Opuscula Math. 35, no. 3 (2015), 353-370
http://dx.doi.org/10.7494/OpMath.2015.35.3.353

 
Opuscula Mathematica

Spectra of some selfadjoint Jacobi operators in the double root case

Wojciech Motyka

Abstract. In this paper we prove a mixed spectrum of Jacobi operators defined by \(\lambda_n=s(n)(1+x(n))\) and \(q_n=-2s(n)(1+y(n))\), where \((s(n))\) is a real unbounded sequence, \((x(n))\) and \((y(n))\) are some perturbations.

Keywords: Jacobi matrices, double root case, asymptotic behavior, subordination theory, absolutely continuous spectrum, discrete spectrum.

Mathematics Subject Classification: 39A10, 39A70, 47B36, 47B25.

Full text (pdf)

  1. Yu.M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Naukova Dumka, Kiev, 1965.
  2. J.M. Holte, Properties of \(O\)-regularly Varying Sequences: Elementary Proofs, International Congress of Mathematicians, Beijing, 2002.
  3. J. Janas, The asymptotic analysis of generalized eigenvectors of some Jacobi operators - Jordan box case, J. Difference Equ. Appl. 12 (2006), 597-618.
  4. J. Janas, M. Moszyński, Alternative approaches to the absolute continuity of Jacobi matrices with monotonic weights, Integral Equations Operator Theory 43 (2002), 397-416.
  5. J. Janas, S. Naboko, Multitreshold spectral phase transitions for a class of Jacobi matrices, Oper. Theory Adv. Appl. 124 (2001), 267-285.
  6. J. Janas, S. Naboko, Spectral properties of selfadjoint Jacobi matrices coming from birth and death processes, Oper. Theory Adv. Appl. 127 (2001), 387-397.
  7. J. Janas, S. Naboko, E. Sheronova, Asymptotic behavior of generalized eigenvectors of Jacobi matrices in the critical ("double root") case, Journal for Analysis and its Applications 28 (2009), 411-430.
  8. S. Khan, D.B. Pearson, Subordinacy and spectral theory for infinite matrices, Helv. Phys. Acta 65 (1992), 505-527.
  9. M. Moszyński, Non-existence of subordinate solutions for Jacobi operators in some critical cases, Integral Equations Operator Theory 75 (2013), 363-392.
  10. W. Motyka, The asymptotic analysis of a class of self-adjoint second-order difference equations: Jordan box case, Glasg. Math. J. 51 (2009), 109-125.
  11. W. Motyka, Spectral phase transition for a class of power-like Jacobi matrices, Acta Sci. Math. (Szeged) 76 (2010), 443-469.
  12. W. Motyka, Selfadjoint second order difference equations with unbounded coefficients in the double root case, to appear in J. Difference Equ. Appl.
  • Wojciech Motyka
  • AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Krakow, Poland
  • Communicated by S.N. Naboko.
  • Received: 2013-09-15.
  • Revised: 2014-04-06.
  • Accepted: 2014-04-08.
  • Published online: 2014-12-15.
Opuscula Mathematica - cover

Cite this article as:
Wojciech Motyka, Spectra of some selfadjoint Jacobi operators in the double root case, Opuscula Math. 35, no. 3 (2015), 353-370, http://dx.doi.org/10.7494/OpMath.2015.35.3.353

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.