
Opuscula Math. 37, no. 6 (2017), 829–837
http://dx.doi.org/10.7494/OpMath.2017.37.6.829 Opuscula Mathematica

IDEALS WITH LINEAR QUOTIENTS
IN SEGRE PRODUCTS

Gioia Failla

Communicated by Vicentiu D. Radulescu

Abstract. We establish that the Segre product between a polynomial ring on a field K in
m variables and the second squarefree Veronese subalgebra of a polynomial ring on K
in n variables has the intersection degree equal to three. We describe a class of monomial
ideals of the Segre product with linear quotients.
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1. INTRODUCTION

Let A = K[x1, . . . , xn] be the polynomial ring over the field K with the standard
graduation and let I be a graded ideal of A generated in the same degree. The property
for I to have linear quotients, introduced in [17], has been studied by many authors
([18,19,21]) and it implies that I has a linear resolution. Monomial subalgebras of A
are of particular interest, since they are connected to the study of the subtended affine
semigroup ([4, 16]). In this direction, in [18] the authors prove that the rth-Veronese
subalgebra A′ of A (r ≥ 2) has the maximal irrelevant ideal with linear quotients and, as
a consequence, with a linear resolution. If A(2) is the 2nd squarefree Veronese subalgebra
of A, the maximal ideal has linear quotients and it admits a linear resolution([1,2]).
More in general, let A and B be two homogeneous graded K−algebras and let A ∗B
be their Segre product K[u1, . . . , uN ], where all generators have degree one. In [18] the
notion of strongly Koszul algebra is introduced and the main consequence is that its
maximal irrelevant ideal has linear quotients and a linear resolution. In particular if A
and B are polynomial rings, A ∗B is strongly Koszul and the maximal ideal has linear
quotients and a linear resolution. If A and B are monomial algebras, the generators
u1, . . . , uN are monomials and the degree of intersection can be investigated for A ∗B.
In [15] a number t > 0 is called the intersection degree of a homogeneous monomial
algebra K[u1, . . . , uN ] if all colon ideals (uij ) ∩ (uik ), 1 ≤ ij , ik ≤ n, are generated in
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degree less than or equal to t. A conjecture arising from computational arguments
says that if A and B have intersection degree r and s respectively, the intersection
degree t of the Segre product is less than or equal to max(r, s). The conjecture is
true if A and B are polynomial rings with r = s = t = 2 and in general for A and
B strongly Koszul algebras or any two Veronese subrings, in which case A ∗ B is a
strongly Koszul algebra and r = s = t = 2. In this paper we consider the Segre product
C of a polynomial ring B on a field Kand the 2nd squarefree Veronese subring A(2) of
A = K[x1, . . . , xn], whose intersection degree is three for n ≥ 5 ([1, 2]). The aim is to
compute the intersection degree of C. Then we consider ideals generated by subsets
of the generators of the maximal irrelevant ideal of C. Clearly, in general they do
not have linear quotients and now we will discuss the problem to find combinatorial
conditions on the generators.

The plan of the paper is the following: In the first section, we consider the polyno-
mials rings A = K[x1, . . . , xn] and B = K[y1, . . . , ym] with the standard graduation
and the Segre product B ∗A(2) generated in degree one. We prove that the intersection
degree of B ∗ A(2) is equal to three, in other words we show that not all principal
colon ideals of the maximal ideal of the Segre product are generated in degree one.
We give the explicit description of the generators of degree one and degree two. In
the second section, we focus our attention to monomial ideals of B ∗A(2), that admit
linearly generated quotient ideals. We describe explicitly a class of ideals generated by
a suitable subset of the set of the minimal generators of the K-algebra B ∗ A(2),
by applying a combinatorial condition on certain pairs of elements of the subset, which
generalizes a condition given in [1] for A(2). In particular, we prove that the maximal
irrelevant ideal of B ∗ A(2) has linear quotients and a linear resolution, since it is
a Koszul algebra ([3]).

2. INTERSECTION DEGREE

Let A = K[x1, . . . , xn] and B = K[y1, . . . , ym] be two polynomial rings in n and
m variables respectively with coefficients in any field K. Let A(2) ⊂ A be the 2nd
squarefree Veronese algebra of A and let C = B ∗S A(2) be the Segre product of B
and A(2). Then C is a standard K−algebra generated in degree one by the monomials
yαxixj , with 1 ≤ α ≤ m, 1 ≤ i < j ≤ n. For convenience, we will indicate such
a monomial by αij.

In order to compute the intersection degree, we compute first all quotient ideals of
principal ideals of C, whose generators are that ones of the maximal ideal m∗ of C.

Theorem 2.1. Let C = B ∗S A(2) be the Segre product and let m∗ = (u1, . . . , uN ),
N = m

(
n
2
)
the maximal ideal of C. Let (ur) : (us), 1 ≤ r, s ≤ N, r 6= s, a colon ideal

of generators of m∗, in the lexicographic order. Then we have:

1. (α ij1) : (α ij2) = (βkj1, k 6= j1, j2, β ∈ {1, . . . ,m}),
2. (α1ij1) : (α2ij2) = (α1kj1, k 6= j1, j2),
3. (α i1j) : (α i2j) = (βi1k, k 6= i1, i2, β ∈ {1, . . . ,m}),
4. (α1i1j) : (α2i2j) = (α1i1k, k 6= i1, i2),
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5. (α i1j) : (α jj2) = (βi1k, k 6= i1, j2, β ∈ {1, . . . ,m}),
6. (α ij1) : (α i2i) = (βkj1, k 6= j1, i2, β ∈ {1, . . . ,m}),
7. (α1i1j) : (α2jj2) = (α1i1k, k 6= i1, j2),
8. (α1ij1) : (α2i2i) = (α1kj1, k 6= i2, j1),
9. (α1i1j1) : (α2i2j2) = (α1i1j1, (α1i1s)(βj1s), β ∈ {1, . . . ,m}, s 6= i1, j1, i2, j2),
10. (α1ij) : (α2ij) = (α1kl, k 6= l)
Proof.

1. Let a ∈ (α ij1) : (α ij2) be a monomial generator of the colon ideal. Then

aα ij2 = bα ij1, (2.1)

where a and b are semigroup elements and any factor of a is of type βkj1, β ∈
{1, . . . ,m}, since any factor of a must contain j1. We prove that k 6= j2. Suppose
k = j2 and consider a decomposition of a:

a = (β1k1j1)(β1k1j1) . . . (βrkrjr).

If each factor of a contains j2, then j2 appears (r + 1) times in the first member of
(2.1) and this implies it must appears (r + 1) times in the second member of (2.1),
contradiction because j2 appears at maximum r times only in b, being i 6= j2. It follows
there exists a factor βsksjs of a such that ks 6= j2, hence we can suppose k 6= j2. We
write the decomposition of a as:

a = (βj1j2)(βsksjs) . . .

If ks 6= j1, we can write (2.3) as:

a = (βksj1)(βsjsj2) . . .

If ks = j1, (2.3) can be written as:

a = (βj1j2)(βsj1js) . . . with js 6= j1

that we rewrite as:
a = (βjsj1)(βsj1j2) . . .

In any case a is a multiple of a factor of the type βkj, with k 6= j2, β ∈ {1, . . . ,m}.
Hence the assertion.

2. Let a ∈ (α1 ij1) : (α2 ij2) be a monomial generator of the colon ideal. Then

aα2ij2 = bα1ij1, (2.2)

where a and b are semigroup elements. We claim that α1kj1 is always a factor of a,
with k 6= j1. Consider a decomposition of a:

a = (β1k1j1)(β2k2j2) . . . (βrkrjr).

Suppose each factor contains j2. Then j2 appears (r + 1) times in the first member of
(2.2) and contrary it can appear only s times in the second member of (2.2). Then
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there exists βlkljl with jl 6= j2 and kl 6= j2. For the same reason, if we suppose that
each factor contains α2, we obtain a contradiction. Then there exists βtktjt with
βt 6= α2. Consider

a = (β2j1j2)(βlkljl)(αtktjt) . . .
We can rewrite it as:

a = (α1klj1)(βljlj2)(α2knjn)(βtktjt) . . .

with kl 6= j1. In conclusion, in any case, the monomial α1kj1 is a factor of a, with
k 6= j2. Hence the assertion.

3. The proof is analogue to the proof of 1.
4. The proof is analogue to the proof of 2.
5. (αi1j) : (αjj2) = (βi1k, k 6= i1, j2, β ∈ {1, . . . ,m}), i1 < j < j2. Let a ∈ (αi1j) :

(αjj2). Then

a = αjj2 = bαi1j (2.3)

and βi1k1 is a factor of a, k 6= i1. To prove that k1 6= j2, consider a decomposition
of a in r factors a = (β1i1k1)(β2i2k2) . . . (βrirkr). Suppose each factor contains j2.
Then j2 appears (r + 1) times in the first member of 2.3. Contradiction. Then we
have a factor βsisks of a such that ks 6= j2 and, as consequence, is 6= j2. Now
we can write a = (β1i1k1)(β2i2k2) . . . (βsisks) . . . (βrirkr). If ks = j1, since i1 6= j1, we
can write a = (β1i1k1)(βsisj1) . . . = (β1i1j1)(βsisk1) . . . = (β1isj1)(βsi1j2) . . . and in
any case a is a multiple of a factor of the type βi1k, k 6= j1j2.

6. Let a ∈ (α1 i1j1) : (α2 i2j2) be a semigroup element which does not contain the
factor α1 i1j1. Then aα2 i2j2 = bα1 i1j1. Let write a decomposition of a as:

a = (α1i1s)(βj1t) . . . , β ∈ {1, . . . , n}.

If s 6= t, we can rewrite a = (α1i1j1)(βst) . . . Contradiction, since a does not contain
α1i1j1 as a factor.Then s = t and for a we can write the previous decomposition as:

a = (α1i1s)(βj1t) . . . with s 6= i1j1, β ∈ {1, . . . , n}.

It follows that we have a generator of degree two that is not a multiple of α1i1j1.
The proof of cases 6, 7, 8 is analogue to the proof of 5 and the proof of case 10

follows from 7 and 8.

Corollary 2.2. The intersection degree of the monomial algebra B ∗A(2) is equal to
three for n > 4.

Proof. Let C = B ∗ A(2) = K[u1, . . . , uN ] be and let uij , uik be two any generators,
1 ≤ ij , ik ≤ N, ij 6= ik. Consider the isomorphism of C−modules (uij ) : (uik ) →
(uij ∩uik )(−1). Let a ∈ (uij ) : (uik ) be such that aujk

∈ (uij ), then aujk
∈ (uij ∩uik ).

Since deg(ujk
) = 1 and deg(a) ≤ 2, deg(aujk

) ≤ 3, hence the assertion follows.

Remark 2.3. For n = 4, the intersection degree is two ([18]), A(2) is a strongly Koszul
algebra and consequently the Segre product B ∗A(2) ([18]).



Ideals with linear quotients in Segre products 833

Remark 2.4. The intersection degree t ≥ 2 of a homogeneous monomial algebra can
increase arbitrarily ([18]). The behaviour of t under tensor product or Segre product of
monomial algebras is almost predictable. For arbitrary subalgebras we can have different
statements. From the combinatorial point of view, the d-th Veronese subring has the
simplest possible semigroup. For the squarefree case the degree grows (see d = 2, for
which is t = 3 for n ≥ 5). Triangulations of the simplicial complexes subtended by A(d)

can be studied ([12,20]). For homogeneous semigroup rings arising from Grassmann
varieties, Hankel varieties ([7, 9, 11, 20]) and their subvarieties ([8]), the problem is
more difficult. For G(1, 3) = H(1, 3) the intersection degree is 2. In fact its toric ring is
strongly Koszul, being a quotient of the polynomial ring K[[12], [13], [14], [23], [24], [34]]
by the ideal generated by the binomial relation [14][23] − [13][24], where [ij] is the
variable corresponding to the initial term for the diagonal order of the minor with
columns i, j, i < j, of a 2×4 generic matrix. The semigroup ring of G(1, 4) is a subring
of K[t11, t12, t13, t14, t15, t21, t22, t23, t24, t25], tij the generic entry of a 2× 5- matrix

(
t11 t12 t13 t14 t15
t21 t22 t23 t24 t25

)

and it is generated by the diagonal initial terms of ten 2 × 2 minors of the matrix.
The semigroup of H(1, 4) is a subring of K[t11, t12, t13, t14, t15, t16], generated by the
diagonal initial terms of ten 2× 2 minors of the Hankel matrix

(
t11 t12 t13 t14 t15
t12 t13 t14 t15 t16

)
.

These considerations leave us with the problem to compute the intersection degree of
the previous semigroup rings and to compare them.

3. MONOMIAL IDEALS WITH LINEAR QUOTIENTS

The aim of this section is to find classes of monomial ideals of the Segre product
C = B ∗ A(2) having linear quotients. In particular we consider monomial ideals
generated by certain subsets of the set of generators of the maximal irrelevant ideal
M of C, hence generated in degree one. We recall the definition of ideal with linear
quotients, as introduced in [17].
Definition 3.1. Let R be a homogeneous K−algebra, K a field, finitely generated
over K by elements of degree one, and let I ⊂ R be a homogeneous ideal. I is said
to have linear quotients if it has a system of generators f1, . . . , ft, such that, for
j = 1, . . . , t, the colon ideals:

(f1 + . . . fj−1) : fj
have linear forms (notice that this property depends on the order of generators).
Proposition 3.2. Suppose R a strongly Koszul k-algebra. Let I ⊂ R be a homogeneous
ideal generated by a subset of generators of the maximal irrelevant ideal of R. Then
I has linear quotients and a linear resolution on R.
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Proof. The ideal I has linear quotients by definition of Strongly Koszul algebra.
The proof is contained in [18, Theorem 1.2].

In the following we introduce in the set of monomials of K[x1, . . . , xn, y1, . . . , ym]
the lexicographic order with the order on the variables y1 > . . . > ym > x1 > . . . > xn
and order on the generators of A(2) given by x1x2 > x1x3 > . . . > xn−1xn. Moreover,
following [1,2] and notations of Section 1, we call “bad pair” a pair of monomials ij, kl
in A(2) or α ij, β kl in C, with i 6= k and j 6= l. If α 6= β, we call such a pair a “strongly
bad pair” of monomials.
Theorem 3.3. Let (u1, . . . , ut) be the ideal of B ∗ A(2) generated by a sequence
L = {α1i1j1, . . . , αtitjt} of generators of M , with u1 > . . . > ut. Fixed αkl ∈ L, let

Lαkl = {βrs ∈ L/βrs > αkl and rs > kl}

and
L′
αkl = {βrs ∈ L/βrs < αkl and rs > kl}.

Suppose that the sequence L satisfies the following properties (the property P in
summary):
1. for each bad pair αij > αkl in L, αik ∈ Lαkl or αil ∈ Lαkl or αkl ∈ Lαjk or
αjl ∈ Lαkl,

2. for each bad pair αij > βkl in L, with ij > kl, αik ∈ Lβkl or αil ∈ Lβkl or
αjk ∈ Lβkl or αjl ∈ Lβkl,

3. for each bad pair αij > βkl in L, with ij < kl, or βki ∈ L′
αij or βkj ∈ L′

αij or
βil ∈ L′

αij or βjl ∈ L′
αij.

Then any colon ideal (u1, . . . , ur) : (ur+1) is generated by a subset of u1, . . . , ut,
1 ≤ r ≤ t− 1.
Proof. Consider the colon ideal J = (α1i1j1, . . . , αq−1iq−1jq−1) : αqiqjq. Put
I = (α1i1j1, . . . , αq−1iq−1jq−1). We want to prove that the colon ideal J is linear,
that is it has generators of the semigroup ring. Let a ∈ I : αqiqjq be a semigroup
generator of the colon ideal I. Then a ∈ αpipjp : αqiqjq for some p < q. If αpipjp, αqiqjq
is not a bad pair, a is linear. Suppose that αpipjp > αqiqjq is a bad pair.

I case: αp = αq = α, α ipjp > α iqjq, ipjp > iqjq.

If a has not degree one, we have by Theorem 2.1,9:

a = (α ipk)(β jpk), k 6= ip, iq, jp, jq, β ∈ {1, . . .m}.

Since the sequence satisfies the property P and αipiq > αiqjq, one has

α ipiq ∈ Lα iqjq or α ipjq ∈ Lα iqjq

or α jpiq ∈ Lα iqjq
or α jpjq ∈ Lα iqjq

If k < jq
α ipk > α ipjq ∈ Lα iqjq

⊂ L.
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If k > jq, being ip < jq,

α ipk > α jpjq ∈ Lα iqjq ⊂ L.
So in I we have the factor α ipk of degree 1 and a is a multiple of a generator of I.

II case: αp > αq, α ipjp > β iqjq, ipjp > iqjq.

If a has not degree one, we have:

a = (α ipk)(β jpk), k 6= ip, iq, jp, jq and β ∈ {1, . . . ,m}.

Since the sequence satisfies the property P , for α > β, we have:

α ipiq ∈ Lβ iqjq or α ipjq ∈ Lβ iqjq or

α jpiq ∈ Lβ iqjq or α jpjq ∈ Lβ iqjq .

If k < jq
α ipk > α ipjq > β ipjq ∈ Lα iqjq

⊂ L.
If k > jq

α ipk > α jpjq > β jpjq ∈ Lβ iqjp
⊂ L.

Then a is a multiple of a generator of I.

III case: αp > αq, α ipjp > β iqjq, ipjp < iqjq.

In this case we have as a generator of the colon ideal α ipjp : β iqjq

a = (α ipk)(β jpk), k 6= ip, iq, jp, jq β ∈ {1, . . . ,m}, (3.1)

(see Theorem 2.1).
Since the sequence satisfies the property P , for α > β, we have by condition (3):

βiqip ∈ L
′
αipjp

or βiqjp ∈ L
′
αipjp

or βipjq ∈ L
′
αipjp

or βjpjq ∈ L
′
αipjp

If k > jp, rewrite (3.1) as a = (β ipk)(α jpk). Then

β ip k < α ipjp and ip k > ipjp.

It follows
β ip k ∈ L′αipjp

⊂ L and β ip k ∈ L.
If k < jp

βkjp < α jpjq and kjp > jpjq.

Then
βkjp ∈ L′αjpjp ⊂ L and βjp k ∈ L.

In any case a is a multiple of a generator of the ideal I generated by the set L.
The proof of the remaining cases is analogue.
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4. OPEN PROBLEMS

1) To find new classes of monomial ideals generated in degree 1 with a linear resolution.
We proved in [13] that the monomial ideals of B ∗A(2) in Theorem 3.3 have a linear
resolution.

2) To find monomial ideals of B ∗A(2) generated not in the same degree and candidate
to be component-wise linear [16].

3) To study monomial ideals of C = B(2) ∗A(2) that have linear quotients and a linear
resolution. The Segre products B ∗ A(2) and B(2) ∗ A(2) were already studied in
[5, 6], where results on the subtended semigroup map are obtained.
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