Opuscula Math. 38, no. 3 (2018), 357-377
https://doi.org/10.7494/OpMath.2018.38.3.357

 
Opuscula Mathematica

Forbidden configurations for hypohamiltonian graphs

Igor Fabrici
Tomáš Madaras
Mária Timková

Abstract. A graph \(G\) is called hypohamiltonian if \(G\) is not hamiltonian, but \(G-x\) is hamiltonian for each vertex \(x\) of \(G\). We present a list of 331 forbidden configurations which do not appear in hypohamiltonian graphs.

Keywords: hypohamiltonian graph, forbidden configuration, long cycle.

Mathematics Subject Classification: 05C38, 05C45.

Full text (pdf)

  1. R.E.L. Aldred, B.D. McKay, N.C. Wormald, Small hypohamiltonian graphs, J. Combin. Math. Combin. Comput. 23 (1997), 143-152.
  2. V. Chvátal, Flip-flops in hypohamiltonian graphs, Canad. Math. Bull. 16 (1973), 33-41.
  3. J.B. Collier, E.F. Schmeichel, Systematic searches for hypohamiltonian graphs, Networks 8 (1978), 193-200.
  4. J. Doyen, V. van Diest, New families of hypohamiltonian graphs, Discrete Math. 13 (1975), 225-236.
  5. I. Fabrici, M. Timková, T. Madaras, Local structure of planar hypohamiltonian graphs, manuscript 2017.
  6. J. Goedgebeur, C.T. Zamfirescu, Improved bounds for hypohamiltonian graphs, Ars Math. Contemp. 13 (2017), 235-257.
  7. H. Hatzel, Ein planarer hypohamiltonscher Graph mit 57 Knoten, Math. Ann. 243 (1979), 213-216.
  8. J.C. Herz, J.J. Duby, F. Vigué, Recherche systématique des graphes hypohamiltoniens, [in:] P. Rosenstiehl (ed.), Theory of Graphs, Proc. International Symposium, Rome 1966, pp. 153-159.
  9. M. Jooyandeh, B.D. McKay, P.R.J. Östergård, V.H. Pettersson, C.T. Zamfirescu, Planar hypohamiltonian graphs on 40 vertices, J. Graph Theory 84 (2017), 121-133.
  10. Z. Skupień, Exponentially many hypohamiltonian snarks, Electron. Notes Discrete Math. 28 (2007), 417-424.
  11. C. Thomassen, Hypohamiltonian and hypotraceable graphs, Discrete Math. 9 (1974), 91-96.
  12. C. Thomassen, Planar and infinite hypohamiltonian and hypotraceable graphs, Discrete Math. 14 (1976), 377-389.
  13. C. Thomassen, Hypohamiltonian graphs and digraphs, [in:] Y. Alavi, D.R. Lick (eds.), Theory and Applications of Graphs, Lecture Notes in Math. 642, Springer, 1978, pp. 557-571.
  14. D. West, Introduction to graph theory, Prentice Hall, 2011.
  15. G. Wiener, M. Araya, On planar hypohamiltonian graphs, J. Graph Theory 67 (2011), 55-68.
  16. C.T. Zamfirescu, Cubic vertices in planar hypohamiltonian graphs, submitted.
  17. C.T. Zamfirescu, T.I. Zamfirescu, A planar hypohamiltonian graph with 48 vertices, J. Graph Theory 48 (2007), 338-342.
  • Igor Fabrici
  • P.J. Šafárik University in Košice, Faculty of Science, Institute of Mathematics, Jesenná 5, 040 01 Košice, Slovakia
  • Tomáš Madaras
  • P.J. Šafárik University in Košice, Faculty of Science, Institute of Mathematics, Jesenná 5, 040 01 Košice, Slovakia
  • Mária Timková
  • Technical University of Košice, Faculty of Electrical Engineering and Informatics, Department of Mathematics and Theoretical Informatics, Němcovej 32, 042 00 Košice, Slovakia
  • Communicated by Adam Paweł Wojda.
  • Received: 2017-10-12.
  • Revised: 2018-01-26.
  • Accepted: 2018-02-03.
  • Published online: 2018-03-19.
Opuscula Mathematica - cover

Cite this article as:
Igor Fabrici, Tomáš Madaras, Mária Timková, Forbidden configurations for hypohamiltonian graphs, Opuscula Math. 38, no. 3 (2018), 357-377, https://doi.org/10.7494/OpMath.2018.38.3.357

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.