AN UPPER BOUND ON THE TOTAL OUTER-INDEPENDENT DOMINATION NUMBER OF A TREE

Marcin Krzywkowski

Abstract. A total outer-independent dominating set of a graph $G = (V(G), E(G))$ is a set D of vertices of G such that every vertex of G has a neighbor in D, and the set $V(G) \setminus D$ is independent. The total outer-independent domination number of a graph G, denoted by $\gamma_{oi}(G)$, is the minimum cardinality of a total outer-independent dominating set of G. We prove that for every tree T of order $n \geq 4$, with l leaves and s support vertices we have $\gamma_{oi}(T) \leq (2n + s - l)/3$, and we characterize the trees attaining this upper bound.

Keywords: total outer-independent domination, total domination, tree.

Mathematics Subject Classification: 05C05, 05C69.

1. INTRODUCTION

Let $G = (V(G), E(G))$ be a graph. By the neighborhood of a vertex v of G we mean the set $N_G(v) = \{u \in V(G) : uv \in E(G)\}$. The degree of a vertex v, denoted by $d_G(v)$, is the cardinality of its neighborhood. By a leaf we mean a vertex of degree one, while a support vertex is a vertex adjacent to a leaf. We say that a support vertex is strong (weak, respectively) if it is adjacent to at least two leaves (exactly one leaf, respectively). The path on n vertices we denote by P_n. Let T be a tree, and let v be a vertex of T. We say that v is adjacent to a path P_n if there is a neighbor of v, say x, such that the subtree resulting from T by removing the edge vx and which contains the vertex x as a leaf, is a path P_n. By a star we mean a connected graph in which exactly one vertex has degree greater than one. By a double star we mean a graph obtained from a star by joining a positive number of vertices to one of its leaves.

We say that a subset of $V(G)$ is independent if there is no edge between every two of its vertices. A subset $D \subseteq V(G)$ is a dominating set of G if every vertex of $V(G) \setminus D$ has a neighbor in D, while it is a total dominating set if every vertex of G has a neighbor in D. The domination (total domination, respectively) number of G, denoted by $\gamma(G)$ ($\gamma_t(G)$, respectively), is the minimum cardinality of a dominating set of G.
A subset $D \subseteq V(G)$ is a total outer-independent dominating set, abbreviated TOIDS, of G if every vertex of G has a neighbor in D, and the set $V(G) \setminus D$ is independent. The total outer-independent domination number of G, denoted by $\gamma_{oi}(G)$, is the minimum cardinality of a total outer-independent dominating set of G. A total outer-independent dominating set of G of minimum cardinality is called a $\gamma_{oi}(G)$-set.

The study of total outer-independent domination in graphs was initiated in [5]. Chellali and Haynes [1] established the following upper bound on the total domination number of a tree. For every nontrivial tree T of order n with s support vertices we have $\gamma(T) \leq (n + s)/2$.

We prove the following upper bound on the total outer-independent domination number of a tree. For every tree T of order $n \geq 4$, with l leaves and s support vertices we have $\gamma_{oi}(T) \leq (2n + s - l)/3$. Moreover, we characterize the trees attaining this upper bound.

2. RESULTS

Since the one-vertex graph does not have a total outer-independent dominating set, in this paper, by a tree we mean only a connected graph with no cycle, and which has at least two vertices.

We begin with the following two straightforward observations.

Observation 2.1. Every support vertex of a graph G is in every $\gamma_{oi}(G)$-set.

Observation 2.2. For every connected graph G of diameter at least three there exists a $\gamma_{oi}(G)$-set that contains no leaf.

We show that if T is a tree of order $n \geq 4$, with l leaves and s support vertices, then $\gamma_{oi}(T)$ is bounded above by $(2n + s - l)/3$. For the purpose of characterizing the trees attaining this bound we introduce a family T of trees $T = T_k$ that can be obtained as follows. Let T_1 be a path P_6, and let $A(T_1)$ be a set containing all vertices of P_6 which are not leaves. Let T_2 be a path P_3, and let $A(T_2)$ be a set containing all vertices of P_3 which are not leaves and is adjacent to a support vertex. Let $A(T) = A(T') \cup \{u, v\}$.

Now we prove that for every tree T of the family T, the set $A(T)$ defined above is a TOIDS of minimum cardinality equal to $(2n + s - l)/3$.

– Operation O_1: Attach a copy of H by joining the vertex u to a vertex of T_k adjacent to a path P_3. Let $A(T) = A(T') \cup \{u, v\}$.

– Operation O_2: Attach a copy of H by joining the vertex u to a vertex of T_k which is not a leaf and is adjacent to a support vertex. Let $A(T) = A(T') \cup \{u, v\}$.

– Operation O_3: Attach a copy of H by joining the vertex u to a weak support vertex of T_k adjacent to a weak support vertex. Let $A(T) = A(T') \cup \{u, v\}$.
Lemma 2.3. If $T \in \mathcal{T}$, then the set $A(T)$ defined above is a $\gamma_{oi}^{\alpha}(T)$-set of size $(2n + s - l)/3$.

Proof. We use the terminology of the construction of the trees $T = T_k$, the set $A(T)$, and the graph H defined above. To show that $A(T)$ is a $\gamma_{oi}^{\alpha}(T)$-set of cardinality $(2n + s - l)/3$ we use induction on the number k of operations performed to construct the tree T. If $T = T_1 = P_6$, then $(2n + s - l)/3 = (12 + 2 - 2)/3 = 4 = |A(T)| = \gamma_{oi}^{\alpha}(T)$.

Let $k \geq 2$ be an integer. Assume that the result is true for every tree $T'' = T_k$ of the family T constructed by $k - 1$ operations. Let n' mean the order of the tree T', l' the number of its leaves, and s' the number of support vertices. Let $T = T_{k+1}$ be a tree of the family T constructed by k operations.

First assume that T is obtained from T' by operation O_1. We have $n = n' + 3$, $s = s' + 1$, and $l = l' + 1$. The vertex of T'' to which is attached P_3 we denote by x. Let abc mean a path P_3 adjacent to x, and such that $a \neq u$. It is easy to see that $A(T) = A(T') \cup \{u, v\}$ is a TOIDS of the tree T. Thus $\gamma_{oi}^{\alpha}(T) \leq \gamma_{oi}^{\alpha}(T') + 2$. Now let D be a $\gamma_{oi}^{\alpha}(T)$-set that contains no leaf. By Observation 2.1, we have $v \in D$. Each one of the vertices v and b has to have a neighbor in D, thus $u, a \in D$. Let us observe that $D \setminus \{u, v\}$ is a TOIDS of the tree T' as the vertex x has a neighbor in $D \setminus \{u, v\}$. Therefore $\gamma_{oi}^{\alpha}(T') \leq \gamma_{oi}^{\alpha}(T) - 2$. Now we conclude that $\gamma_{oi}^{\alpha}(T) = \gamma_{oi}^{\alpha}(T') + 2$. We get $\gamma_{oi}^{\alpha}(T) = |A(T)| = |A(T')| + 2 = (2n' + s' - l')/3 + 2 = (2n - 6 + s - 1 - l + 1)/3 + 2 = (2n + s - l)/3$.

Now assume that T is obtained from T' by operation O_2. We have $n = n' + 3$, $s = s' + 1$, and $l = l' + 1$. The vertex of T'' to which is attached P_3 we denote by y. Let y mean a support vertex adjacent to x. It is easy to see that $A(T) = A(T') \cup \{u, v\}$ is a TOIDS of the tree T. Thus $\gamma_{oi}^{\alpha}(T) \leq \gamma_{oi}^{\alpha}(T') + 2$. Now let D be a $\gamma_{oi}^{\alpha}(T)$-set that contains no leaf. By Observation 2.1 we have $v, y \in D$. The vertex v has to have a neighbor in D, thus $u \in D$. Let us observe that $D \setminus \{u, v\}$ is a TOIDS of the tree T' as the vertex x has a neighbor in $D \setminus \{u, v\}$. Therefore $\gamma_{oi}^{\alpha}(T') \leq \gamma_{oi}^{\alpha}(T) + 2$. Now we conclude that $\gamma_{oi}^{\alpha}(T) = \gamma_{oi}^{\alpha}(T') + 2$. In the same way as in the previous possibility we get $\gamma_{oi}^{\alpha}(T) = (2n + s - l)/3$.

Now assume that T is obtained from T' by operation O_3. We have $n = n' + 3$, $s = s' + 1$, and $l = l'$. The leaf to which is attached P_3 we denote by y. Let y mean a neighbor of x other than u. It is easy to see that $A(T) = A(T') \cup \{u, v\}$ is a TOIDS of the tree T. Thus $\gamma_{oi}^{\alpha}(T) \leq \gamma_{oi}^{\alpha}(T') + 2$. Now let us observe that there exists a $\gamma_{oi}^{\alpha}(T)$-set that does not contain the vertex x, and does not contain any leaf. Let D be such a set. By Observation 2.1 we have $v \in D$. The vertex v has to have a neighbor in D, thus $u \in D$. The set $V(T) \setminus D$ is independent, thus $y \in D$. Let us observe that $D \setminus \{u, v\}$ is a TOIDS of the tree T' as the vertex x has a neighbor in $D \setminus \{u, v\}$. Therefore $\gamma_{oi}^{\alpha}(T') \leq \gamma_{oi}^{\alpha}(T) - 2$. Now we conclude $\gamma_{oi}^{\alpha}(T) = \gamma_{oi}^{\alpha}(T') + 2$. We get $\gamma_{oi}^{\alpha}(T) = |A(T)| = |A(T')| + 2 = (2n' + s' - l')/3 + 2 = (2n - 6 + s - l)/3 + 2 = (2n + s - l)/3$.

Now we establish the main result, an upper bound on the total outer-independent domination number of a tree together with the characterization of the extremal trees.
Theorem 2.4. If T is a tree of order $n \geq 4$, with l leaves and s support vertices, then $\gamma^a_i(T) \leq (2n + s - l)/3$ with equality if and only if $T = K_{1,3}$ or $T \in T$.

Proof. First assume that $\text{diam}(T) = 2$. Thus T is a star $K_{1,m}$ with $m \geq 3$. If $m = 3$, then $T = K_{1,3}$. We have $\gamma^a_i(T) = 2 = (8 + 1 - 3)/3 = (2n + s - l)/3$. If $m \geq 4$, then $(2n + s - l)/3 = (2n + 2 + 1 - m)/3 = (m + 3)/3 \geq (4 + 3)/3 > 2 = \gamma^a_i(T)$. Now let us assume that $\text{diam}(T) = 3$. Thus T is a double star. We have $(2n + s - l)/3 = (2n + 2 - n + 2)/3 = (n + 4)/3 \geq (4 + 4)/3 > 2 = \gamma^a_i(T)$. Now assume that $\text{diam}(T) = 4$. Let $v_1v_2v_3v_4$ be a longest path in T. If v_3 is adjacent to a leaf, then all support vertices of T form a TOIDS of the tree T. Thus $\gamma^a_i(T) \leq s$. Now we get $\gamma^a_i(T) \leq s = s/3 + 2s/3 = s/3 + 2(n - l)/3 < (2n + s - l)/3$. Now assume that T is not adjacent to any leaf. It is easy to observe that all support vertices of T together with the vertex v_3 form a TOIDS of the tree T. Thus $\gamma^a_i(T) \leq s + 1$. We have $n = l + s + 1$. Now we get $\gamma^a_i(T) \leq s + 1 = s/3 + 2s/3 + 1 = s/3 + 2(n - l - 1)/3 + 1 = (2n + s - 2l - 2)/3 + 1 = (2n + s - l)/3 + (l - 1)/3 < (2n + s - l)/3$. Now assume that $\text{diam}(T) = 5$. Let $v_1v_2v_3v_4v_5$ be a longest path in T. If both vertices v_3 and v_4 are adjacent to a leaf, then all support vertices of T form a TOIDS of the tree T. Thus $\gamma^a_i(T) \leq s$. Now we get $\gamma^a_i(T) \leq s = s/3 + 2s/3 = (2n - 2l)/3 < (2n + s - l)/3$. Now assume that exactly one of the vertices v_3 and v_4 is adjacent to a leaf. Without loss of generality we assume that v_3 is adjacent to a leaf. It is easy to observe that all support vertices of T together with the vertex v_4 form a TOIDS of the tree T. Thus $\gamma^a_i(T) \leq s + 1$. We have $n = l + s + 2$. Now we get $\gamma^a_i(T) \leq s + 1 = s/3 + 2s/3 + 1 = s/3 + 2(n - l - 2)/3 + 2 = (2n + s - l)/3 + 2 = (2n + s - l)/3 + (l - 2)/3$. If T has exactly two leaves, then $T = P_2 = T_1 \in T$. By Lemma 2.3 we have $\gamma^a_i(T) = (2n + s - l)/3$. Now assume that T has at least three leaves. We have $\gamma^a_i(T) \leq (2n + s - l)/3 + (l - 2)/3 < (2n + s - l)/3$.

Now assume that $\text{diam}(T) \geq 6$. Thus the order of the tree T is an integer $n \geq 7$. The result we obtain by the induction on the number n. Assume that the theorem is true for every tree T' of order $n' < n$, with l' leaves and s' support vertices.

First assume that some support vertex of T, say x, is strong. Let y mean a leaf adjacent to x. Let $T' = T - y$. We have $n' = n - 1$, $s' = s$, and $l' = l - 1$. Let D' be any $\gamma^a_i(T')$-set. By Observation 2.1 we have $x \in D'$. Of course, D' is a TOIDS of the tree T. Thus $\gamma^a_i(T) \leq \gamma^a_i(T')$. Now we get $\gamma^a_i(T) \leq \gamma^a_i(T') = (2n' + s' - l')/3 = (2n' - 2 + s - l + 1)/3 = (2n' + s - l)/3 - 1/3 < (2n + s - l)/3$. Therefore every support vertex of T is weak.

We now root T at a vertex r of maximum eccentricity $\text{diam}(T)$. Let t be a leaf at maximum distance from r, u be the parent of t, v be the parent of u, w be the parent of u, and d be the parent of w in the rooted tree. By T_z let us denote the subtree induced by a vertex x and its descendants in the rooted tree T.

First assume that $d_T(v) \geq 3$. Assume that among the descendants of u there is a support vertex, say x, different than v. Let $T' = T - T_z$. We have $n' = n - 2$, $s' = s - 1,$
An upper bound on the total outer-independent domination number of a tree

The vertex \(v \) has to have a neighbor in \(D', \) thus \(u \in D' \). It is easy to see that \(D' \cup \{ v \} \) is a TOIDS of the tree \(T \).

Thus \(\gamma_i^{\alpha}(T) \leq \gamma_i^{\alpha}(T') + 1 \). Now we get \(\gamma_i^{\alpha}(T) \leq \gamma_i^{\alpha}(T') + 1 \leq (2n' + s' - l')/3 + 1 = (2n - 4 + s - 1 - l + 1)/3 + 1 = (2n + s - l)/3 - 1/3 < (2n + s - l)/3 \).

Now assume that some descendant of \(u \), say \(x \), is a leaf. Let \(T' = T - x \). We have \(n' = n - 1, s' = s - 1, \) and \(l' = l - 1 \). Let \(D' \) be a \(\gamma_i^{\alpha}(T') \)-set that contains no leaf. The vertex \(v \) has to have a neighbor in \(D' \), thus \(u \in D' \). It is easy to see that \(D' \cup \{ v \} \) is a TOIDS of the tree \(T \).

Thus \(\gamma_i^{\alpha}(T) \leq \gamma_i^{\alpha}(T') \). Now we get \(\gamma_i^{\alpha}(T) \leq \gamma_i^{\alpha}(T') \leq (2n' + s' - l')/3 = (2n - 2 + s - 1 - l + 1)/3 = (2n + s - l)/3 - 2/3 < (2n + s - l)/3 \).

Now assume that \(d_T(u) = 2 \). First assume that there is a descendant of \(u \), say \(k \), such that the distance of \(w \) to the most distant vertex of \(T_k \) is three. It suffices to consider only the possibility when \(T_k \) is a path \(P_3 \), say \(klm \). Let \(T' = T - T_u \). We have \(n' = n - 3, s' = s - 1, \) and \(l' = l - 1 \). Let \(D' \) be any \(\gamma_i^{\alpha}(T') \)-set. It is easy to see that \(D' \cup \{ u \} \) is a TOIDS of the tree \(T \). Thus \(\gamma_i^{\alpha}(T) \leq \gamma_i^{\alpha}(T') + 2 \). Now we get \(\gamma_i^{\alpha}(T) \leq \gamma_i^{\alpha}(T') + 2 \leq (2n' + s' - l')/3 + 2 = (2n - 6 + s - 1 - l + 1)/3 + 2 = (2n + s - l)/3 \).

If \(\gamma_i^{\alpha}(T) = (2n + s - l)/3 \), then obviously \(\gamma_i^{\alpha}(T') = (2n' + s' - l')/3 \). The tree \(T' \) has at least seven vertices. By the inductive hypothesis we have \(T' \in T \). The tree \(T \) can be obtained from \(T' \) by operation \(O_1 \). Thus \(T \in T \).

Now assume that there is a descendant of \(w \), say \(k \), such that the distance of \(w \) to the most distant vertex of \(T_k \) is two. Thus \(k \) is a support vertex. Let \(T' = T - T_u \). In the same way as in the previous possibility we get \(\gamma_i^{\alpha}(T) \leq (2n + s - l)/3 \). If \(\gamma_i^{\alpha}(T) \leq (2n + s - l)/3 \), then \(\gamma_i^{\alpha}(T') = (2n' + s' - l')/3 \). The tree \(T' \) has at least six vertices. By the inductive hypothesis we have \(T' \in T \). The tree \(T \) can be obtained from \(T' \) by operation \(O_2 \). Thus \(T \in T \).

Now assume that some descendant of \(w \), say \(k \), is a leaf. Let \(T' = T - t - k \). We have \(n' = n - 2, s' = s - 1, \) and \(l' = l - 1 \). Let \(D' \) be a \(\gamma_i^{\alpha}(T') \)-set that contains no leaf. By Observation 2.1 we have \(u \in D' \). The vertex \(u \) has to have a neighbor in \(D' \), thus \(w \in D' \). It is easy to observe that \(D' \cup \{ v \} \) is a TOIDS of the tree \(T \). Thus \(\gamma_i^{\alpha}(T) \leq \gamma_i^{\alpha}(T') + 1 \). Now we get \(\gamma_i^{\alpha}(T) \leq \gamma_i^{\alpha}(T') + 1 \leq (2n' + s' - l')/3 + 1 = (2n - 4 + s - 1 - l + 1)/3 + 1 = (2n + s - l)/3 - 1/3 < (2n + s - l)/3 \).

Now assume that \(d_T(u) = 2 \). First assume that \(d \) is adjacent to a leaf. Let \(T' = T - T_u \). We have \(n' = n - 3, s' = s - 1, \) and \(l' = l \). Let \(D' \) be any \(\gamma_i^{\alpha}(T') \)-set. It is easy to see that \(D' \cup \{ u, v \} \) is a TOIDS of the tree \(T \). Thus \(\gamma_i^{\alpha}(T) \leq \gamma_i^{\alpha}(T') + 2 \). Now we get \(\gamma_i^{\alpha}(T) \leq \gamma_i^{\alpha}(T') + 2 \leq (2n + s - l)/3 + 2 = (2n - 6 + s - 1 - l + 1)/3 + 2 = (2n + s - l)/3 - 1/3 < (2n + s - l)/3 \).

Now assume that \(d \) is not adjacent to any leaf. Let \(T' = T - T_u \). We have \(n' = n - 3, s' = s, \) and \(l' = l \). Let \(D' \) be any \(\gamma_i^{\alpha}(T') \)-set. It is easy to see that \(D' \cup \{ u, v \} \) is a TOIDS of the tree \(T \). Thus \(\gamma_i^{\alpha}(T) \leq \gamma_i^{\alpha}(T') + 2 \). Now we get \(\gamma_i^{\alpha}(T) \leq \gamma_i^{\alpha}(T') + 2 \leq (2n + s' - l')/3 + 2 = (2n - 6 + s - 1 - l + 1)/3 + 2 = (2n + s - l)/3 \). If \(\gamma_i^{\alpha}(T) = (2n + s - l)/3 \), then \(\gamma_i^{\alpha}(T') = (2n' + s' - l')/3 \). The tree \(T' \) has at least four vertices and is different from \(K_{1,3} \) as \(T' \) has no strong support vertex. By the inductive hypothesis we have \(T' \in T \). The tree \(T \) can be obtained from \(T' \) by operation \(O_3 \). Thus \(T \in T \).
REFERENCES

Marcin Krzywkowski
marcin.krzywkowski@gmail.com

Gdańsk University of Technology
Faculty of Electronics, Telecommunications and Informatics
ul. Narutowicza 11/12, 80–233 Gdańsk, Poland

Received: November 23, 2010.
Revised: March 23, 2011.
Accepted: March 28, 2011.