Opuscula Math. 38, no. 1 (2018), 117-131
https://doi.org/10.7494/OpMath.2018.38.1.117

 
Opuscula Mathematica

Study of ODE limit problems for reaction-diffusion equations

Jacson Simsen
Mariza Stefanello Simsen
Aleksandra Zimmermann

Abstract. In this work we study ODE limit problems for reaction-diffusion equations for large diffusion and we study the sensitivity of nonlinear ODEs with respect to initial conditions and exponent parameters. Moreover, we prove continuity of the flow and weak upper semicontinuity of a family of global attractors for reaction-diffusion equations with spatially variable exponents when the exponents go to 2 in \(L^{\infty}(\Omega)\) and the diffusion coefficients go to infinity.

Keywords: ODE limit problems, shadow systems, reaction-diffusion equations, parabolic problems, variable exponents, attractors, upper semicontinuity.

Mathematics Subject Classification: 35B40, 35B41, 35K57, 35K59.

Full text (pdf)

  1. L. Arnold, I. Chueshov, Order-preserving random dynamical systems: Equilibria, attractors, applications, Dynamics and Stability of Systems 13 (1998) 3, 265-280.
  2. J.M. Arrieta, A.N. Carvalho, A. Rodríguez-Bernal, Upper semicontinuity for attractors of parabolic problems with localized large diffusion and nonlinear boundary conditions, J. Differential Equations 168 (2000), 33-59.
  3. T. Caraballo, J.A. Langa, J. Valero, Asymptotic behaviour of monotone multi-valued dynamical systems, Dyn. Syst. 20 (2005) 3, 301-321.
  4. A.N. Carvalho, Infinite dimensional dynamics described by ordinary differential equations, J. Differential Equations 116 (1995), 338-404.
  5. A.N. Carvalho, J.K. Hale, Large diffusion with dispersion, Nonlinear Anal. 17 (1991) 12, 1139-1151.
  6. Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Math. 66 (2006), 1383-1406.
  7. J.W. Cholewa, A. Rodriguez-Bernal, Extremal equilibria for monotone semigroups in ordered spaces with applications to evolutionary equations, J. Differential Equations 249 (2010), 485-525.
  8. E. Conway, D. Hoff, J. Smoller, Large time behavior of solutions of systems of non-linear reaction-diffusion equations, SIAM J. Appl. Math. 35 (1978) 1, 1-16.
  9. L. Diening, P. Harjulehto, P. Hästö, M. Ružička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, Heidelberg, 2011.
  10. F. Ettwein, M. Ružička, Existence of local strong solutions for motions of electrorheological fluids in three dimensions, Computers and Mathematics with Applications 53 (2007), 595-604.
  11. Z. Guo, Q. Liu, J. Sun, B. Wu, Reaction-diffusion systems with \(p(x)\)-growth for image denoising, Nonlinear Anal. Real World Appl. 12 (2011), 2904-2918.
  12. J.K. Hale, Large diffusivity and asymptotic behavior in parabolic systems, J. Math. Anal. Appl. 118 (1986), 455-466.
  13. J.K. Hale, Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988.
  14. J.K. Hale, C. Rocha, Varying boundary conditions with large diffusivity, J. Math. Pures Appl. 66 (1987), 139-158.
  15. J.K. Hale, K. Sakamoto, Shadow systems and attractors in reaction-diffusion equations, Appl. Anal. 32 (1989), 287-303.
  16. Ph. Hartman, Ordinary Differential Equations, Classics Appl. Math., vol. 38, SIAM, Philadelphia, 2002.
  17. O. Ladyzhenskaya, Attractors for Semigroups and Evolution Equations, Cambridge University Press, Lezioni Lincee, 1991.
  18. De. Liu, The critical forms of the attractors for semigroups and the existence of critical attractors, Proc. Roy Soc. Lond. Ser. A Math. Phys. Eng. Sci. 454 (1998), 2157-2171.
  19. K. Rajagopal, M. Ružička, Mathematical modelling of electrorheological materials, Contin. Mech. Thermodyn. 13 (2001), 59-78.
  20. M. Ružička, Flow of shear dependent electrorheological fluids, C.R. Acad. Sci. Paris Sér. I 329 (1999), 393-398.
  21. M. Ružička, Electrorheological Fluids: Modeling and Mathematical Theory, Lectures Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.
  22. J. Simsen, C.B. Gentile, Well-posed \(p\)-Laplacian problems with large diffusion, Nonlinear Anal. 71 (2009), 4609-4617.
  23. J. Simsen, M.S. Simsen, PDE and ODE limit problems for \(p(x)\)-Laplacian parabolic equations, J. Math. Anal. Appl. 383 (2011), 71-81.
  24. J. Simsen, M.S. Simsen, M.R.T. Primo, Continuity of the flows and upper semicontinuity of global attractors for \(p_s(x)\)-Laplacian parabolic problems, J. Math. Anal. Appl. 398 (2013), 138-150.
  25. J. Simsen, M.S. Simsen, M.R.T. Primo, On \(p_s(x)\)-Laplacian parabolic problems with non-globally Lipschitz forcing term, Z. Anal. Anwend. 33 (2014), 447-462.
  26. J. Simsen, M.S. Simsen, M.R.T. Primo, Reaction-diffusion equations with spatially variable exponents and large diffusion, Commun. Pure Appl. Anal. 15 (2016) 2, 495-506.
  27. H.L. Smith, Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, vol. 41, American Mathematical Society, Providence, 1995.
  28. R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988.
  • Jacson Simsen
  • Universidade Federal de Itajubá, Instituto de Matemática e Computação, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá - MG - Brazil
  • Universität of Duisburg-Essen, Fakultät für Mathematik, Thea-Leymann-Str. 9, 45127 Essen, Germany
  • Mariza Stefanello Simsen
  • Universidade Federal de Itajubá, Instituto de Matemática e Computação, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá - MG - Brazil
  • Universität of Duisburg-Essen, Fakultät für Mathematik, Thea-Leymann-Str. 9, 45127 Essen, Germany
  • Aleksandra Zimmermann
  • Universität of Duisburg-Essen, Fakultät für Mathematik, Thea-Leymann-Str. 9, 45127 Essen, Germany
  • Communicated by Bruno Welfert.
  • Received: 2016-12-01.
  • Revised: 2017-07-10.
  • Accepted: 2017-08-01.
  • Published online: 2017-11-13.
Opuscula Mathematica - cover

Cite this article as:
Jacson Simsen, Mariza Stefanello Simsen, Aleksandra Zimmermann, Study of ODE limit problems for reaction-diffusion equations, Opuscula Math. 38, no. 1 (2018), 117-131, https://doi.org/10.7494/OpMath.2018.38.1.117

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.