Opuscula Math. 38, no. 1 (2018), 15-30
https://doi.org/10.7494/OpMath.2018.38.1.15

 
Opuscula Mathematica

The spectrum problem for digraphs of order 4 and size 5

Ryan C. Bunge
Steven DeShong
Saad I. El-Zanati
Alexander Fischer
Dan P. Roberts
Lawrence Teng

Abstract. The paw graph consists of a triangle with a pendant edge attached to one of the three vertices. We obtain a multigraph by adding exactly one repeated edge to the paw. Now, let \(D\) be a directed graph obtained by orientating the edges of that multigraph. For 12 of the 18 possibilities for \(D\), we establish necessary and sufficient conditions on \(n\) for the existence of a \((K^{*}_{n},D)\)-design. Partial results are given for the remaining 6 possibilities for \(D\).

Keywords: spectrum problem, digraph decompositions.

Mathematics Subject Classification: 05C20, 05C51.

Full text (pdf)

  1. R.J.R. Abel, F.E. Bennett, M. Greig, PBD-Closure, [in:] Handbook of Combinatorial Designs, C.J. Colbourn, J.H. Dinitz (eds), 2nd ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2007, 246-254.
  2. P. Adams, D. Bryant, M. Buchanan, A survey on the existence of \(G\)-designs, J. Combin. Des. 16 (2008), 373-410.
  3. J.-C. Bermond, J. Schönheim, \(G\)-decomposition of \(K_n\), where \(G\) has four vertices or less, Discrete Math. 19 (1977), 113-120.
  4. J.-C. Bermond, C. Huang, A. Rosa, D. Sotteau, Decomposition of complete graphs into isomorphic subgraphs with five vertices, Ars Combin. 10 (1980), 211-254.
  5. D. Bryant, S. El-Zanati, Graph Decompositions, [in:] Handbook of Combinatorial Designs, C.J. Colbourn, J.H. Dinitz (eds), 2nd ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2007, 477-486.
  6. R.C. Bunge, C.J. Cowan, L.J. Cross, S.I. El-Zanati, A.E. Hart, D. Roberts, A.M. Youngblood, Decompositions of complete digraphs into small tripartite digraphs, J. Combin. Math. Combin. Comput. 102 (2017), 239-251.
  7. R.C. Bunge, S.I. El-Zanati, L. Febles Miranda, J. Guadarrama, D. Roberts, E. Song, A. Zale, On the \(\lambda\)-fold spectra of tripartite multigraphs of order 4 and size 5, Ars Combin., to appear.
  8. R.C. Bunge, S.I. El-Zanati, H.J. Fry, K.S. Krauss, D.P. Roberts, C.A. Sullivan, A.A. Unsicker, N.E. Witt, On the spectra of bipartite directed subgraphs of \(K^*_4\), J. Combin. Math. Combin. Comput. 98 (2016), 375-390.
  9. C.J. Colbourn, J.H. Dinitz (eds), Handbook of Combinatorial Designs, 2nd ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2007.
  10. G. Ge, Group divisible designs, [in:] Handbook of Combinatorial Designs, C.J. Colbourn, J.H. Dinitz (eds), 2nd ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2007, 255-260.
  11. G. Ge, S. Hu, E. Kolotoğlu, H. Wei, A complete solution to spectrum problem for five-vertex graphs with application to traffic grooming in optical networks, J. Combin. Des. 23 (2015), 233-273.
  12. M. Greig, R. Mullin, PBDs: Recursive Constructions, [in:] Handbook of Combinatorial Designs, C.J. Colbourn, J.H. Dinitz (eds), 2nd ed., Chapman & Hall/CRC Press, Boca Raton, FL, 2007, 236-246.
  13. A. Hartman, E. Mendelsohn, The last of the triple systems, Ars Combin. 22 (1986), 25-41.
  14. R.C. Read, R.J. Wilson, An Atlas of Graphs, Oxford University Press, Oxford, 1998.
  15. R.M. Wilson, Decompositions of complete graphs into subgraphs isomorphic to a given graph, Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), Congressus Numerantium, No. XV, Utilitas Math., Winnipeg, Man., 1976, 647-659.
  • Ryan C. Bunge
  • Illinois State University, Normal, IL 61790-4520, USA
  • Steven DeShong
  • Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
  • Saad I. El-Zanati
  • Illinois State University, Normal, IL 61790-4520, USA
  • Alexander Fischer
  • Jacobs High School, Algonquin, IL 60102, USA
  • Dan P. Roberts
  • Illinois Wesleyan University, Bloomington, IL 61701, USA
  • Lawrence Teng
  • University of Michigan, Ann Arbor, MI 48109, USA
  • Communicated by Mariusz Meszka.
  • Received: 2016-01-05.
  • Revised: 2017-06-06.
  • Accepted: 2017-06-14.
  • Published online: 2017-11-13.
Opuscula Mathematica - cover

Cite this article as:
Ryan C. Bunge, Steven DeShong, Saad I. El-Zanati, Alexander Fischer, Dan P. Roberts, Lawrence Teng, The spectrum problem for digraphs of order 4 and size 5, Opuscula Math. 38, no. 1 (2018), 15-30, https://doi.org/10.7494/OpMath.2018.38.1.15

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.