+2 + bun+1 + cun = 0, (2)

where f : R → R, u : N → R, R denotes the set of real numbers, N the set of
positive integers and a, b, c are real constants.
A function f : R → R (a sequence u : N → R) is called trivial if there exists

a t0 ∈ R (an n0 ∈ N) such that f(t) = 0 for every t > t0 (un = 0 for every n > n0).
Otherwise, a function f (a sequence u) is said to be nontrivial. Every nontrivial
real function f (sequence u) satisfying equation (1) ((2)) is called a solution of this
equation.
A solution of equation (1) ((2)) is called nonoscillatory if there exists a t0 ∈ R

(an n0 ∈ N) such that it is a positive function (sequence) on the set [t0,∞) ({n ∈
N : n > n0}) or a negative function (sequence) on this set. Otherwise, a solution is
said to be oscillatory.
A solution of equation (1) ((2)) is called bounded if it is a bounded function

(sequence) on the set [0,∞) (N). Otherwise a solution is said to be unbounded.
Equation (1) or (2) is called oscillatory (nonoscillatory, bounded, unbounded) if

each of its solutions is oscillatory (nonoscillatory, bounded, unbounded).
Fundamentals of differential equations theory can be found in many monographs,

e.g. Stiepanow [19]. The background of recurrences theory is given by Agarwal [1],
Elaydi [4], Kelley and Peterson [6] and, in Polish, by Koźniewska [8]. Oscillation of
solutions of third order difference equations was considered for example by Kobza
[7], Migda, Schmeidel and Drozdowicz [9], Popenda and Schmeidel [14], Saker [15],
Smith [17], Thandapani and Mahalingam [20] and boundedness by Andruch-Sobiło
and Migda [2], Došla and Kobza [3], Graef and Thandapani [5], Smith [16], Smith
and Taylor [18].
Putting f(t) = exp(rt) in equation (1) or un = rn in equation (2), the same

characteristic equation
r3 + ar2 + br + c = 0 (3)

is obtained in the continuous as well as in the discrete case. Solutions of equation
(3) are described in [12].
Let us denote

q = c− 1

3
ab+

2

27
a3, (4)
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∆ = c2 +
4

27
b3 − 2

3
abc− 1

27
a2b2 +

4

27
a3c. (5)

We will use the following theorem, which can be found in [11].

Theorem 1.

1◦ If ∆ > 0, then (3) has one real root r1 and two complex conjugate roots r2, r3
with non-vanishing imaginary parts:

r1 =
3

√
−q−

√
∆

2 +
3

√
−q+

√
∆

2 − a

3
,

r2 = −1

2

(
3

√
−q−

√
∆

2 +
3

√
−q+

√
∆

2

)
− a

3
+ i

√
3

2

(
3

√
−q−

√
∆

2 − 3

√
−q+

√
∆

2

)
,

r3 = −1

2

(
3

√
−q−

√
∆

2 +
3

√
−q+

√
∆

2

)
− a

3
− i

√
3

2

(
3

√
−q−

√
∆

2 − 3

√
−q+

√
∆

2

)
.

(6)

2◦ If ∆ = 0, then (3) has three real roots given by (7), but one is multiple:

r1 = −2 3

√
q

2
− a

3
, r2 = r3 = 3

√
q

2
− a

3
. (7)

3◦ If ∆ < 0, then (3) has three different real roots:

rk+1 = 6
√
16(q2 −∆) cos

arc cos −q√
q2−∆

+ 2kπ

3
− a

3
, k = 0, 1, 2. (8)

Remark 1. The following equality

q2 −∆ =
4

27
(
1

27
a6 − 1

3
a4b+ a2b2 − b3)

holds.

Remark 2. If ∆ = 0 and q 6= 0, then the roots of (3) can also be written in form
(8).

Remark 3. The case ∆ = 0 and q = 0 holds only for r1 = r2 = r3.

2. PARTITION OF SOLUTIONS IN FUNDAMENTAL SETS

Assume c 6= 0, which is required for (2) to be a third order equation. Then roots of
equation (3) are not equal to zero. In the case ∆ > 0, the roots r2 and r3 can be
written in the form

r2 = |r2| (cosϕ+ i sinϕ),

r3 = |r2| (cosϕ− i sinϕ),
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Table 1

Case Equation (1) Equation (2) Remarks

∆ > 0 er1t, eRe r2t cos(Im r2t), rn1 , |rn2 | cosnϕ, r1, r2 defined by (6),
eRe r2t sin(Im r2t) |rn2 | sinnϕ r2 = |r2|(cosϕ+ i sinϕ)

∆ = 0, r1 6= r2 er1t, er2t, ter2t rn1 , r
n
2 , nr

n
2 r1, r2 defined by (7)

∆ = 0, r1 = r2 er1t, ter1t, t2er1t rn1 , nr
n
1 , n

2rn1 r1, r2 defined by (7)

∆ < 0 er1t, er2t, er3t rn1 , r
n
2 , r

n
3 r1, r2, r3 defined by (8)

where ϕ is an argument of r2. We will consider fundamental sets of solutions indicated
in Table 1.
Let ∆ < 0. Then there exist k, l,m ∈ {1, 2, 3} such that rk < rl < rm. Set

R1 = rk, R2 = rl, R3 = rm.
Let ∆ = 0. Set R1 = min {r1, r2}, R2 = r2, R3 = max {r1, r2}. Thus R1 6 R2 6

R3.
The numbers of oscillatory solutions taken out from the fundamental sets

(Tab. 1) are presented in Table 2 and bounded solutions in Table 3 (se the at-
tached interleaf).

Table 2

Case Equation (1) Equation (2)

∆ > 0, r1 < 0 2 3

∆ > 0, r1 > 0 2 2

∆ 6 0, R1, R2, R3 < 0 0 3

∆ 6 0, R1, R2 < 0, R3 > 0 0 2

∆ 6 0, R1 < 0, R2, R3 > 0 0 1

∆ 6 0, R1, R2, R3 > 0 0 0

3. MAIN RESULTS

Remark 4. Equation (1) is never oscillatory. Thus this equation can be nonoscil-
latory or it can have oscillatory and nonoscillatory solutions. However, equation (2)
is oscillatory or nonoscillatory or it can have both oscillatory and nonoscillatory
solutions.

Let us

d =
3

√
−q −

√
∆

2
+

3

√
−q +

√
∆

2
for ∆ > 0,
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D =

√
d2 +

1

3
ad+

1

9
a2 − 3

2
3
√
2(q2 −∆),

pk = cos
arc cos −q√

q2−∆
+ 2kπ

3
for ∆ < 0 (k = 0, 1, 2).

Theorem 2. Equations (1) and (2) are nonoscillatory if and only if one of the
following cases holds:

1◦ ∆ 6 0, ∆2 + q2 > 0, pk > a

3 6
√

16(q2−∆)
for k = 0, 1, 2,

2◦ ∆ = q = 0, a < 0.

Proof. In Case (1◦), by Theorem 1 and Remark 2, from (8) there follows

rk = 6
√
16(q2 −∆)pk−1 −

a

3
> 0

and, obviously, Rk > 0 for k = 1, 2, 3. In Case (ii), by Remark 3 and (7) we obtain
r1 = r2 = r3 > 0. By Table 2, the proof is completed.

Theorem 3. Equations (1) and (2) are bounded if and only if one of the following
cases holds:

1◦ ∆ > 0, max(− 2
3a,

1
3a− 1) 6 d < 1

3a, D 6 1,

2◦ ∆ 6 0, ∆2 + q2 > 0, a−3

3 6
√

16(q2−∆)
6 pk < a

3 6
√

16(q2−∆)
for k = 0, 1, 2 (the equality

pk = a−3

3 6
√

16(q2−∆)
is valid for at most one k),

3◦ ∆ = q = 0, 0 < a < 3.

Proof. In Case (1◦), by Theorem 1, from (6) there follows r1 = d − 1
3a < 0 and

r1 > −1. Moreover,

Re r2 = −1

2
d− 1

3
a 6 −1

2
(−2

3
a)− 1

3
a = 0

and

|r2| =

√√√√1

4
d2 +

1

3
ad+

1

9
a2 +

3

4

(
d2 − 4

3

√
q2 −∆

4

)
=

=

√

d2 +
1

3
ad+

1

9
a2 − 3

3

√
q2 −∆

4
= D 6 1.

In Case (2◦), by Theorem 1 and Remark 2, from (8) we obtain −1 6 rk < 0 for
k = 1, 2, 3 and rk = −1 is valid for at most one k. The same inequalities hold for Rk

(k = 1, 2, 3). In Case (3◦), by Remark 3 and (7), there is −1 < r1 = r2 = r3 < 0. By
Table 3, the proof is completed.
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Theorem 4. Equations (1) and (2) are unbounded if and only if one of the following
cases holds:

1◦ ∆ > 0, 1
3a+ 1 < d < − 2

3a, D > 1,

2◦ ∆ 6 0, ∆2 + q2 > 0, pk > a+3

3 6
√

16(q2−∆)
for k = 0, 1, 2,

3◦ ∆ = q = 0, a < −3.

Proof. Analogously as in proof of Theorem 3, we obtain:
in Case (1◦): r1 > 1, Re r2 > 0, |r2| > 1;
in Case (2◦): R1, R2, R3 > 1 for k = 1, 2, 3;
in Case (3◦): r1 = r2 = r3 > 1.
By Table 3, this completes the proof.

Remark 5. Case (1◦) of Theorem 3 can only hold for a > 0 and Case (1◦) of
Theorem 4 only for a < −1.

Indeed,

if − 2
3a < 1

3a, then a > 0;

if 1
3a+ 1 < − 2

3a, then a < −1.
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