Opuscula Math. 36, no. 5 (2016), 631-649
http://dx.doi.org/10.7494/OpMath.2016.36.5.631

 
Opuscula Mathematica

Multiplicity results for an impulsive boundary value problem of p(t)-Kirchhoff type via critical point theory

A. Mokhtari
T. Moussaoui
D. O'Regan

Abstract. In this paper we obtain existence results of \(k\) distinct pairs nontrivial solutions for an impulsive boundary value problem of \(p(t)\)-Kirchhoff type under certain conditions on the parameter \(\lambda\).

Keywords: genus theory, nonlocal problems, impulsive conditions, Kirchhoff equation, \(p(t)\)-Laplacian, variational methods, critical point theory.

Mathematics Subject Classification: 35A15, 35B38, 34A37.

Full text (pdf)

  1. A. Ambrosetti, A. Malchiodi, Nonlinear Analysis and Semilinear Elliptic Problems, Cambridge University Press, Cambridge, 2007.
  2. A. Castro, Metodos Variacionales y Analisis Funcional no Lineal, X Coloquio Colombiano de Matematicas, 1980.
  3. J. Chabrowski, Y. Fu, Existence of solutions for \(p(t)\)-Laplacian problems on a bounded domain, J. Math. Anal. Appl. 306 (2005), 604-618.
  4. H. Chen, J. Li, Variational approach to impulsive differential equation with Dirichlet boundary conditions, Bound. Value Probl. 2010 (2010), 1-16.
  5. D.C. Clarke, A variant of the Lusternik-Schnirelmann theory, Indiana Univ. Math. J. 22 (1972), 65-74.
  6. F.J.S.A. Corrêa, G.M. Figueiredo, On an elliptic equation of \(p\)-Kirchhoff-type via variational methods, Bull. Aust. Math. Soc. 74 (2006), 263-277.
  7. F.J.S.A. Corrêa, G.M. Figueiredo, On a \(p\)-Kirchhoff equation via Krasnoselskii's genus, Appl. Math. Lett. 22 (2009), 819-822.
  8. G. Dai, J. Wei, Infinitely many non-negative solutions for a \(p(t)\)-Kirchhoff-type problem with Dirichlet boundary condition, Nonlinear Anal. 73 (2010), 3420-3430.
  9. L. Diening, P. Harjulehto, P. Hastö, M. Ružička, Lebesgue and Sobolev spaces with variable exponents, Lectures Notes in Mathematics, 2011.
  10. X.L. Fan, Q.H. Zhang, Existence of solutions for \(p(t)\)-Laplacian Dirichlet problem, Nonlinear Anal. 52 (2003), 1843-1852.
  11. X.L. Fan, D. Zhao, On the spaces \(L^{p(t)}\) and \(W^{m,p(t)}\), J. Math. Anal. Appl. 263 (2001), 424-446.
  12. M. Galewski, D. O'Regan, Impulsive boundary value problems for \(p(t)\)-Laplacian's via critical point theory, Czechoslovak Math. J. 62 (2012), 951-967.
  13. M. Galewski, D. O'Regan, On well posed impulsive boundary value problems for \(p(t)\)-Laplacian's, Math. Model. Anal. 18 (2013), 161-175.
  14. O. Kavian, Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques, Springer-Verlag, 1993.
  15. M.A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations, MacMillan, New York, 1964.
  16. I. Peral, Multiplicity of solutions for the \(p\)-Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste, 1997.
  17. P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Conference board of the mathematical sciences, American Mathematical Society, Providence, Rhode Island, 1984.
  18. H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.
  • A. Mokhtari
  • Laboratory of Fixed Point Theory and Applications, Department of Mathematics, E.N.S. Kouba, Algiers, Algeria
  • T. Moussaoui
  • Laboratory of Fixed Point Theory and Applications, Department of Mathematics, E.N.S. Kouba, Algiers, Algeria
  • D. O'Regan
  • School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland
  • Communicated by Marek Galewski.
  • Received: 2016-01-20.
  • Revised: 2016-03-12.
  • Accepted: 2016-03-30.
  • Published online: 2016-06-29.
Opuscula Mathematica - cover

Cite this article as:
A. Mokhtari, T. Moussaoui, D. O'Regan, Multiplicity results for an impulsive boundary value problem of p(t)-Kirchhoff type via critical point theory, Opuscula Math. 36, no. 5 (2016), 631-649, http://dx.doi.org/10.7494/OpMath.2016.36.5.631

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.