Opuscula Math. 35, no. 3 (2015), 287-291
http://dx.doi.org/10.7494/OpMath.2015.35.3.287

 
Opuscula Mathematica

A note on M2-edge colorings of graphs

Július Czap

Abstract. An edge coloring \(\varphi\) of a graph \(G\) is called an \(M_2\)-edge coloring if \(|\varphi(v)|\le2 \) for every vertex \(v\) of \(G\), where \(\varphi(v)\) is the set of colors of edges incident with \(v\). Let \(K_2(G)\) denote the maximum number of colors used in an \(M_2\)-edge coloring of \(G\). Let \(G_1\), \(G_2\) and \(G_3\) be graphs such that \(G_1\subseteq G_2\subseteq G_3\). In this paper we deal with the following question: Assuming that \(K_2(G_1)=K_2(G_3)\), does it hold \(K_2(G_1)=K_2(G_2)=K_2(G_3)\)?

Keywords: edge coloring, graph.

Mathematics Subject Classification: 05C15.

Full text (pdf)

  1. K. Budajová, J. Czap, \(M_2\)-edge coloring and maximum matching of graphs, Int. J. Pure Appl. Math. 88 (2013), 161-167.
  2. H. Choi, S.L. Hakimi, Scheduling file transfers for trees and odd cycles, SIAM J. Comput. 16 (1987), 162-168.
  3. E.G. Coffman Jr., M.R. Garey, D.S. Johnson, A.S. LaPaugn, Scheduling file transfers, SIAM J. Comput. 14 (1985), 744-780.
  4. J. Czap, \(M_i\)-edge colorings of graphs, Appl. Math. Sciences 5 (2011), 2437-2442.
  5. S.L. Hakimi, O. Kariv, A generalization of edge-coloring in graphs, J. Graph Theory 10 (1986), 139-154.
  6. H. Krawczyk, M. Kubale, An approximation algorithm for diagnostic test scheduling in multicomputer systems, IEEE Trans. Comput. C-34 (1985), 869-872.
  7. S. Nakano, T. Nishizeki, N. Saito, On the \(f\)-coloring of multigraphs, IEEE Trans. Circuits Syst. 35 (1988), 345-353.
  8. X. Zhang, G. Liu, Some sufficient conditions for a graph to be of \(C_f\) 1, Appl. Math. Lett. 19 (2006), 38-44.
  9. X. Zhang, G. Liu, \(f\)-colorings of some graphs of \(f\)-class 1, Acta Math. Sin., Engl. Ser. 24 (2008), 743-748.
  10. X. Zhang, G. Liu, Some graphs of class 1 for \(f\)-colorings, Appl. Math. Lett. 21 (2008), 23-29.
  • Július Czap
  • Department of Applied Mathematics and Business Informatics, Faculty of Economics, Technical University of Košice, Nĕmcovej 32, 040 01 Košice, Slovakia
  • Communicated by Mariusz Meszka.
  • Received: 2013-10-10.
  • Revised: 2014-09-23.
  • Accepted: 2014-09-24.
  • Published online: 2014-12-15.
Opuscula Mathematica - cover

Cite this article as:
Július Czap, A note on M2-edge colorings of graphs, Opuscula Math. 35, no. 3 (2015), 287-291, http://dx.doi.org/10.7494/OpMath.2015.35.3.287

Download this article's citation as:
a .bib file (BibTeX),
a .ris file (RefMan),
a .enw file (EndNote)
or export to RefWorks.

In accordance with EU legislation we advise you this website uses cookies to allow us to see how the site is used. All data is anonymized.
All recent versions of popular browsers give users a level of control over cookies. Users can set their browsers to accept or reject all, or certain, cookies.