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Abstract. In this paper, we investigate the growth of meromorphic solutions of the linear
differential equation

f(k) + hkfl(z)epkil(z)f(k_l) NI ho(z)ePO(z)f =0,

where k > 2 is an integer, Pj(z) (j =0,1,...,k — 1) are nonconstant polynomials and h;(z)
are meromorphic functions. Under some conditions, we determine the hyper-order of these
solutions. We also consider nonhomogeneous linear differential equations.
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1. INTRODUCTION AND RESULTS

In this paper, we assume that the reader is familiar with the fundamental results and
the standard notations of the Nevanlinna value distribution theory of meromorphic
functions (see [15,21]). Let o(f) denote the order of growth of a meromorphic function f.
We recall the following definitions.

Definition 1.1 ([9,16]). Let f be a meromorphic function. Then the hyper-order
oo(f) of f is defined by

1
o2(f) = lim supiOg log T'(r f)
r—+00 logr

)

where T'(r, f) is the Nevanlinna characteristic of f (see [15,21]).
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Definition 1.2 ([9]). Let f be a meromorphic function. Then the hyper-exponent of
convergence of zeros sequence of f is defined by

loglog N (r, L

Xa(f) = limsup#7
r—+00 logr

where N (r, %) is the integrated counting function of zeros of f in {z : |z| < r}. Similarly,

the hyper-exponent of convergence of the sequence of distinct zeros of f is defined by

_ loglog N (r, &
Aa(f) = limsup#
r—-+o00 10g T

)

where N (r, %) is the integrated counting function of distinct zeros of f in {z : |z| < r}.

We define the logarithmic measure of a set E C (1,+00) by Im(E) = f1+oo X%Wdt,
where xg is the characteristic function of F.
For the second order linear differential equation

F7 4 ha(2)eP @ f1 4 ho(2)e?@ f =0, (1.1)

where P(z) and Q(z) are nonconstant polynomials, hi(z) and hg(z) # 0 are entire
functions satisfying o(h1) < deg P and o(hg) < deg@, Gundersen showed in ([12,
p. 419]) that if degP # deg @, then every nonconstant solution of equation (1.1) is of
infinite order. If deg P = deg @, then equation (1.1) may have nonconstant solutions
of finite order. Indeed, f(z) = e*+2 satisfies "+ Je* f' — e f = 0. Kwon [16] studied
the case where deg P = deg () and proved the following result.

Theorem 1.3 ([16]). Let P(z) = anz™+...+a1z+ag and Q(z) = b2 +...+b1z+bg
be nonconstant polynomials, where a;,b; (i = 0,1,...,n) are complex numbers such
that a,b, # 0. Let hj(z) (j =0,1) be entire functions with o(h;) < n. Suppose that
arga, # argb, or a, = cb, (0 < ¢ < 1). Then every nonconstant solution f of
equation (1.1) is of infinite order and satisfies o2(f) > n.

In [7], Chen improved the result of Theorem 1.3 for the linear differential equation
(1.1) as follows.

Theorem 1.4 ([7]). Let P(z) = anz™+...+ar1z+ag and Q(z) = bz +...+b1z2+bo
be nonconstant polynomials, where a;,b; (i =0,1,...,n) are complex numbers such
that anb, # 0. Let h1(z), ho(z) (£ 0) be entire functions with o(h;) < n. Suppose that
arg a, # argb, or a, = cb, (0 < c <1). Then every solution f(Z 0) of (1.1) satisfies
O'Q(f) =n.

In [2], Belaidi extended Theorem 1.3 for higher order linear differential equations
with meromorphic coefficients as follows.
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Theorem 1.5 ([2]). Let k > 2 be an integer and P;(z)=Y 1 ja; ;2" (j=0,1,...,k—1)
be nonconstant polynomials, where ag j,...,an; (7 =0,...,k—1) are complex numbers
such that an jano # 0 (j = 1,...,k—1). Let hj(z) (#0) (j =0,1,...,k—1) be
meromorphic functions. Suppose that arg a, ; # argano or an; = cjano (0 <c¢;j <1)
(j=1,...,k=1) ando(h;) <n (j =0,1,...,k—1). Then every meromorphic solution
f (Z0) of the differential equation

O by g (2)ePe=1G) p=l) by (2)eP @) f g g (2)efPB) =0 (1.2)

is of infinite order.
In 2008, Tu and Yi obtained the following result.

Theorem 1.6 ([18]). Let k > 2 be an integer and Pj(z)=>"_a; ;' (j=0,1,...,k-1)
be polynomials with degree n > 1, where a,; (j =0,1,...,k—1) are complex numbers.
Let hj(z) (j = 0,1,...,k — 1) be entire functions with o(h;) < n. Suppose that
there exist nonzero complex numbers a, s and a,; such that 0 < s < < k-1,
Un,s = |Gns] e Ap = |an,l|ew", Os, 0, € [0,27), 05 # 0;, hshy Z 0 and for j # s,l,
an,; satisfies either an ; = d;jan s (0 < dj < 1) oran; = djan; (0 <d; <1). Then
every transcendental solution f of equation (1.2) satisfies o(f) = +oo. Furthermore,
if f is a polynomial solution of equation (1.2), then deg f < s—1;if s = 1, then every
nonconstant solution [ of equation (1.2) satisfies o(f) = +oo.

Recently, Xiao and Chen considered higher order linear differential equations and
proved the following result.

Theorem 1.7 ([20]). Let k > 2 be an integer, A;j(z) (j =0,1,...,k — 1) be entire
functions with 0(A;) <1 and a; (j=0,1,...,k —1) be complex numbers. If A; # 0,
then a; # 0. Suppose that there exists {a;,, iy, ..., i, } C {a,,a,,...,ap_1} such that
arga;, (j = 1,2,...,m) are distinct and for every nonzero a; € {a,,a,,...,ap_1}\

{ai,, aiy, ..., aq,}, there exists some a;; € {a;,,ai,,...,a;,} such that a; = cl( ])aij

(0< cl(ij) < 1). Then every transcendental solution of equation

F® 4 A (z)em 22 fB=D 4 A (2)eMF f 4 Ag(2)e®F f =0 (1.3)
is of infinite order. Furthermore, if ag = a;;, or ag = céijo)aijo (0< c(()ijo) # cfj“) <1),
where s € {1,...,k — 1} and a;;, € {ai,,ai,,...,a;,}, then every solution f(# 0) of
equation (1.3) is of infinite order.

In 2008, Belaidi and Abbas [4] considered equations of the form (1.2), where h;(z)
(j=0,...,k — 1) are entire functions. Recently, Habib and Belaidi [13] studied higher
order linear differential equations with meromorphic functions. In this paper, we
continue the research in this type of problems. The main purpose of this paper is to
extend and improve the above results to equations of the form (1.2) with meromorphic
coefficients. We also consider the nonhomogeneous case. We will prove the following
results.
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Theorem 1.8. Let k > 2 be an integer and Pj(z) = > i a; ;2 (j =0,1,...,k—1) be
nonconstant polynomials with degree n > 1, where ag j,a1 j,...,6n; (7 =0,...,k—1)
are complex numbers. Let hj(z) (j =0,1,...,k — 1) be meromorphic functions with
o(h;) < n. Suppose that there exists s € {1,...,k — 1} such that hy #0,an,; = ¢jan s
(0 <¢j < 1) (j # s). Then every transcendental meromorphic solution f whose
poles are of uniformly bounded multiplicity of equation (1.2) is of infinite order and
satisfies oo(f) = n. Furthermore, if ho £ 0 and max{ci,...,cs—1} < co, then every
meromorphic solution f(# 0) whose poles are of uniformly bounded multiplicity of
equation (1.2) is of infinite order and satisfies oo(f) = n.

Example 1.9. Consider the linear differential equation

i (izijf)ezf"—k (%)e%f' - (1 + %)ezf =0.

Obiviously, the conditions of Theorem 1.8 are satisfied. So, every transcendental
meromorphic solution f of this equation whose poles are of uniformly bounded
multiplicity is of infinite order and satisfies o2(f) = 1. Remark that f(z) = ze¢
is a solution of this equation with o(f) = +00 and oo(f) = 1.

Theorem 1.10. Let k > 2 be an integer, Pj(z) = Y. ja;;2" (j =0,...,k—1) be
polynomials with degree n > 1, where ag j,...,an,; (j = 0,...,k — 1) are complex
numbers. Let h;(z) (j = 0,...,k — 1) be meromorphic functions with o(h;) < n.
Suppose that there exist s, d € {1,...,k — 1} such that hshg # 0,0, = |an.s| e,
Qp,d = \an7d|ei9d,95,0d € [0,2m),05 # 04 and for j € {0,....k—1}\{d,s}, an;
satisfies either an j = cjan,s OT Qnj = CjGn 4 (0< cj < 1). Then every transcendental
meromorphic solution f whose poles are of uniformly bounded multiplicity of equation
(1.2) is of infinite order and satisfies oo(f) = n.

Theorem 1.11. Let k > 2 be an integer and Pj(z) =" a;;z' (j=0,1,...,k—1)
be polynomials with degree n > 1, where ag j,...,an; (7 =0,...,k —1) are complex
numbers. Let h;(z) (j = 0,1,...,k — 1) be meromorphic functions with o(h;) < n.
If hj # 0, then a,; # 0. Suppose that there exists {an,i,,Gniys---,0ni,} C

{anyl,anm RN an,kq} such that argay i, (j =1,2,...,m) are distinct and for every
nonzero
Gn,1 € {an,l 1Ay oy e e vy an,k—l}\ {a’”,h yAnjigs -+ vy an,im} ’
. _ ()
there exists some Gpni;, € {Gniy,Anyiys-- -y 0nyi, } Such that any = ¢ an;, (0 <

cl(ij) < 1). Then every transcendental meromorphic solution f whose poles are of

uniformly bounded multiplicity of equation (1.2) is of infinite order and satisfies
o2(f) = n. Furthermore, if ayn o = Qnijy OT Qn0 = c(()ljo)a?m“70 (0 < cé”o) # ci’fo) < 1),
where s € {1,...,k— 1} and nij, € {niysQniigs---sani,, }, then every meromorphic
solution f(# 0) whose poles are of uniformly bounded multiplicity of equation (1.2) is
of infinite order and satisfies o2(f) = n.
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Theorem 1.12. Let k > 2 be an integer, Pj(z), hj(z) and a,; (j =0,1,...,k—1)
satisfy hypotheses of Theorem 1.8 or Theorem 1.10 or Theorem 1.11. Let F' # 0 be
a meromorphic function of order o(f) < n. Then every transcendental meromorphic
solution f whose poles are of uniformly bounded multiplicity of the linear differential
equation

F®) 4 hp_1(2)ePe1 @ pE=D b (2)e B f 4 hg(2)ePE) f = F (1.4)

is of infinite order and satisfies Mo(f) = Xo(f) = o2(f) = n with at most one
exceptional solution fy of finite order.

Remark 1.13. It is well-known that a linear differential equation with holomorphic
coefficients must have holomorphic solutions. But the characteristic of solutions is more
complicated for a linear differential equation with meromorphic coefficients. For some
works related to existence of meromorphic solutions of linear differential equations,
see [10,17,22].

2. PRELIMINARY LEMMAS

Lemma 2.1 ([1]). Let P;j(z) (j = 0,1,...,k) be polynomials with deg Py(z) = n

(n>1) and deg Pj(z) <n (j =0,1,...,k). Let Aj(2) (j =0,...,k) be meromorphic
functions with finite order and max{c(A;):j=0,1,...,k} <n such that Ag(z) # 0.
We denote

F(2) = Ap(2)e™@) 4 A;_1(2)e 1) 4 4 A1(2)e ) 4 A(2)eP ),

If deg(Py(z) — Pj(2)) =n for all j = 1,...,k, then f is a nontrivial meromorphic
function with finite order and satisfies o(F) = n.

Lemma 2.2 ([11]). Let f(z) be a transcendental meromorphic function and let
a > 1 and € > 0 be given constants. Then there exist a set F1 C (1,4+00) having
finite logarithmic measure and a constant B > 0 that depends only on a and (i, )
(1,7 positive integers with i > j) such that for all z satisfying |z| = r ¢ [0,1] U Ey,

we have
f9(2)
()

Lemma 2.3 ([19]). Let g(z) be a transcendental entire function and vy(r) be the
central index of g. For each sufficiently large |z| = r, let z,. = re'®" be a point satisfying

i~

B |:T(Ol:7 f) (log® r)log T'(aur, f)

|g(z)| = M(r, g). Then there exist a constant 6, (> 0) and a set Ey of finite logarithmic
measure such that for all z satisfying |z| =r ¢ Ey and argz = 6 € [0, — 0,,0, + &,],
we have -
9" (2) <Vg(7")>n o
= 1+4+0(1)) (n > 1 is an integer).
= () o )

Lemma 2.4 ([11, p. 89]). Let f(z) be a transcendental meromorphic function of
finite order o. Let T' = {(k1,71), (k2,72),- ., (km,Jm)} denote a set of distinct pairs
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of integers satisfying k; > j; > 0 (i =1,2,...,m) and let € > 0 be a given constant.
Then there exists a set E5 C [1,+00) having finite logarithmic measure such that for
all z satisfying |z| = r ¢ [0,1] U E5 and (k,j) € T, we have

‘ M)
fO ()]~

Lemma 2.5. Let f(z) = g(z)/d(z) be a meromorphic function with o(f) = o < 400,
where g(z) and d(z) are entire functions satisfying one of the following conditions:

<z |(k De—1+e)

(i) g being transcendental and d being polynomial,

(ii) g, d all being transcendental and \(d) = o(d) = f < o(g) = 0.
For each sufficiently large |z| = r, let z, = re’ be a point satisfying |g(z,)| =
M(r,g) and let vy(r) be the central index of g. Then there exist a constant 6, (> 0),
a sequence {ry,} rm — +00 and a set E4 of finite logarithmic measure such that
the estimation

meN>?

" (z)
f(2)

holds for all z satisfying |z| = rm ¢ E4, T — +00 and argz =0 € [0, — 6,0, + d,].

- (”g(zm))nu +0(1)) (n > 1 is an integer)

Proof. By mathematical induction, we obtain

(1) d Ji d(n) Jn
n g
PRI T N (A KR (eI e
)

Jj=0 (J1---Jn

where C;, .. ;. are constants and j + ji + 2j2 + ... + nj, = n. Hence
f g — 4( d' A\ In
Ty Z? > Cijiin 7l =) - (2.2)
j=0

(J1--dn)
For each sufficiently large |z| = r, let 2, = re’®" be a point satisfying |g(z,)| = M(r, g).
By Lemma 2.3, there exist a constant d, (> 0) and a set Fs of finite logarithmic

measure such that for all z satisfying |z| = r ¢ E2 and argz = 0 € [0, — 6,0, + 6.],
we have 0 ,
97 (2) (%(T))j ,
- 1+o(1) (j=1,2,...,n), 2.3
o= () asomy ) (23)

where v,4(r) is the central index of g. Substituting (2.3) into (2.2) yields
n—1 j—n
V(1)
——= 1 1
+j§=0j( ) o)

d J1 d(n) Jn
X Z ijl...jn(d> (d) .

(Jljn)

() (2 ve(r)\»
ff(z()):( ) o

(2.4)
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We can choose a constant p such that § < p < . By Lemma 2.4, for any given ¢
(0 < 2e < p—p), we have

‘d(s)(z)
d(z)

where |z| = r ¢ [0,1] U E3, E3 C (1,400) with Im(E3) < +oo. From this and
J1+2j2+...+njp =n—j, we have

d/ J1 d(n) Jn
() - (F)

for |z| =r ¢ [0,1] U E5. By the Wiman-Valiron theory [17, p. 51], we have

< psB=1Fe) (s = 1,2, n), (2.5)

|Z|n*j < |Z|(n*j)(5+5) (2.6)

1
o(g) = limsup log v, (r) =0
r—+o0 log T

Then, by the definition of the limit superior, there exists a sequence {r/,} (r}, — +c0)
satisfying

lim log vy(r7,)

r,—+oo logr!,

Setting the logarithmic measure of Ey = [0,1] U Ey U E5,Im(E,) = § < +o0o0. We
have [/, (6 + 1)rl ]\ Ey # @. Indeed, if [/ ,(§ + 1)r.] \ B4 = &, then for all
m e N,[r],, (6 +1)r;,] C Ey. It follows that J,,cn[rr,, (0 + 1)r,,] C E4 and

=o. (2.7)

(U [ 6+ D) = S WS tog(d+1) = 00 < Im(Fy) = 6

which is a contraction. So, there exists a point r,, € [r},, (6 + 1)7],] \ E4. Since

log v4(rm) > logvy(ry,) log vy (r7,) (2.8)
= r1 log(5+1)7’ :
logry,  ~ log[(0 +1)ri] — (logry,)[1 + B2+
then we have )
l  08%(rm) _ (2.9
rm—=+oo  logry,
Hence for sufficiently large m, we obtain
Vg(rm) =19, 5 =10, (2.10)

where o — ¢ can be replaced by a large enough number M if 0 = +o0. This and (2.5)
lead to

() () (%)

where |z| =1y, ¢ Ey and argz = 6 € [0, —§,, 0, +0,]. From (2.4) and (2.11), we obtain
our result. O

a0 o, (211)
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Lemma 2.6. Let f(z) = g(2)/d(z) be a meromorphic function with o(f) = o < 400,
where g(z) and d(z) are entire functions satisfying one of the following conditions:

(i) g being transcendental and d being polynomial,
(ii) g, d all being transcendental and A\(d) = o(d) = p < o(g) = 0.

For each sufficiently large |z| =, let z, = re'® be a point satisfying |g(z,)| = M(r, g).
Then there exist a constant 6, (> 0), a sequence {rm}, cn, 'm — +00 and a set Es
of finite logarithmic measure such that the estimation

’ f(2)
7o)

holds for all z satisfying |z| = rm ¢ Es,rm — +00 and argz =6 € [0, — 6., 0, + 0,].

< 72" (n > 1 is an integer)

—  m

Proof. Let z, = re" be a point satisfying |g(z,)| = M(r,g). By Lemma 2.5, there
exist a constant &, (> 0), a sequence {rm}, cy, Tm — +00 and a set Ej of finite
logarithmic measure such that the estimation

f(z) (Vg(rm

. )>n(1 +0(1)) (n > 1 is an integer) (2.12)

holds for all z satistying |z| = r, ¢ E5,7m — +00 and argz = 6 € [0, — 6., 0, + d,].
On the other hand, we obtain for any given ¢ > 0 and sufficiently large m

vg(rm) =%, (2.13)

m

where o — € can be replaced by a large enough number M if 0 = +o00. Hence we have

‘ f(2)
7o)

<2, (2.14)

— ' m

O

Lemma 2.7 ([14]). Let P(z) = (a+if8)z" +... («, B are real numbers, |a|+|8| #0)
be a polynomial with degree n > 1 and A(z) be a meromorphic function with o(A) < n.
Set f(z) = A(2)eP’#) (2 = re'?), §(P,0) = acosnd — Bsinnb. Then for any given
e > 0, there exists a set Fg C [1,400) having finite logarithmic measure such that
forany 0 € [0,2mr)\ H (H ={0 € [0,27) : 6(P,0) = 0}) and for |z| =r ¢ [0,1] U Eg,
r — 400, we have

(i) if 6(P,0) > 0, then
exp{(1 —¢)é(P,0)r"} < ‘f(rei9)| <exp{(1+e¢)d(P,0)r"},
(ii) #f 6(P,0) < 0, then

exp{(l+¢)d(P,0)r"} < }f(rei0)| <exp{(1—-2¢)J(P,0)r"}.
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Lemma 2.8 ([12]). Let ¢ : [0,400) — R and ¢ : [0,400) — R be monotone
non-decreasing functions such that ¢(r) < (r) for all r ¢ E; U [0,1], where
E; C (1,400) is a set of finite logarithmic measure. Let o > 1 be a given constant.
Then there exists an ro = ro(a) > 0 such that p(r) < ¥(ar) for all r > r.

Lemma 2.9 ([8]). Let k > 2 be an integer and let Aj(z) (j = 0,1,...,k —1) be
meromorphic functions of finite order. Set p = max{c(4;) : 5 = 0,1,...,k — 1}.
If f is a transcendental meromorphic solution whose poles are of uniformly bounded
multiplicity of the equation

FE 4 A () fE Y L+ A(2) f 4+ Ao(2) f =0,
then oo (f) < p.

Lemma 2.10 ([5]). Let f(z) = g(z)/d(z) be a meromorphic function with o(f) =
o < 400, where g(z) and d(z) are entire functions satisfying one of the following
conditions:

(i) g being transcendental and d being polynomial,
(ii) g, d all being transcendental and \(d) = o(d) = B < o(g) = 0.

Let vg4(r) be the central index of g. Then there exist a sequence {rp,} Ty — 400

and a set Eg of finite logarithmic measure such that the estimation

FG) _ (ve(rm
f(2) _< z

holds for all z satisfying |z| = rm ¢ Es, mm — +00 and |g(2)| = M (rm, g).

meN?

)) (1+0(1)) (n 2 1 is an integer)

Lemma 2.11 ([6]). Let g(z) be a transcendental meromorphic function of order
o(g) = 0 < +oo. Then for any given £ > 0, there exists a set Eg C (1,+00) that has
finite logarithmic measure such that

|9(2)| < exp {r7"*}

holds for |z| =r ¢ [0,1] U Eg, r — +00.
Lemma 2.12 ([9]). Let f(z) = Y. an 2™ be an entire function of infinite order with

n=0

the hyper-order o2(f) = o and let v¢(r) be the central index of f. Then

lim supiIOg log v (r) =0

r—+oo logr
Lemma 2.13. Let k > 2 be an integer, Ao(z),...,Ar—1(2) and F(# 0) be mero-
morphic functions of finite order and let o = max{c(F),0(A;):j=0,...,k—1}.
If f is an infinite order meromorphic solution whose poles are of uniformly bounded
multiplicity of equation

IO 4 A () f*F Y 4+ A (2)f + Ao(2)f = F, (2.15)
then oa(f) < o.
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Proof. Assume that f is an infinite order meromorphic solution whose poles are of
uniformly bounded multiplicity of equation (2.15). By (2.15), we have

f(k) f/
v |7

< [Ar-1(2)]

+.. +A(2 + | A4o(z (2.16)

j aH

By (2.15), it follows that the poles of f can only occur at the poles of A,
(j=0,...,k—1) and F. Note that the poles of f are of uniformly bounded mul-
tiplicity. Hence A(1/f) < 0. By the Hadamard factorization theorem, we know that f

can be written as f(z) = gg;, where g(z) and d(z) are entire functions with

A(d) = o(d) = X(1/f) < 0 < o(f) = o(g) = +o0

and 03(f) = 02(g). By Lemma 2.10, there exist a sequence {7, },,cn , Tm — +00 and
a set Fg of finite logarithmic measure such that the estimation

fIE) _ (vglrm)
f(2) _< z

holds for all z satisfying |z| = 7, ¢ Es,m — +oo and |g(z)] = M(rm,g). By
Lemma 2.11, for any given € > 0, there exists a set Fg C (1,4+00) that has finite
logarithmic measure, such that

|F(z)| <exp{r7*°}, |d(z)| <exp{r’*c} (2.18)

>J(1+0(1)) G=1,....k) (2.17)

and
|A;(2)| <exp{r*°} (j=0,...,k—1) (2.19)

hold for |z| = r ¢ [0,1] U Eg,r — +00. Since M(r,g) > 1 for r sufficiently large, it
follows from (2.18) that

FE G| _ [FOIAE] _ o e
‘f(z) 0G| Mg = p{2r7t°} (2.20)

for |z| = r ¢ [0,1] U Ey,r — —+o00. Substituting (2.17), (2.19) and (2.20) into (2.16),
we obtain

(Vg (rm))™ 1+ o(1)] < (k + D)y, (v (rim )"~ 1+ 0(1)] exp {2r7F°} (2.21)

for all z satisfying |z| = ry, ¢ [0,1] U Es U Eg, 7 — 400 and |g(2)| = M (rs,, g). Thus,
by (2.21), Lemma 2.8 and Lemma 2.12, we have

log1 m
o2(g) = lim sup 22108V (rm)
Tm—+00 log T'm
Since € > 0 is arbitrary, it follows that oo(f) < o. O

Lemma 2.14. ([3]) Let Ay, A1,...,Ar—1,F(# 0) be finite order meromorphic
functions. If f is an infinite order meromorphic solution of equation (2.15), then

Xao(f) = Xa(f) = o2(f).
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3. PROOF OF THEOREM 1.8

First we prove that every transcendental meromorphic solution f of equation (1.2)
is of order o(f) > n. Assume that f is a transcendental meromorphic solution f of
equation (1.2) of order o(f) < n. We can write equation (1.2) in the form

k—1
D hy(z) [P = — 0, (3.1)
j=0

where hjf(j) (j = 0,1,...,k — 1) are meromorphic functions of finite order with

o(hjf9)) < n. We have h,f*) # 0. Indeed, if hyf(*) = 0, it follows that f(*) = 0.
Then f has to be a polynomial of degree less than s. This is a contradiction. Since
anj = ajans (0 <o <1)(j#s), we get deg(Ps(z) — P;j(z)) =n (j # s). Thus by
(3.1) and Lemma 2.1, we have o(—f(*)) = n and this is a contradiction. Hence every
transcendental meromorphic solution f of equation (1.2) is of order o(f) > n.

Assume f is a transcendental meromorphic solution whose poles are of uniformly
bounded multiplicity of equation (1.2). By Lemma 2.2, there exist a constant B > 0
and a set Fy C (1,4+00) having finite logarithmic measure such that for all z satisfying
|z] =7 ¢ [0,1] U E1, we have

f(j)(z)
fO(z)

By (1.2), it follows that the poles of f can only occur at the poles of h;(z) (j =
0,...,k —1). Note that the poles of f are of uniformly bounded multiplicity. Hence

< B[T@2r, f)PTH (0<i<j<k). (3.2)

A1/f) <max{o(h;):j=0,...,k—1} <n.

By the Hadamard factorization theorem, we know that f can be written as f(z) = ZE;; ,

where g(z) and d(z) are entire functions with
A(d) = o(d) = M1/f) <n <o(f) = o(g)-

For each sufficiently large |z| = r, let 2. = re’®" be a point satisfying |g(z,)| = M(r, g).
By Lemma 2.6, there exist a constant 6, (> 0), a sequence {7, },,cn » "'m — +00 and
a set Ej5 of finite logarithmic measure such that the estimation

f(2)
fO(z)
holds for all z satistying |z| = r, ¢ E5,7m — +00 and argz = 6 € [0, — 6., 0, + 0,].
For any given 0 € [0, — 6,,0, + d,] \ H1, where H; = {0 € [0,27) : §(Ps,0) = 0},

we have

<72 (i > 1 is an integer) (3.3)

d(Ps,0) > 0 or 6(Ps,0) < 0.
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Case 1. §(Ps,0) > 0. Put o = max{c; :j#s)}. Then 0 < a < 1. By Lemma 2.7,

for any given £ (0 < 2¢ < }J_—g), there exists a set Eg C [1,400) having finite

logarithmic measure such that for all z satisfying |z] = r ¢ [0,1] U Eg, r — +00
and argz =0 € [0, — 6,0, + 6,] \ Hy, we have

‘hs(z)emz) > exp{(1 — £)3(P,, 0)r"} (3.4)

and

‘hj(z)epf(z) < exp{(1 +£)ad(Py, 0)r"}  (j # 5). (3.5)

We can rewrite (1.2) as

(k) (k—1)
Py _ f o)
hs(z)e o) + hp—1(z)e *t 7o
f(8+1) f(s—l) f
s+ s+ T s—1 N - .
+ hap1(z)els+1®) 7o + hy_1(2)els1(®) 7o (3.6)
!/
Pl T Poz) _f

+ ...+ hi(z)e 7o + ho(z)e'® ol

Substituting (3.2)—(3.5) into (3.6), for all z satisfying |z| = r,, ¢ [0,1] U E; U E5 U Eg,
rm — +o0o and argz =6 € [0, — 0., 60, + §,] \ Hy, we obtain

exp {(1 —¢€)d(Ps, 0)ry,

< Myr2Sexp {(1 +e)ad(Ps, 0)r™ } [T(2r,,, f)]’“'l, (87)

where My (> 0) is a constant. Hence by using Lemma 2.8 and (3.7), we obtain
o(f) = +o0 and o3(f) > n. From this and Lemma 2.9, we have o3(f) = n.

Case 2. 6(Ps,0) < 0. Set § = min{c; : j # s} > 0. By Lemma 2.7, for any given ¢
(0 < 2e < 1), there exists a set Fg C [0, 27) having finite logarithmic measure such that
for all z satisfying |z| = r ¢ [0,1]U Eg, r — 400 and argz = 0 € [0, — 6., 6, + 6,] \ Hy,
we have

he(2)eP* )| < exp{(1 —&)d(Ps,0)r"} (3.8)
and

[15(2)e75 )| < exp{(1 = 2)B3(Po,0)r"} (j # ). (3.9)

By (1.2), we get

(k—1) (s)
1= by (2)eP O 7 % oo hy(2)eR ) ff %
o ; (3.10)
+ ...+ hl(Z)€P1(2)7W + ho(Z)ePO(Z)W.

Substituting (3.2), (3.3), (3.8) and (3.9) into (3.10), for all z satisfying |z| = r,, ¢
[0,11UE; U E5U Eg,ry — +00 and argz =0 € [0, — 6,0, + 6,] \ H1, we obtain

1< Mg?“%f exp {(1 —¢&)Bd(Ps, 0)rl } [T (21, f)]k'H, (3.11)
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where My (> 0) is a constant. Hence by using Lemma 2.8 and (3.11), we obtain
o(f) = +o0 and o3(f) > n. From this and Lemma 2.9, we have o3(f) = n.

Suppose now that hg Z 0 and max {c1,...,cs—1} < ¢o. If f is a rational solution of
(1.2), then by hg # 0 and max {cy,...cs—1} < ¢p, the hypotheses of Theorem 1.8 and

L pe) ek M=1(2) pe ()= Po(2) plh—1)
_ e~ Fo 4 ePr—1 0
/ <h0(z) f ho(2) !

m(2) pi(2)-po(e) />
—|—...—|—h0(z)e i,
we obtain a contradiction since the left side of equation (3.12) is a rational function
but the right side is a transcendental meromorphic function.

Now we prove that equation (1.2) cannot have a nonzero polynomial solution. Set
v =max{cy,...,cs—1} < ¢o and let f be a nonzero polynomial solution of equation
(1.2) with deg f = q. We take a ray argz = 6 € [0,2x) \ Hy such that §(Ps,6) > 0. By

Lemma 2.7, for any given € (0 < 2¢ < min {%’ ZZ_T_YY }), there exists a set Fg C [0, 27)

having finite logarithmic measure such that for all z satisfying |z| = r ¢ [0,1] U Ej,
r — 400 and arg z = 6, we have (3.4), (3.5),

(3.12)

’ho(z)epo(z) < exp{(1 + £)cod(Ps, )}, (3.13)

and
’hj(z)epj(z)‘ < exp{(1+)d(P,,0)"} (j=1,...,5—1). (3.14)

If ¢ > s, then by (1.2), (3.4) and (3.5), for all z with |z| =r ¢ [0,1] U Eg,r — +00
and arg z = 0, we obtain

Msri™% exp {(1 — €)8(Py, 0)r"} < |hg(z)e")

F9)

<3 @) |9 (315)
J#s
< Myrfexp{(1 +e)ad(Ps,0)r"},

where M3, My (> 0) are constants. Hence (3.15) is a contradiction.
If ¢ < s, then by (1.2), (3.13) and (3.14), for all z with |z| = r ¢ [0, 1]UEg, r — +00
and arg z = 0, we obtain

Msrs~ exp {(1 — €)cod(Ps, )} < |ho(2)ef? )

(=)l
s—1

<> [niz)el
j=1

< Mgr*=2exp {(1 + )y6(Ps, 0)r"},

‘f(j)(z)’ (3.16)

where M5, Mg (> 0) are constants. By (3.16), we get a contradiction. Therefore, if
ho #Z 0 and max {c1,...,cs—1} < co, then every meromorphic solution whose poles are
of uniformly bounded multiplicity of equation (1.2) is of infinite order and satisfies

oa(f) =n.
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4. PROOF OF THEOREM 1.10

First we prove that every transcendental meromorphic solution f of equation (1.2)
is of order o(f) > n. Assume that f is a transcendental meromorphic solution f
of equation (1.2) of order o(f) < n. We can write equation (1.2) in the form (3.1),
where hjf(j) (j = 0,1,...,k — 1) are meromorphic functions of finite order with
hof) # 0,haf® # 0 and o(hjf9)) < n (j = 0,1,...,k — 1). Since 0, # 04, it
follows that deg(Ps(z) — Pj(2)) =n (j # s). Thus by (3.1) and Lemma 2.1, we have
o(—f (k)) = n and this is a contradiction. Hence every transcendental meromorphic
solution f of equation (1.2) is of order o(f) > n.

Assume f is a transcendental meromorphic solution whose poles are of uniformly
bounded multiplicity of equation (1.2). By Lemma 2.2, there exist a constant B > 0
and a set Fy C (1,4+00) having finite logarithmic measure such that for all z satisfying
|z| =7 ¢ [0,1] U By, we have (3.2). By (1.2), it follows that the poles of f can only
occur at the poles of h; (j =0,...,k —1). Note that the poles of f are of uniformly
bounded multiplicity. Hence

AM1/f) <max{o(h;):7=0,...,k—1} <n.

By the Hadamard factorization theorem, we know that f can be written as f(z) = i)
where g(z) and d(z) are entire functions with

Ad) = o(d) = A(1/f) <n < a(f) = a(g).

For each sufficiently large |z| = r, let 2, = re’®" be a point satisfying |g(z,)| = M (r, g).
By Lemma 2.6, there exist a constant ¢, (> 0), a sequence {7, },,cn» "'m — +00 and
a set Ej of finite logarithmic measure such that the estimation (3.3) holds for all z
satisfying |z| = rp, € Es5, 7, — 400 and argz =0 € [0, — 0,6, + .. Set

Hy ={0€[0,27) : §(Ps,0) =0 or §(Py,0) =0}
and
Hs; ={0€[0,2m) : 6(Ps,0) = 6(Pa,0)} .
For any given 6 € [0, — §,,0, + ;] \ (Hs U Hs), we have

5(Py,0) #0, 6(Py,0) # 0 and 5(Py,0) > 6(Py,0) or 5(Py,0) < 6(Py, 0).

Set 51 = (5(P5,9) and 52 = (5(Pd79)
Case 1. 01 > 09. Here we also divide our proof in three subcases.

Subcase 1.1. 61 > 69 > 0. Set 03 = max {6(P;,0) : j # s}. Then 0 < 3 < ;. Thus by
Lemma 2.7, for any given € (0 < 2¢ < gi;gg), there exists a set Eg C (1,+00) having
finite logarithmic measure such that for all z satisfying |z| = r ¢ [0,1] U Eg, 7 — +00

and argz =0 € [0, — §,,0, + ;] \ (H2 U Hs), we have

)hs(z)ep‘*(z) > exp{(1 —e)d1r"} (4.1)
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and
‘hj (2)ei)

< exp{(1+2)dgr™} (j # s). (4.2)

Substituting (3.2), (3.3), (4.1) and (4.2) into (3.6), for all z satisfying |z| = ry, ¢
[0,1]UELUE5UEg, 1y, — 400 and arg z = 0 € [0, — 5,0, + 6]\ (H2 U H3), we obtain

exp{(1 —e)dury,} < Miryy exp{(1 +€)dsry, } [T'(2rm, f)]* (4.3)
where M;(> 0) is a constant. Hence by using Lemma 2.8 and (4.3), we obtain

o(f) = +oo and o3(f) > n. From this and Lemma 2.9, we have o5(f) = n.

Subcase 1.2. §1 > 0 > 5. Set v = max{c; : j # s,d} . By Lemma 2.7, for any given
e(0<2< }—%:)’ there exists a set Fg C (1,400) having finite logarithmic measure
such that for all z satisfying |z|] = r ¢ [0,1] U Eg, r — 400 and argz = 6 €
[0 — 6r, 0, + 5, \ (H2 U Hs), we have (4.1) and

‘hj(z)epj(z)

<exp{(l14e)yor"} (j # s). (4.4)

Substituting (3.2), (3.3), (4.1) and (4.4) into (3.6), for all z satisfying |z| = r,, ¢
[0,1]UELUEsUEg, 1y, — 400 and arg z = 0 € [0, — d,, 0, + 6, ] \ (H2 U H3), we obtain

exp {(1 — )17} < Mor2s exp {(1+ €)yd1r™ } [T(27mm, EL, (4.5)

where My (> 0) is a constant. Hence by using Lemma 2.8 and (4.5), we obtain
o(f) = +o0 and o3(f) > n. From this and Lemma 2.9, we have o3(f) = n.

Subcase 1.3. 0 > 61 > d3. Set A = min{¢; :j # s,d)}. By Lemma 2.7, for any
given € (0 < 2e < 1), there exists a set Fg C (1,+00) having finite logarithmic
measure such that for all z satisfying |z| = r ¢ [0,1] U Eg, r — +o0 and argz = 6 €
[0 — 6r, 0, + 6, \ (H2 U H3), we have (3.8) and

’hj (2)e"

<exp{(l —e)Xo1r"} (j # s). (4.6)

Substituting (3.2), (3.3), (3.8) and (4.6) into (3.10), for all z satisfying |z| = r,, ¢
[0,1]UELUE5sUFEg, 1y, — 400 and arg z = 0 € [0, — &, 0, + 6]\ (H2 U H3), we obtain

1< Mgrff exp {(1 —&)\o1r] [T (27, f)]k'H, (4.7)

where M3 (> 0) is a constant. Hence by using Lemma 2.8 and (4.7), we obtain
o(f) = +o0 and o3(f) > n. From this and Lemma 2.9, we have o3(f) = n.

Case 2. 61 < d3. Using the same reasoning as in Case 1, we can also obtain o(f) = +00
and oo(f) = n.

5. PROOF OF THEOREM 1.11

First we prove that every transcendental meromorphic solution f of equation (1.2)
is of order o(f) > n. Assume that f is a transcendental meromorphic solution f of
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equation (1.2) of order o(f) < n. We can rewrite equation (1.2) in the form (3.1),
where hjf(j) (j=0,1,...,k — 1) are meromorphic functions of order cr(hjf(j)) <n
(j =0,1,...,k —1). We have h; f0) £ 0 (s = 1,...,m). Indeed, if h; %) = 0, it
follows that f(s) = 0. Then f has to be a polynomial of degree less than i,. This
is a contradiction. We also have deg(P;,(z) — P;(2)) = n (j # is). Thus by (3.1)
and Lemma 2.1, we obtain o(—f*)) = n and this is a contradiction. Hence every
transcendental meromorphic solution f of equation (1.2) is of order o(f) > n.

Assume f is a transcendental meromorphic solution whose poles are of uniformly
bounded multiplicity of equation (1.2). By Lemma 2.2, there exist a constant B > 0
and a set Ey C [1,400) having finite logarithmic measure such that for all z satisfying
|z| =7 ¢ [0,1] U Eq, we have (3.2). By (1.2), it follows that the poles of f can only
occur at the poles of h;(z) (j =0,...,k—1). Note that the poles of f are of uniformly
bounded multiplicity. Hence

A1/f) <max{o(h;):j=0,....,k—1} <n.

By the Hadamard factorization theorem, we know that f can be written as f(z) = 38 )

where g(z) and d(z) are entire functions with

A(d) = o(d) = A(1/f) <n <o(f) = o(g).

For each sufficiently large |z| = r, let 2, = re?®" be a point satisfying |g(z,)| = M(r, g).
By Lemma 2.6, there exist a constant 6, (> 0), a sequence {7, },,cn > Tm — +00 and
a set Ej5 of finite logarithmic measure such that the estimation (3.3) holds for all z
satisfying |z| = ry, ¢ Es,7m — 400 and argz = 0 € [0, — 6., 0, + 6. Set

k—1
Hy = J {0 € [0,2m) : 6(P;,0) = 0}
=0

and
Hy= |J {0€l0,2n):8(P;,.0)=0(P;,,0)}.

1<s<d<m

For any given 6 € [0, —6,, 60, +0,] \ (Hs U Hs), we have §(P;,0) #0 (j =0,...,k—1),
0(P;,,0) # 0(P;,,0) (1 <s<d<m). Since anq; (j =1,...,m) are distinct complex
numbers, then there exists only one ¢ € {1,...,m} such that

6 =0(P;,,0) =max {0(P;,,0) :j=1,...,m}.
For any given 6 € [0, — d,,0, + 6,] \ (H4 U Hs), we have
0(P;,,0) >0ord(P,,0) <O0.
Case 1. 6; > 0. For 1 € {0,...,k — 1} \ {i1,...,im}, we have
(3)

Anl = €} An i, OF Gt = €} anij (J #1).
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Hence for I € {0,...,k—1} \ {i1,...,im}, we have 6(P,,0) < d;. Set & =
max {§(P;,0) : j # it} . Thus § < 6.
Subcase 1.1. § > 0. Thus by Lemma 2.7, for any given ¢ (0 < 2 < there exists

a set Fg C (1,400) having finite logarithmic measure such that for all z satisfying
|z| =r ¢ [0,1] U Eg, r — 400 and argz = 6 € [0, — d,,0, + 6] \ (Hy U Hs), we have

6,5 6)

hi,(2)el )| > exp{(1 — £)8;,r™} (5.1)
and
15 (20759 < exp{(1+ )"} (j # ). (5.2)
We can rewrite (1.2) as
; ) (s fE=1)
hi, (2)e" ) = £ + hg_ (2)eh1 )W
f(“+1 ()f(t 1 f
Qg 1( Lt 1(z 5.3
+h1t+1(z)e * f( ) +h2t 1( ) f f ( )
of o(z)
+ ...+ hi(z)eD T + ho(z)e"! )f(m.

Substituting (3.2), (3.3), (5.1) and (5.2) into (5.3), for all z satisfying |z| = rp, ¢
[0,1]UELUEsUFEg, 1y — 400 and arg z = 0 € [0, — 6,0, + 6] \ (H4U Hs), we obtain

exp{(1 — €)d;,rp,} < Myt exp {(1+€)ary, } [T(2rm, £))", (5.4)

where Mj(> 0) is a constant. Hence by using Lemma 2.8 and (5.4), we obtain
o(f) = +oo and o2(f) > n. From this and Lemma 2.9, we have o5(f) = n.

Subcase 1.2. § < 0. By Lemma 2.7, for any given ¢ (0 < 2¢ < 1), there exists
a set Eg C [0,27) having finite logarithmic measure such that for all z satisfying
|z =7 ¢ [0,1]U Eg, 1 — +o0 and arg z = 0 € [0, — 0,,0, + 0, \ (Hq4 U Hs), we have
(5.1) and

‘hj(z)epj(z)

< exp{(1 — €)3(P}, )"} < 1 (j # ). (5.5)

Substituting (3.2),(3.3), (5.1) and (5.5) into (3.6), for all z satisfying |z| = 7, ¢
[0,1|UELUEsUFEg, 1y — 400 and arg z = 0 € [0, — 6,0, + 6] \ (H4U Hs), we obtain

exp {(1 —€)8;, 1} < Mor2e[T(2r,,, f)]* 1, (5.6)

t'm

where Ms (> 0) is a constant. Hence by using Lemma 2.8 and (5.6), we obtain
o(f) = +oo and o2(f) > n. From this and Lemma 2.9, we have o3(f) = n.

Case 2. 6;, < 0. Set

c—mln{ (is) 1ef0,... k=13 {i1,- - im} andj:(l,...,m)}.
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By Lemma 2.7, for any given € (0 < 2¢ < 1), there exists a set Eg C (1, +00) having
finite logarithmic measure such that for all z satisfying |z| = r ¢ [0,1] U Eg, r — 400
and argz =0 € [0, — 6,,0, + 6,] \ (Hy U Hs), we have

‘hj(z)epj(z) <exp{(1—-¢)cd;,r"} (=0,...,k—1). (5.7)

Substituting (3.2), (3.3) and (5.7) into (3.10), for all z satisfying |z| = r,, ¢ [0,1] U
E,UE5UEg, 1y, — 400 and argz =0 € [0, — 0,,0, + 6] \ (Hy U Hy), we obtain

1< My exp {(1 — e)edi i} [T (2rm, )], (5.8)

where M3 (> 0) is a constant. Hence by using Lemma 2.8 and (5.8), we obtain
o(f) = +oo and o2(f) > n. From this and Lemma 2.9, we have o3(f) = n.

6. PROOF OF THEOREM 1.12

First, we show that (1.4) can possess at most one exceptional transcendental meromor-
phic solution fj of finite order. In fact, if f* is another transcendental meromorphic
solution of finite order of equation (1.3), then fo — f* is of finite order. But fo — f* is
a transcendental meromorphic solution of the corresponding homogeneous equation of
(1.4). This contradicts Theorem 1.8, Theorem 1.10 and Theorem 1.11. We assume that f
is an infinite order meromorphic solution of (1.4) whose poles are of uniformly bounded
multiplicity. By Lemma 2.13 and Lemma 2.14, we have \a2(f) = Xo(f) = 02(f) < n.

Now we prove that o3(f) > n. By Lemma 2.2, there exist a constant B > 0 and
a set Fy C [1,+00) having finite logarithmic measure such that for all z satisfying
|z| =7 ¢ [0,1] U E1, we have (3.2). Set

o =max{o(F), o(h;):j=0,....,k—1}.

By (1.4), it follows that the poles of f can only occur at the poles of h;(z) (j =
0,...,k—1) and F. Note that the poles of f are of uniformly bounded multiplicity.

Hence A(1/f) < 0. By the Hadamard factorization theorem, we know that f can be

written as f(z) = 28, where g(z) and d(z) are entire functions with

Ad) = o(d) = A1/f) <o < o(f) = o(g) = +oo.

For each sufficiently large |z| = r, let 2, = re?®" be a point satisfying |g(z,)| = M (r, g).
By Lemma 2.6, there exist a constant d, (> 0), a sequence {7y, },,cn» "'m — +00 and
a set Ej of finite logarithmic measure such that the estimation (3.3) holds for all z
satistying |z| = rp, ¢ Es, 7 — +o00 and argz = 0 € [0, — 6,0, + 6,]. Since |g(z)] is
continuous in |z| = r, then there exists a constant A,(> 0) such that for all z satisfying
|z| = r sufficiently large and argz =6 € [0, — A\, 0, + A, we have

1 3
5 9zl <lg(2)] < 5 lg(zr)]- (6.1)
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On the other hand, by Lemma 2.11, for a given € (0 < ¢ < n — o), there exists a set
Ey C (1,400) that has finite logarithmic measure such that

|F(2)] <exp{r’™} and |d(z)| < exp {r7*°} (6.2)

hold for |z| = r ¢ [0,1] U Eg,r — +00. Since M(r,g) > 1 for sufficiently large r, it
follows from (6.2) that
= <exp {2r7t°} (6.3)

‘F(Z)
/() l9(2)] M(r,g)
for |z| =r ¢ [0,1] U Eg,r — +00. Set v = min {J,, A\, }.

_ [EG)dR)| _ [F(2)]]d(2)]

(i) Suppose that P;(z),h;(z) and ay; (j = 0,1,...,k — 1) satisfy hypotheses of
Theorem 1.8. For any given 6 € [0, — 7,0, + ]\ Hy, where H; is defined in the proof
of Theorem 1.8, we have

d(Ps,0) > 0 or 6(Ps,0) < 0.

Case 1. §(Ps,0) > 0. From (1.4), (3.2)—(3.5) and (6.3), for all z satisfying |z| = ry, ¢
[0,11UEy UE5sUFEgU Eg, 1y, — +00 and argz =0 € [0, — v, 0, + ] \ Hi, we obtain

exp {(1 —¢&)d(Ps, 0)r,

< Myr2Sexp {(1 +e)ad(Ps, 0)r™ } [T(2r,, f)]’“‘l, (64)

where M; (> 0) is a constant. From (6.4) and Lemma 2.8, we get o2(f) > n. This and
the fact that o2(f) < n yield o2(f) = n.
Case 2. 6(Ps,0) < 0. From (1.4), (3.2), (3.3), (3.9), (3.10) and (6.3), for all z satisfying
|z| =rm ¢ [0,1]UEy U EsU EgU Eg, 1y, — +00 and argz =0 € [0, — 7,0, + 7]\ Hi,
we obtain

1< Myr exp {(1 - £)36(Py, 0)r7 T2, FH, (6.5)

where My (> 0) is a constant. From (6.5) and Lemma 2.8, we get o2(f) > n. This and
the fact that o2(f) < n yield o2(f) = n.

(ii) Suppose that Pj(z), hij(z) and a, ; (j =0,1,...,k — 1) satisfy the hypotheses
of Theorem 1.10. For any given 6 € [0, — ~,0, + 7]\ (H2 U H3), we have

0(Ps,0) £ 0, 6(Py,0) # 0 and §(Ps,0) > §(Py,0) or 6(Ps,0) < 6(Py,0),
where Hy and Hj are defined in the proof of Theorem 1.10. Set d; = §(Ps,6) and
02 = §(Py, 0).
Case 1. 1 > 2. Here we also divide our proof in three subcases:

Subcase 1.1. 61 > 62 > 0. From (1.4), (3.2), (3.3), (4.1), (4.2) and (6.3), for all
z satisfying |z| = r, € [0,1] U By U E5 U Eg U Eg, 1y, — 400 and argz = 6 €
[0 —,0- +7]\ (Hz2 U H3), we obtain

exp{(1 —&)d1r™} < M3r2S exp {(1 +€)d3r™ } [T (2rm, f)]’“'l, (6.6)



872 Karima Hamani and Benharrat Belaidi

where M3(> 0) is a constant. From (6.6) and Lemma 2.8, we get o2(f) > n. This and
the fact that o2(f) < n yield o2(f) = n.

Subcase 1.2. 61 > 0 > d5. From (1.4), (3.2), (3.3), (4.1), (4.4) and (6.3), for all
z satisfying |z| = rp, € [0,1] U Ey U E5 U Eg U Eg, 1y, — 400 and argz = 6 €
[0 —~,60- +7]\ (H2 U H3), we obtain

exp {(1 — )17} < Myr?s exp {(1 4 €)yo1r™ } [T(27m, f)]k'H, (6.7)

where My (> 0) is a constant. From (6.7) and Lemma 2.8, we get o2(f) > n. This and
the fact that oo(f) < n yield o2(f) = n.

Subcase 1.3. 0 > §; > d2. From (1.4), (3.2), (3.3), (3.9), (4.6) and (6.3), for all
z satisfying |z| = rp, € [0,1] U E4 U E5 U Eg U Eg,r,;, — 400 and argz = 6 €
[0 —,0, +7]\ (H2 U H3), we obtain

1 S M5T37]:: exp {(1 - 8)>\51sz} T(zrmz f)k+1a (68)

where M3 (> 0) is a constant. From (6.8) and Lemma 2.8, we get o5(f) > n. This and
the fact that o2(f) < n yield o2(f) = n.

Case 2. 01 < d2. Using the same reasoning as in Case 1, we can also obtain oa(f) > n.
This and the fact that oo(f) < n yield o2(f) = n.

(ili) Suppose that Pj(z),h;(z) and a,; (j =0,1,...,k — 1) satisfy the hypotheses
of Theorem 1.11. For any given 6 € [0, — v, 60, + ]\ (H4 U Hs), we have

Oy = (5(Pit,9) >0 or 6(P“,9) <0,

where Hy, Hs and J; are defined in the proof of Theorem 1.11.

Case 1. §; > 0.

Subcase 1.1. § > 0, where 6 = max {d(P},0) : j # i} . From (1.4), (3.2), (3.3), (5.1),
(5.2) and (6.3), for all z satisfying |z| = r, ¢ [0,1] U E1 U E5 U Eg U Eg, 1y, — 400
and argz =0 € [0, — 7,0, + ]\ (H4 U Hs), we obtain

exp{(1 —e)d;,r} < Mgr%f exp {(1+¢e)ary } [T(2rm, f)]’”'l7 (6.9)

where Mg(> 0) is a constant. From (6.9) and Lemma 2.8, we get o2(f) > n. This and
the fact that oa(f) < n yield o2(f) = n.
Subcase 1.2 § < 0. From (1.4) ,(3.2),(3.3), (5.1), (5.5) and (6.3), for all 2 satisfying
|z| = rm ¢ [0, 1JUE1UEsUEGUEy, 1y, — 400 and arg z = 0 € [0, —, 0, +7]\(H4UH5),
we obtain

oxp {(1 = )bi,rm} < Morit [T (21, )M, (6.10)

where M7(> 0) is a constant. From (6.10) and Lemma 2.8, we get o3(f) > n. This
and the fact that oo(f) < n yield o3(f) = n.
Case 2. 0;, < 0. From (1.4), (3.2), (3.3), (5.7) and (6.3), for all z satisfying |z| = ry, ¢
0,1 UEy UEs UEgU Eg, 1y, — 400 and argz =0 € [0, —,0, + 7]\ (Hy U H5), we
obtain

1 < MgrZ¥ exp {(1 — &)eds, v} [T(2rm, £)]F, (6.11)
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where Mg (> 0) is a constant. From (6.11) and Lemma 2.8, we get o2(f) > n. This
and the fact that oo(f) < n yield o3(f) = n.
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