Opuscula Math. 36, no. 3 (2016), 301-314
http://dx.doi.org/10.7494/OpMath.2016.36.3.301

 
Opuscula Mathematica

Higher order Nevanlinna functions and the inverse three spectra problem

Olga Boyko
Olga Martinyuk
Vyacheslav Pivovarchik

Abstract. The three spectra problem of recovering the Sturm-Liouville equation by the spectrum of the Dirichlet-Dirichlet boundary value problem on \([0,a]\), the Dirichlet-Dirichlet problem on \([0,a/2]\) and the Neumann-Dirichlet problem on \([a/2,a]\) is considered. Sufficient conditions of solvability and of uniqueness of the solution to such a problem are found.

Keywords: spectrum, eigenvalue, Dirichlet boundary condition, Neumann boundary condition, Marchenko equation, Nevanlinna function.

Mathematics Subject Classification: 34A55, 34B24.

Full text (pdf)

  1. O. Boyko, O. Martynyuk, V. Pivovarchik, On a generalization of the three spectral inverse problem, Methods of Functional Analysis and Topology, accepted for publication.
  2. O. Boyko, V. Pivovarchik, Ch.-F. Yang, On solvability of the three spectra problem, Mathematische Nachrichten, accepted for publication.
  3. M. Drignei, Uniqueness of solutions to inverse Sturm-Liouville problems with \(L^2(0,a)\) potential using three spectra, Advances in Applied Mathematics 42 (2009), 471-482.
  4. M. Drignei, Constructibility of an \(L^2_R(0,a)\) solution to an inverse Sturm-Liouville using three Dirichlet spectra, Inverse Problems 26 (2010), 025003, 29 pp.
  5. S. Fu, Z. Xu, G. Wei, Inverse indefinite Sturm-Liouville problems with three spectra, J. Math. Anal. Appl. 381 (2011), 506-512.
  6. F. Gesztesy, B. Simon, Inverse spectral analysis with partial information on the potential, I, the case of discrete spectrum, Trans. Am. Math. Soc. 352 (2000), 2765-2789.
  7. O. Hald, Inverse eigenvalue problem for the mantle, Geophys. J. R. Astr. Soc. 62 (1980), 41-48.
  8. H. Hochstadt, B. Lieberman, An inverse Sturm-Liouville problems with mixed given data, SIAM J. Appl. Math. 34 (1978), 676-680.
  9. R.O. Hryniv, Ya.V. Mykytyuk, Inverse spectral problems for Sturm-Liouville operators with singular potentials. Part III: Reconstruction by three spectra, J. Math. Anal. Appl. 284 (2003) 2, 626-646.
  10. I.S. Kac, M.G. Krein, R-functions-analytic functions mapping the upper half-plane into itself, Amer. Math. Transl. (2) 103 (1974), 1-18.
  11. C.-K. Law, V. Pivovarchik, Characteristic functions of quantum graphs, J. Phys. A: Math. Theor. 42 (2009) 3, 035302, 11 pp.
  12. V.A. Marchenko, Sturm-Liouville Operators and Applications, Birkhäuser OT 22, Basel, 1986.
  13. O. Martynyuk, V. Pivovarchik, On Hochstadt-Lieberman theorem, Inverse Problems 26 (2010) 3, 035011, 6 pp.
  14. M. Möller, V. Pivovarchik, Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and Their Applications, Birkhäuser OT, 246, Basel, 2015.
  15. V. Pivovarchik, An inverse Sturm-Liouville problem by three spectra, Integral Equations and Operator Theory 34 (1999), 234-243.
  16. V. Pivovarchik, Reconstruction of the potential of the Sturm-Liouville equation from three spectra of boundary value problem, Funct. Anal. Appl. 32 (1999) 3, 87-90.
  17. V. Pivovarchik, On Hald-Gesztesy-Simon, Integral Equations and Operator Theory 73 (2012), 383-393.
  18. V. Pivovarchik, H. Woracek, Sums of Nevanlinna functions and differential equations on star-shaped graphs, Operators and Matrices 3 (2009) 4, 451-501.
  19. L. Sakhnovich, Half-inverse problem on the finite interva, Inverse Problems 17 (2001), 527-532.
  20. T. Suzuki, Inverse problems for heat equations on compact intervals and on circles, I, J. Math. Soc. Japan 38 (1986) 1, 39-65.
  21. G. Wei, H.-K. Xu, On the missing eigenvalue problem for an inverse Sturm-Liouville problem, J. Math. Pures Appl. 91 (2009), 468-475.
  22. G. Wei, X. Wei, A generalization of three spectra theorem for inverse Sturm-Liouville problems, Appl. Math. Lett. 35 (2014), 41-45.
  • Olga Boyko
  • South-Ukrainian National Pedagogical University, Staroportofrankovskaya 26, Odesa, Ukraine, 65020
  • Olga Martinyuk
  • South-Ukrainian National Pedagogical University, Staroportofrankovskaya 26, Odesa, Ukraine, 65020
  • Vyacheslav Pivovarchik
  • South-Ukrainian National Pedagogical University, Staroportofrankovskaya 26, Odesa, Ukraine, 65020
  • Communicated by P.A. Cojuhari.
  • Received: 2015-10-09.
  • Accepted: 2015-11-16.
  • Published online: 2016-02-21.
Opuscula Mathematica - cover

Cite this article as:
Olga Boyko, Olga Martinyuk, Vyacheslav Pivovarchik, Higher order Nevanlinna functions and the inverse three spectra problem, Opuscula Math. 36, no. 3 (2016), 301-314, http://dx.doi.org/10.7494/OpMath.2016.36.3.301

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.