Opuscula Math. 37, no. 6 (2017), 779-794
http://dx.doi.org/10.7494/OpMath.2017.37.6.779

 
Opuscula Mathematica

On the Steklov problem involving the p(x)-Laplacian with indefinite weight

Khaled Ben Ali
Abdeljabbar Ghanmi
Khaled Kefi

Abstract. Under suitable assumptions, we study the existence of a weak nontrivial solution for the following Steklov problem involving the \(p(x)\)-Laplacian \[\begin{cases}\Delta_{p(x)}u=a(x)|u|^{p(x)-2}u \quad \text{in }\Omega, \\ |\nabla u|^{p(x)-2}\frac{\partial u}{\partial \nu}=\lambda V(x)|u|^{q(x)-2}u \quad \text{on }\partial \Omega.\end{cases}\] Our approach is based on min-max method and Ekeland's variational principle.

Keywords: \(p(x)\)-Laplace operator, Steklov problem, variable exponent Sobolev spaces, variational methods, Ekeland's variational principle.

Mathematics Subject Classification: 35J48, 35J66.

Full text (pdf)

  1. A.G. Afrouzi, A. Hadijan, S. Heidarkhani, Steklov problem involving the \(p(x)\)-Laplacian, Electron. J. Differential Equations 134 (2014), 1-11.
  2. M. Allaoui, A.R. El Amrouss, A. Ourraoui, Existence and multiplicity of solutions for a Steklov problem involving the \(p(x)\)-Laplace operator, Electron. J. Differential Equations 132 (2012), 1-12.
  3. S.N. Antontsev, S.I Shmarev, A model porous medium equation with variable exponent of nonlinearity: Existence uniqueness and localization properties of solutions, Nonlinear Anal. Theory Methods Appl. 60 (2005), 515-545.
  4. K. Benali, M. Bezzarga, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Potential Theory and Stochastics in Albac, Aurel Cornea Memorial Volume, Conference Proceedings Albac, September 4-8, 2007, Theta 2008, 21-34.
  5. F. Cammaroto, A. Chinnì, B. Di Bella, Multiple solutions for a Neumann problem involving the \(p(x)\)-Laplacian, Nonlinear Anal. 71 (2009), 4486-4492.
  6. M. Cencelij, D. Repovs, Z. Virk, Multiple perturbations of a singular eigenvalue problem, Nonlinear Anal. 119 (2015), 37-45.
  7. Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image processing, SIAM J. Appl. Math. 66 (2006), 1383-1406.
  8. G. D'Aguí, A. Sciammetta, Infinitely many solutions to elliptic problems with variable exponent and nonhomogeneous Neumann conditions, Nonlinear Anal. 75 (2012), 5612-5619.
  9. G. Dai, Infinitely many non-negative solutions for a Dirichlet problem involving \(p(x)\)-Laplacian, Nonlinear Anal. 71 (2009), 5840-5849.
  10. S.G. Deng, Eigenvalues of the \(p(x)\)-Laplacian Steklov problem, J. Math. Anal. Appl. 339 (2008), 925-937.
  11. D. Edmunds, J. Rákosník, Sobolev embeddings with variable exponent, Studia Math. 143 (2000), 267-293.
  12. I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324-353.
  13. X.L. Fan, X. Han, Existence and multiplicity of solutions for \(p(x)\)-Laplacian equations in \(\mathbb{R}^N\), Nonlinear Anal. 59 (2004), 173-188.
  14. X.L. Fan, J.S. Shen, D. Zhao, Sobolev embedding theorems for spaces \(W^{k,p(x)}(\Omega)\), J. Math. Anal. Appl. 262 (2001), 749-760.
  15. X.L. Fan, Q.H. Zhang, Existence of solutions for \(p(x)\)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852.
  16. X.L. Fan, D. Zhao, On the spaces \(L^{p(x)}(\Omega)\) and \(W^{m,p(x)}(\Omega)\), J. Math. Anal. Appl. 263 (2001), 424-446.
  17. Y. Fu, Y. Shan, On the removability of isolated singular points for elliptic equations involving variable exponent, Adv. Nonlinear Anal. 5 (2016) 2, 121-132.
  18. P. Harjulehto, P. Hästö, V. Latvala, Minimizers of the variable exponent, non-uniformly convex Dirichlet energy, J. Math. Pures Appl. 89 (2008), 174-197.
  19. C. Ji, Remarks on the existence of three solutions for the \(p(x)\)-Laplacian equations, Nonlinear Anal. 74 (2011), 2908-2915.
  20. L. Kong, Multiple solutions for fourth order elliptic problems with \(p(x)\)-biharmonic operators, Opuscula Math. 36 (2016) 2, 253-264.
  21. O. Kováčik, J. Rákosník, On spaces \(L^{p(x)}\) and \(W^{k,p(x)}\), Czechoslovak Math. J. 41 (1991), 592-618.
  22. A. Kristály, V. Rădulescu, Cs. Varga, Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems, Encyclopedia of Mathematics and its Applications, vol. 136, Cambridge University Press, Cambridge, 2010.
  23. R.A. Mashiyev, S. Ogras, Z. Yucedag, M. Avci, Existence and multiplicity of weak solutions for nonuniformly elliptic equations with non standard growth condition, Complex Variables and Elliptic Equations 57 (2012) 5, 579-595.
  24. N. Mavinga, M.N. Nkashama, Steklov spectrum and nonresonance for elliptic equations with nonlinear boundary conditions, Electron. J. Differential Equations, 19 (2010), 197-205.
  25. M. Mihăilescu, V. Rădulescu, On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. Amer. Math. Soc. 135 (2007), 2929-2937.
  26. P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Reg. Conf. Ser. Math. 65, Amer. Math. Soc., Providence, RI, 1986.
  27. V. Radulescu, Nonlinear elliptic equations with variable exponent: old and new, Nonlinear Anal. 121 (2015), 336-369.
  28. V. Radulescu, D. Repovs, Partial Differential Equations with Variable Exponents, Variational Methods and Qualitative Analysis, Monographs and Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015.
  29. D. Repovs, Stationary waves of Schrödinger-type equations with variable exponent, Anal. Appl. (Singap.) 13 (2015) 6, 645-661.
  30. M. Ružička, Electro-rheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1784, Springer-Verlag, Berlin, 2000.
  31. Z. Wei, Z. Chen, Existence results for the \(p(x)\)-Laplacian with nonlinear boundary conditions, ISRN Applied Mathematics 2012 (2012), Article ID 727398.
  32. Z. Yucedag, Solutions of nonlinear problems involving \(p(x)\)-Laplacian operator, Adv. Nonlinear Anal 4 (2015) 4, 285-293.
  33. V.V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR. Izv 29 (1987), 33-66.
  • Khaled Ben Ali
  • Jazan Technical College, P.O. Box: 241 Jazan 45952, Saudi Arabia
  • University of Tunis El Manar, Faculty of Sciences, 1060 Tunis, Tunisia
  • Abdeljabbar Ghanmi
  • University of Jeddah, Faculty of Science and Arts, Mathematics Department, Khulais, Saudi Arabia
  • University of Tunis El Manar, Faculty of Sciences, 1060 Tunis, Tunisia
  • Khaled Kefi
  • Northern Border University, Community College of Rafha, Saudi Arabia
  • University of Tunis El Manar, Faculty of Sciences, 1060 Tunis, Tunisia
  • Communicated by Vicentiu D. Radulescu.
  • Received: 2017-01-06.
  • Revised: 2017-01-19.
  • Accepted: 2017-01-28.
  • Published online: 2017-09-28.
Opuscula Mathematica - cover

Cite this article as:
Khaled Ben Ali, Abdeljabbar Ghanmi, Khaled Kefi, On the Steklov problem involving the p(x)-Laplacian with indefinite weight, Opuscula Math. 37, no. 6 (2017), 779-794, http://dx.doi.org/10.7494/OpMath.2017.37.6.779

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.