Opuscula Math. 38, no. 4 (2018), 483-500
https://doi.org/10.7494/OpMath.2018.38.4.483

 
Opuscula Mathematica

On spectra of quadratic operator pencils with rank one gyroscopic linear part

Olga Boyko
Olga Martynyuk
Vyacheslav Pivovarchik

Abstract. The spectrum of a selfadjoint quadratic operator pencil of the form \(\lambda^2M-\lambda G-A\) is investigated where \(M\geq 0\), \(G\geq 0\) are bounded operators and \(A\) is selfadjoint bounded below is investigated. It is shown that in the case of rank one operator \(G\) the eigenvalues of such a pencil are of two types. The eigenvalues of one of these types are independent of the operator \(G\). Location of the eigenvalues of both types is described. Examples for the case of the Sturm-Liouville operators \(A\) are given.

Keywords: quadratic operator pencil, gyroscopic force, eigenvalues, algebraic multiplicity.

Mathematics Subject Classification: 47A56, 47E05, 81Q10.

Full text (pdf)

  1. D.B. DeBra, R.H. Delp, Rigid body attitude stability and natural frequences in a circular orbit, J. Astronaut. Sci. 8 (1961), 14-17.
  2. V.I. Feodosiev, Vibrations and stability of a pipe conveying a flowing liquid, Inzh. Sbornik 10 (1951), 169-170 [in Russian].
  3. I.C. Gohberg, S. Goldberg, M.A. Kaashoek, Classes of Linear Operators, I. Operator Theory: Adv. Appl. 49 Birkhäuser, Basel, 1990.
  4. I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Transl. Math. Monographs, vol. 18, AMS, New York, 1969.
  5. I.C. Gohberg, E.I. Sigal, An Operator generalization of the logarithmic residue theorem and Rouché's theorem, Math. USSR Sb. 13 (1971) 1, 603-625 [in Russian].
  6. Ch.G. Ibadzade, I.M. Nabiev, Recovering of the Sturm-Liouville operator with non-separated boundary condition dependent of the spectral parameter, Ukrainian Math. J. 69 (2018) 9, 1416-1423.
  7. A.G. Kostyuchenko, M.B. Orazov, The problem of oscillations of an elastic half-cylinder and related self-adjoint quadratic pencils, Trudy Sem. Petrovskogo 6 (1981), 97-147 [in Russian].
  8. A.S. Markus, Introduction to the Theory of Polynomial Operator pencils, Transl. Math. Monographs, vol. 71, AMS, New York, 1988.
  9. A.I. Markushevich, Theory of Functions of a Complex Variable, III, revised English edition, Prentice-Hall Inc., Englewood Cliffs, New York, 1967.
  10. A.I. Miloslavskii, On stability of linear pipes, Dinamika Sistem, Nesuschih podvizhnuyu raspredelennuyu nagruzku, Collected papers, 192 Kharkov Aviation Institute, Kharkov, (1980) 34-47 [in Russian].
  11. A.I. Miloslavskii, On the instability spectrum of an operator pencil, Matem. Zametki 49 (1991) 4, 88-94 [in Russian], English transl. in: Mathem. Notes 49 (1991) 3-4, 391-395.
  12. A.A. Movchan, On a problem of stability of a pipe with a fluid flowing through it, Prikl. Mat. Mekh. 29 (1965), 760-762 [in Russian], English transl.: PMM, J. Appl. Math. Mech. 29 (1965), 902-904.
  13. M. Möller, V. Pivovarchik, Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and Their Applications, Birkhäuser, Cham, 2015.
  14. M.P. Paidoussis, N.T. Issid, Dynamic stability of pipes conveying fluid, J. Sound Vibrat. 33 (1974) 3, 267-294.
  15. V.N. Pivovarchik, On eigenvalues of a quadratic operator pencil, Funkts. Anal. Prilozhen. 25 (1989), 80-81 [in Russian].
  16. V.N. Pivovarchik, On spectra of quadratic operator pencils in the right half-plane, Matem. Zametki 45 (1989) 6, 101-103 [in Russian].
  17. V.N. Pivovarchik, On the total algebraic multiplicity of the spectrum in the right half-plane for a class of quadratic operator pencils, Algebra i Analys 3 (1991) 2, 223-230 [in Russian], English transl.: St. Peterburg Math. J. 3 (1992) 2, 447-454.
  18. V. Pivovarchik, On spectra of a certain class of quadratic operator pencils with one-dimensional linear part, Ukrainian Math. J. 59 (2007) 5, 702-717.
  19. V. Pivovarchik, H. Woracek, Shifted Hermite-Biehler functions and their applications, Integral Equations and Operator Theory 57 (2007), 101-126.
  20. A.A. Shkalikov, Elliptic equations in Hilbert space and associated spectral problems, Trudy Sem. Petrovskogo 14 (1989), 140-224 [in Russian].
  21. W.T. Thompson, Spin stabilization of attitude against gravity torque, J. Austronaut. Sci. 9 (1962) 1, 31-33.
  22. M. Tyaglov, Self-interlacing polynomials II: matrices with self-interlacing spectrum, Electron. J. Linear Algebra 32 (2017), 51-57.
  23. E.E. Zajac, The Kelvin-Tait-Chetaev theorem and extensions, J. Austronaut. Sci. 11 (1964), 46-49.
  • Olga Boyko
  • South-Ukrainian National Pedagogical University, Staroportofrankovskaya Str. 26, Odesa, 65020, Ukraine
  • Olga Martynyuk
  • South-Ukrainian National Pedagogical University, Staroportofrankovskaya Str. 26, Odesa, 65020, Ukraine
  • Vyacheslav Pivovarchik
  • South-Ukrainian National Pedagogical University, Staroportofrankovskaya Str. 26, Odesa, 65020, Ukraine
  • Communicated by Alexander Gomilko.
  • Received: 2017-07-11.
  • Revised: 2017-08-15.
  • Accepted: 2017-08-23.
  • Published online: 2018-04-11.
Opuscula Mathematica - cover

Cite this article as:
Olga Boyko, Olga Martynyuk, Vyacheslav Pivovarchik, On spectra of quadratic operator pencils with rank one gyroscopic linear part, Opuscula Math. 38, no. 4 (2018), 483-500, https://doi.org/10.7494/OpMath.2018.38.4.483

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.