Opuscula Math. 38, no. 5 (2018), 733-758
https://doi.org/10.7494/OpMath.2018.38.5.733

 
Opuscula Mathematica

Eigenvalue asymptotics for potential type operators on Lipschitz surfaces of codimension greater than 1

Grigori Rozenblum
Grigory Tashchiyan

Abstract. For potential type integral operators on a Lipschitz submanifold the asymptotic formula for eigenvalues is proved. The reasoning is based upon the study of the rate of operator convergence as smooth surfaces approximate the Lipschitz one.

Keywords: integral operators, potential theory, eigenvalue asymptotics.

Mathematics Subject Classification: 47G40, 35P20.

Full text (pdf)

  1. M.S. Agranovich, Spectral properties of potential-type operators for a class of strongly elliptic systems on smooth and Lipschitz surfaces, Tr. Mosk. Mat. Obsh. 62 (2001), 3-53 [in Russian]; English translation in Trans. Moscow Math. Soc. 62 (2001), 1-47.
  2. M.S. Agranovich, Spectral problems for second-order strongly elliptic systems in smooth and non-smooth domains, Uspehi Matem. Nauk 57 (2002) 5, 3-78 [in Russian]; English translation in Russian Mathem. Surveys 57 (2002), 847-920.
  3. M.S. Agranovich, B.A. Amosov, Estimates of \(s\)-numbers and spectral asymptotics for integral operators of potential type on non-smooth surfaces, Funct. Anal. i Prilozh. 30 (1996) 2, 1-18 [in Russian]; English translation in: Funct. Anal. and Appl. 30 (1996) 75-89.
  4. M.S. Agranovich, B.Z. Katsenelenbaum, A.N. Sivov, N.N. Voitovich, Generalized Method of Eigenoscillations in Diffraction Theory, Wiley-VCH Verlag, Berlin, 1999.
  5. M.Sh. Birman, M.Z. Solomjak, Asymptotics of the spectrum of weakly polar integral operators, Izv. Akad. Nauk SSSR Ser. Mat. 34 (1970) 1142-1158 [in Russian]; translation in Mathematics of the USSR-Izvestiya, 4:5 (1970), 1151-1168.
  6. M.Sh. Birman, M.Z. Solomjak, The asymptotics of the spectrum of pseudodifferential operators with anisotropic-homogeneous symbols, I, II, Vestnik Leningr. Univ. (Math.) no. 13 (1977), 13-27, no. 13 (1979), 5-10; English translation in Vestnik. Leningr. Univ. Math. 10 (1980), 12 (1982).
  7. T. Chang, Boundary integral operator for the fractional Laplacian on the boundary of a bounded smooth domain, J. Integral Equations Appl. 28 (2016) 3, 343-372.
  8. M. Cotlar, R. Cignoli, An Introduction to Functional Analysis, NH, 1974.
  9. M. Dauge, D. Robert, Weyl's formula for a class of pseudodifferential operators with negative order on \(L^2(\mathbb{R}^n)\), Lecture Notes in Math., vol. 1256, Springer, Berlin, 1987, pp. 91-122.
  10. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.
  11. M. Goffeng, Analytic formulas for the topological degree of non-smooth mappings: the odd-dimensional case, Adv. Math. 231 (2012) 1, 357-377.
  12. I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Nauka, Moscow, 1965; English transl.: Amer. Math. Soc., 1969.
  13. G. Grubb, Singular Green operators and their spectral asymptotics, Duke Math. J. 51 (1984), 477-528.
  14. G. Hsiao, W. Wendland, Boundary Integral Equations, Springer-Verlag, Berlin, 2008.
  15. G.E. Karadzhov, The inclusion of integral operators in the classes \(S_p\) for \(p\geq 2\), Integral and differential operators. Differential equations, Probl. Mat. Anal., vol. 3, Leningrad, 1972, pp. 28-33 [in Russian]; English transl. in J. Soviet Mathem. 1 (1973), 200-204.
  16. G.P. Kostometov, Asymptotic behavior of the spectrum of integral operators with a singularity on the diagonal, Matemat. Sbornik. 94(136)-3(7) (1974), 444-451 [in Russian]; English translation in Math. USSR-Sb. 23:3 (1974), 417-424.
  17. G.P. Kostometov, On the asymptotics of the spectrum of integral operators with polar kernels, Vestn. Leningr. Univ. 1977, no. 13, Mat. Mekh. Astron. 1977, no. 3, (1977) 166-167 [in Russian].
  18. G. Rozenblum, G. Tashchiyan, Eigenvalue asymptotics for potential type operators on Lipschitz surfaces, Russian J. Math. Phys. 13 (2006) 3, 326-339.
  19. N.N. Voitovich, B.Z. Katsenelenbaum, A.N. Sivov, Generalized Method of Eigenoscillations in Diffraction Theory, Nauka, Moscow, 1977 [in Russian].
  20. B. Russo, On the Hausdorff-Young theorem for integral operators, Pacific J. Math. 68 (1977) 1, 241-253.
  21. G. Verchota, Layer potentials and regularity for the Dirichlet problems in Lipschitz domains, J. Funct. Anal. 59 (1984), 572-611.
  • Grigori Rozenblum
  • Department of Mathematics, Chalmers University of Technology, Sweden
  • University of Gothenburg, Eklandagatan 86, S-412 96 Gothenburg, Sweden
  • Department of Physics, St. Petersburg State University, Russia
  • Grigory Tashchiyan
  • St. Petersburg University for Telecommunications, Department of Mathematics, St. Petersburg, 198504, Russia
  • Communicated by P.A. Cojuhari.
  • Received: 2017-12-14.
  • Accepted: 2017-12-27.
  • Published online: 2018-06-12.
Opuscula Mathematica - cover

Cite this article as:
Grigori Rozenblum, Grigory Tashchiyan, Eigenvalue asymptotics for potential type operators on Lipschitz surfaces of codimension greater than 1, Opuscula Math. 38, no. 5 (2018), 733-758, https://doi.org/10.7494/OpMath.2018.38.5.733

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.