Opuscula Math. 37, no. 4 (2017), 567-575
http://dx.doi.org/10.7494/OpMath.2017.37.4.567

 
Opuscula Mathematica

Anti-Ramsey numbers for disjoint copies of graphs

Izolda Gorgol
Agnieszka Görlich

Abstract. A subgraph of an edge-colored graph is called rainbow if all of its edges have different colors. For a graph \(G\) and a positive integer \(n\), the anti-Ramsey number \(ar(n,G)\) is the maximum number of colors in an edge-coloring of \(K_n\) with no rainbow copy of \(H\). Anti-Ramsey numbers were introduced by Erdȍs, Simonovits and Sós and studied in numerous papers. Let \(G\) be a graph with anti-Ramsey number \(ar(n,G)\). In this paper we show the lower bound for \(ar(n,pG)\), where \(pG\) denotes \(p\) vertex-disjoint copies of \(G\). Moreover, we prove that in some special cases this bound is sharp.

Keywords: anti-Ramsey number, rainbow number, disjoint copies.

Mathematics Subject Classification: 05C55, 05C15.

Full text (pdf)

  1. N. Alon, On the conjecture of Erdős, Simonovits and Sós concerning anti-Ramsey theorems, J. Graph Theory 7 (1983), 91-94.
  2. A. Bialostocki, S. Gilboa, Y. Roditty, Anti-Ramsey numbers of small graphs, Ars Combin. 123, 41-53.
  3. P. Erdős, M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hungar. 1 (1966), 51-57.
  4. P. Erdős, M. Simonovits, V. Sós, Anti-Ramsey theorems, [in:] A. Hajnal, R. Rado, V. Sós (eds), Infinite and finite sets, Colloq. Math. Soc. J. Bolyai, North-Holland, 1973, 633-643.
  5. S. Fujita, A. Kaneko, I. Schiermeyer, K. Suzuki, A rainbow \(k\)-matching in the complete graph with \(r\) colors, Electron. J. Combin. 16 (2009), 51.
  6. S. Fujita, C. Magnant, K. Ozeki, Rainbow generalizations of Ramsey theory: A survey, Graphs Combin. 26 (2010), 1-30.
  7. S. Gilboa, Y. Roditty, Anti-Ramsey numbers of graphs with small connected components, Graphs Combin. 32 (2016), 649-662.
  8. I. Gorgol, On rainbow numbers for cycles with pendant edges, Graphs Combin. 24 (2008), 327-331.
  9. R. Haas, M. Young, The anti-Ramsey number of perfect matching, Discrete Math. 312 (2012), 933-937.
  10. T. Jiang, Edge-colorings with no large polychromatic stars, Graphs Combin. 18 (2002), 303-308.
  11. T. Jiang, D.B. West, On the Erdős-Simonovits-Sós conjecture about the anti-Ramsey number of a cycle, Combin. Probab. Comput. 12 (2003), 585-598.
  12. T. Jiang, D.B. West, Edge-colorings of complete graphs that avoid polychromatic trees, Discrete Math. 274 (2004), 137-145.
  13. J.J. Montellano-Ballesteros, V. Neuman-Lara, An anti-Ramsey theorem on cycles, Graphs and Combinatorics 21 (2005), 343-354.
  14. J.J. Montellano-Ballesteros, On totally multicolored stars, J. Graph Theory 51 (2006), 225-243.
  15. J.J. Montellano-Ballesteros, Totally multicolored diamonds, Electron. Notes Discrete Math. 30 (2008), 231-236.
  16. O. Ore, Arc coverings of graphs, Ann. Math. Pure Appl. 55 (1961), 315-321.
  17. I. Schiermeyer, Rainbow numbers for matchings and complete graphs, Discrete Math. 286 (2004), 157-162.
  18. I. Schiermeyer, R. Soták, Rainbow numbers for graphs containing small cycles, Graphs Combin. 31 (2015) 1985-1991.
  • Izolda Gorgol
  • Lublin University of Technology, Department of Applied Mathematics, Nadbystrzycka 38D, 20-618 Lublin, Poland
  • Agnieszka Görlich
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. A. Mickiewicza 30, 30-059 Krakow, Poland
  • Communicated by Ingo Schiermeyer.
  • Received: 2016-03-10.
  • Revised: 2016-07-20.
  • Accepted: 2016-08-06.
  • Published online: 2017-04-28.
Opuscula Mathematica - cover

Cite this article as:
Izolda Gorgol, Agnieszka Görlich, Anti-Ramsey numbers for disjoint copies of graphs, Opuscula Math. 37, no. 4 (2017), 567-575, http://dx.doi.org/10.7494/OpMath.2017.37.4.567

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.