Opuscula Math. 37, no. 5 (2017), 647-664
http://dx.doi.org/10.7494/OpMath.2017.37.5.647

Opuscula Mathematica

# Block colourings of 6-cycle systems

Paola Bonacini
Mario Gionfriddo
Lucia Marino

Abstract. Let $$\Sigma=(X,\mathcal{B})$$ be a $$6$$-cycle system of order $$v$$, so $$v\equiv 1,9\mod 12$$. A $$c$$-colouring of type $$s$$ is a map $$\phi\colon\mathcal {B}\rightarrow \mathcal{C}$$, with $$C$$ set of colours, such that exactly $$c$$ colours are used and for every vertex $$x$$ all the blocks containing $$x$$ are coloured exactly with $$s$$ colours. Let $$\frac{v-1}{2}=qs+r$$, with $$q, r\geq 0$$. $$\phi$$ is equitable if for every vertex $$x$$ the set of the $$\frac{v-1}{2}$$ blocks containing $$x$$ is partitioned in $$r$$ colour classes of cardinality $$q+1$$ and $$s-r$$ colour classes of cardinality $$q$$. In this paper we study bicolourings and tricolourings, for which, respectively, $$s=2$$ and $$s=3$$, distinguishing the cases $$v=12k+1$$ and $$v=12k+9$$. In particular, we settle completely the case of $$s=2$$, while for $$s=3$$ we determine upper and lower bounds for $$c$$.

Keywords: 6-cycles, block-colourings, G-decompositions.

Mathematics Subject Classification: 05C15, 05B05.

Full text (pdf)

• Paola Bonacini
• Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
• Mario Gionfriddo
• Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
• Lucia Marino
• Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
• Communicated by Mariusz Meszka.
• Revised: 2016-12-10.
• Accepted: 2016-12-21.
• Published online: 2017-07-05.