Opuscula Math. 38, no. 1 (2018), 31-40
https://doi.org/10.7494/OpMath.2018.38.1.31

 
Opuscula Mathematica

Existence of positive solutions to a discrete fractional boundary value problem and corresponding Lyapunov-type inequalities

Amar Chidouh
Delfim F. M. Torres

Abstract. We prove existence of positive solutions to a boundary value problem depending on discrete fractional operators. Then, corresponding discrete fractional Lyapunov-type inequalities are obtained.

Keywords: fractional difference equations, Lyapunov-type inequalities, fractional boundary value problems, positive solutions.

Mathematics Subject Classification: 26A33, 26D15, 39A12.

Full text (pdf)

  1. F.M. Atıcı, P.W. Eloe, Two-point boundary value problems for finite fractional difference equations, J. Difference Equ. Appl. 17 (2011) 4, 445-456.
  2. N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Necessary optimality conditions for fractional difference problems of the calculus of variations, Discrete Contin. Dyn. Syst. 29 (2011) 2, 417-437.
  3. N.R.O. Bastos, R.A.C. Ferreira, D.F.M. Torres, Discrete-time fractional variational problems, Signal Process. 91 (2011) 3, 513-524.
  4. A. Cañada, S. Villegas, A Variational Approach to Lyapunov Type Inequalities, Springer-Briefs in Mathematics, Springer, Cham, 2015.
  5. A. Chidouh, D.F.M. Torres, A generalized Lyapunov's inequality for a fractional boundary value problem, J. Comput. Appl. Math. 312 (2017), 192-197.
  6. R.A.C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal. 16 (2013) 4, 978-984.
  7. R.A.C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl. 412 (2014) 2, 1058-1063.
  8. R.A.C. Ferreira, Some discrete fractional Lyapunov-type inequalities, Fract. Differ. Calc. 5 (2015) 1, 87-92.
  9. C.S. Goodrich, Solutions to a discrete right-focal fractional boundary value problem, Int. J. Difference Equ. 5 (2010) 2, 195-216.
  10. C. Goodrich, A.C. Peterson, Discrete Fractional Calculus, Springer, Cham, 2015.
  11. A. Guezane-Lakoud, R. Khaldi, D.F.M. Torres, Lyapunov-type inequality for a fractional boundary value problem with natural conditions, SeMA Journal, DOI: 10.1007/s40324-017-0124-2. https://doi.org/10.1007/s40324-017-0124-2.
  12. D.J. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Notes and Reports in Mathematics in Science and Engineering, vol. 5, Academic Press, Boston, MA, 1988.
  13. M. Hashizume, Minimization problem related to a Lyapunov inequality, J. Math. Anal. Appl. 432 (2015) 1, 517-530.
  14. T. Kaczorek, Minimum energy control of fractional positive electrical circuits with bounded inputs, Circuits Systems Signal Process. 35 (2016), 1815-1829.
  15. A. Liapounoff, Problème général de la stabilité du mouvement, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (2) 9 (1907), 203-474.
  16. T. Sun, J. Liu, Lyapunov inequality for dynamic equation with order \(n+1\) on time scales, J. Dyn. Syst. Geom. Theor. 13 (2015) 1, 95-101.
  • Amar Chidouh
  • Houari Boumedienne University, Laboratory of Dynamic Systems, Algiers, Algeria
  • Delfim F. M. Torres
  • Center for Research and Development in Mathematics and Applications (CIDMA), Department of Mathematics, University of Aveiro, 3810-193 Aveiro, Portugal
  • Communicated by Marek Galewski.
  • Received: 2016-11-15.
  • Revised: 2017-05-31.
  • Accepted: 2017-06-18.
  • Published online: 2017-11-13.
Opuscula Mathematica - cover

Cite this article as:
Amar Chidouh, Delfim F. M. Torres, Existence of positive solutions to a discrete fractional boundary value problem and corresponding Lyapunov-type inequalities, Opuscula Math. 38, no. 1 (2018), 31-40, https://doi.org/10.7494/OpMath.2018.38.1.31

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.