Opuscula Math. 38, no. 5 (2018), 597-621
https://doi.org/10.7494/OpMath.2018.38.5.597

 
Opuscula Mathematica

The spectral theorem for locally normal operators

Aurelian Gheondea

Abstract. We prove the spectral theorem for locally normal operators in terms of a locally spectral measure. In order to do this, we first obtain some characterisations of local projections and we single out and investigate the concept of a locally spectral measure.

Keywords: locally Hilbert space, locally \(C^*\)-algebra, locally normal operator, local projection, locally spectral measure.

Mathematics Subject Classification: 47B15, 46A13, 46C05.

Full text (pdf)

  1. G. Allan, On a class of locally convex algebras, Proc. London Math. Soc. 15 (1965), 399-421.
  2. C. Apostol, \(b^*\)-Algebras and their representations, J. London Math. Soc. 33 (1971), 30-38.
  3. J.B. Conway, A Course in Operator Theory, Amer. Math. Soc., 2000.
  4. A. Gheondea, On locally Hilbert spaces, Opuscula Math. 36 (2016), 735-747.
  5. A. Gheondea, Operator models for locally Hilbert \(C^*\)-modules, Operators and Matrices 11 (2017), 639-667.
  6. A. Inoue, Locally \(C^*\)-algebras, Mem. Fac. Sci. Kyushu Univ. Ser. A 25 (1971), 197-235.
  7. R.V. Kadison, J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Volume I: Elementary Theory, Graduate Studies in Mathematics, vol. 15, Amer. Math. Soc., 1997.
  8. A. Mallios, Hermitian K-theory over topological \(*\)-algebras, J. Math. Anal. Appl. 106 (1985), 454-539.
  9. N.C. Phillips, Inverse limits of \(C^*\)-algebras, J. Operator Theory 19 (1988), 159-195.
  10. K. Schmüdgen, Über \(LMC^*\)-Algebren, Math. Nachr. 68 (1975), 167-182.
  11. Z. Sebestyen, Every \(C^*\)-seminorm is automatically submultiplicative, Period. Math. Hun. 10 (1979), 1-8.
  12. Ş. Strătilă, L. Zsidó, Lectures on von Neumann Algebras, Editura Academiei, Bucureşti, 1979.
  13. J.L. Taylor, Notes on Locally Convex Topological Vector Spaces, Lecture Notes, University of Utah, 1995.
  14. D. Voiculescu, Dual algebraic structures on operator algebras related to free products, J. Operator Theory 17 (1987), 85-98.
  • Aurelian Gheondea
  • Bilkent University, Department of Mathematics, 06800 Bilkent, Ankara, Turkey
  • Institutul de Matematică al Academiei Române, C.P., 1-764, 014700 Bucuresti, România
  • Communicated by P.A. Cojuhari.
  • Received: 2018-02-23.
  • Revised: 2018-05-14.
  • Accepted: 2018-05-15.
  • Published online: 2018-06-12.
Opuscula Mathematica - cover

Cite this article as:
Aurelian Gheondea, The spectral theorem for locally normal operators, Opuscula Math. 38, no. 5 (2018), 597-621, https://doi.org/10.7494/OpMath.2018.38.5.597

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.