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1. INTRODUCTION

In this paper we study free-probabilistic models for Hecke algebras and study repre-
sentations under the models, and investigate groups generated by certain operators
under the representations. In [7], the author and Gillespie considered certain embedded
free-probabilistic subalgebras of Hecke algebras induced by p-adic number fields for
primes p. And, in [2], the author extended the free-probabilistic representations of [7]
to those fully on the given Hecke algebras, and investigated elements of Hecke algebras
as operators realized under the representations. Especially, the spectral theory of such
Hilbert-space operators was considered in [2]. As a continuation, here, we keep studying
free probability on the Hecke algebras in the extended sense of [2], and concentrate on
studying certain group C˚-(sub-)algebras determined by the representations (under
quotient).

1.1. BACKGROUND

We have considered how primes (or prime numbers) act on operator algebras. The
relations between primes and operator algebra theory have been studied from various
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different approaches. For instance, in [1], we studied how primes act “on” certain von
Neumann algebras generated by p -adic and Adelic measure spaces. Also, the primes
as operators in certain von Neumann algebras, have been studied in [3] and [5].

Independently in [6] and [4] we have studied primes as linear functionals acting on
arithmetic functions, i.e., each prime p induces a free-probabilistic structure pA, gpq on
the algebra A of all arithmetic functions. In such a case, one can understand arithmetic
functions as Krein-space operators (for fixed primes) via certain representations (see [8]).

These studies are motivated by number-theoretic results (e.g., [9, 10] and [14])
under free probability techniques (e.g., [11, 12] and [13]).

1.2. MOTIVATION

In modern number theory and its applications, p-adic analysis provides important
tools not only for studying mathematical analysis, analytic number theory and
non-Archimedian analysis (e.g., [1, 3, 7, 9] and [10]), but also for studying geometry
at small distances in mathematical quantum physics (e.g., [14]). So, it is interested in
both various mathematical fields and related scientific fields.

In [2] we studied free probability on Hecke algebras (see Sections 3 and 4 below).
From the free-probabilistic models on Hecke algebras, we established certain represen-
tations of Hecke algebras, and considered corresponding C˚-algebras of Hecke algebras
obtained from the representations, i.e., we understand every Hecke-algebra element
as a Hilbert-space operator. Especially in [2], spectral properties (self-adjointness,
normality, isometry-property, unitarity, etc.) of such operators were characterized.

In this paper we are typically interested in projections and partial isometries induced
by generating elements of HpGpq. By understanding them pure operator-theoretically
we construct group C˚-algebras generated by certain “nice” partial isometries having
their common initial-and-final projections. The operator-algebraic properties of such
C˚-algebras will be studied as embedded C˚-subalgebras of the C˚-algebra induced
by Hecke algebras.

Our study will provide bridges among number theory, operator algebra, operator
theory and free probability.

1.3. OVERVIEW

In Section 2 we introduce definitions and fundamental properties for our work. In
Sections 3 and 4 we briefly review our free probability models on Hecke algebras.
Some free-moment and free-cumulant computations are provided for our main re-
sults. In Section 5 we establish Hilbert-space representations of Hecke algebras and
construct corresponding C˚-algebras, as operator-algebraic structures containing full
free-probabilistic information of Hecke algebras.

In Section 6 we study partial isometries and projections induced by generating
elements of Hecke algebras under our representations in detail. Projections and par-
tial isometries in our Hecke C˚-algebras have been considered in [2], but we here
provide much more detailed properties and characterizations of them (Theorem 6.1
and Theorem 6.2) independently. Moreover, we fix finitely many partial isometries,
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having identical initial-and-final projections, and then construct groups generated by
such partial isometries, as multiplicative subgroups of Hecke C˚-algebras. We study
isomorphism theorems of such groups (see Theorem 6.3). Naturally, corresponding
group C˚-algebras will be constructed as embedded C˚-subalgebras of the Hecke
C˚-algebras. We consider structure theorems of such group C˚-algebras in Theorem 6.4
and Corollary 6.5.

In Section 7 free probability on these group C˚-algebras will be studied. We
study free-distributional data of operators in the algebras by computing free-moments
(Theorem 7.1 and Corollary 7.2), and consider freeness conditions (Theorem 7.6) on the
group C˚-algebras by observing free-cumulants (Theorem 7.4) of generating operators.

2. DEFINITIONS AND BACKGROUND

In this section we review concepts and backgrounds of our proceeding works.

2.1. THE HECKE ALGEBRA OVER GL2pQpq

Throughout this section let p be a fixed prime, and let Qp be the p-adic number field
for p. This set Qp is by definition the completion of the rational numbers Q with
respect to the p-adic norm

|q|p “
ˇ

ˇ

ˇ
pk
a

b

ˇ

ˇ

ˇ
“

ˆ

1
p

˙k

for q “ pk ab P Q and k P Z.
Define now the (multiplicative) group GL2pQpq of all invertible p2ˆ 2q-matrices

over the p-adic number field Qp,

GL2pQpq “
"ˆ

a b
c d

˙

PM2pQpq
ˇ

ˇ

ˇ

ˇ

a, b, c, d P Qp,
ad´ bc ‰ 0

*

,

where M2pQpq means the set of all p2ˆ 2q-matrices over Qp.
In the rest of this paper we denote GL2pQpq simply by Gp, if there is no confusion.
The group Gp is locally profinite coming from the topology on Qp, i.e., it has a

neighborhood base of the identity up of Gp, consisting of the compact-open subgroups

Kk “ up ` pp
kqGL2pZpq for all k P N,

where GL2pZpq means the subset of GL2pQpq whose elements have their entries in Zp,
and where

up “

ˆ

1 0
0 1

˙

is the identity matrix ofM2pQpq.

Then the subgroup
K0 “ GL2pZpq

forms the maximal compact-open subgroup of Gp.
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Now let pV, πq be a representation of Gp, that is V is a vector space, and π is a
group action,

π : Gp Ñ GLpV q

acting on V , where GLpV q is the set of all invertible linear transformations on V .

Definition 2.1. We say a representation pV, πq is a smooth representation, if given
any vector v P V , there is a compact-open subgroup K of Gp, such that

πpyqv “ v for all y P K.

Denote by V K the set of vectors in V that are fixed by K under the action of π.
Then the definition of smoothness implies that

V “
ď

KĎGp: compact-open
V K .

Given two smooth representations pV1, π1q and pV2, π2q of Gp, we denote by

HomGp
pπ1, π2q,

the set of C-linear maps
f : V1 Ñ V2

such that
f ˝ π1pgq “ π2pgq ˝ f

for all g P Gp.

Definition 2.2. Define the Hecke algebra HpGpq of Gp by

HpGpq “ tf : Gp Ñ C | f has compact-open support, and it is ρ-smoothu . (2.1)

The ρ-smoothness means that HpGpq is a smooth representation of Gp under right
translation. In other words, for any element f P HpGpq, there is a compact-open
subgroup K of Gp such that

ρpyqfpgq “ fpgyq “ fpgq (2.2)

for all g P Gp. We sometimes say also that f is locally constant.
We make HpGpq into an associative algebra by taking f1, f2 P HpGpq and defining

convolution (as a vector multiplication)

pf1 ˚ f2q pgq “

ż

Gp

f1pxqf2px
´1gqdµppxq, (2.3)

where µp denotes a left Haar measure on the locally compact-open group Gp.
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2.2. FREE PROBABILITY

Throughout this paper we use Speicher ’s combinatorial free probability techniques in
the sense of [12] (also, see cited papers therein). The original analytic free probability
theory is established by Voiculescu, and since the mid 1980’s, it has developed as one
of the main branches of operator algebra theory. By replacing independence of classical
probability theory to (noncommutative) freeness, we can have the noncommutative
(and hence, possibly commutative) operator-algebraic and operator-theoretic proba-
bility and corresponding statistics (for instance, free stochastic calculus, etc). Such a
noncommutative(-or-commutative)-algebraic extended probability theory, called free
probability, has various applications not only in mathematics (operator theory, in
particular, spectral theory, and operator algebra, see e.g. [11]), but also in related
scientific fields (e.g., free entropy theory, quantum probability, and quantum statistics,
etc).

In combinatorial free probability the free-probabilistic information of given opera-
tors in an algebra is determined by free moments or free cumulants (see e.g., [12]). In
fact free moments and free cumulants are equivalent under the Möbius inversion; but
free moments are used for studying free-distributional data of operators, while free
cumulants are used for studying freeness among operators in the algebra.

We refer readers to [12] and [13] for more about free probability theory. Especially,
we will use the same concepts and results of [12] in this paper (without introducing
them precisely).

2.3. GROUP ALGEBRAS

Let G be a countable discrete group. Then one can construct the algebra AG by

AG “ CrGs “

#

ÿ

gPG

tgg : tg P C for all g P G
+

,

where
ř

means a finite sum, i.e., AG is the algebra generated by G. We call AG, the
group algebra generated by G.

Each group algebra AG is understood as a ˚-algebra over C, by defining the adjoint
(˚) on it by

˜

ÿ

gPG

tgg

¸˚

def
“

ÿ

gPG

tgg
´1,

where g´1 in the right-hand side mean group-inverse of g.
All groups G of this paper are assumed to be countable discrete groups.

Every group algebra AG acts on the Hilbert space HG “ l2pGq via a group-action
u, under the left regular unitary representation denoted by pHG, uq, where l2pGq means
the l2-space with its orthonormal basis (or its Hilbert basis)

tξg : g P GzteGuu,
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where eG is the group-identity of G, satisfying

xξg1 , ξg2y2 “ δg1,g2 ,

where x¨, ¨y2 means the inner product on HG and δ means the Kronecker delta.
In particular, the group-action u acts as follows: for each g P G, the image upgq,

denoted by ug, becomes a unitary operator in the sense that: u˚g “ u´1
g , where u˚g

means the (Hilbert-space-operator-)adjoint of ug, and u´1
g means the (operator-)inverse

of ug on HG. In particular, the unitary operators tugugPG satisfy

ug1pξg2q
def
“ ξg1ξg2 “ ξg1g2

for all g1, g2 P G, and ξg2 P HG, and

ug1ug2 “ ug1g2 for all g1, g2 P G,

and
u˚g “ u´1

g “ ug´1 for all g P G,

where u´1
g mean the operator-inverses of ug for all g P G.

By construction it is easy to check that a group algebra AG is a (˚-)subalgebra of
the operator algebra BpHGq, consisting of (bounded linear) operators on HG (pure
algebraically, without considering topology).

So under operator-norm topology of BpHGq, we can have the group C˚-algebra
AG; also, under weak-operator topology, one can have the group von Neumann algebra
(or the group W˚-algebra) AG

w, etc.
Let AG be the group algebra. Define a linear functional

trG : AG Ñ C

by

trG

˜

ÿ

gPG

tgg

¸

def
“ teG

.

Then it is a well-defined linear functional. Moreover, it satisfies

trGpx1x2q “ trGpx2x1q for all x1, x2 P AG,

even though x1x2 ‰ x2x1 in AG, i.e., trG is a trace on AG. We usually call trG the
canonical trace on AG (e.g., [11]).

Thus, the pair pAG, trGq forms a free probability space in the sense of Section 2.2.
This free probability space pAG, trGq is called the (canonical) group(-algebra)free
probability space (under topologies, the group C˚-free probability space, or the group
W˚-probability space, etc).

3. NORMAL HECKE PROBABILITY SPACES

In this section we review free-probabilistic structures obtained in [7], and main results
of [7] will be introduced for our future work.
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3.1. NORMAL HECKE SUBALGEBRAS HYp
OF HpGpq

Notice, first that, by the very definition (2.1), the Hecke algebra HpGpq can be
re-defined by

HpGpq “ C˚
”!

f “
N
ÿ

j“1
tj χxjK

ˇ

ˇ

ˇ
N P N, and tj P C, K is a compact-open

subgroup of Gp, depending on f

for all xj P Gp, j “ 1, . . . , N
)ı

,

(3.1)

where C˚rXs mean algebras generated by X under the usual functional addition
and convolution in the sense of Section 2.1, and χY mean characteristic functions of
µp-measurable subsets Y of Gp, where µp is in the sense of (2.2). The set

Xp “

!

f “
N
ÿ

j“1
tj χxjK

ˇ

ˇ

ˇ
N P N, and tj P C,K is a compact-open

subgroup of Gp, depending on f

for all xj P Gp, j “ 1, . . . , N
)

(3.2)

generating the Hecke algebra HpGpq, is said to be the generating set of HpGpq, and
we call elements of Xp of (3.2) generating elements of HpGpq, i.e.,

HpGpq “ C˚rXps. (3.3)

By (3.1) and (3.3), one may write

HpGpq “
!

N
ÿ

j“1
tj χxjKj

ˇ

ˇ

ˇ
N P N, and tj P C, and

Kj are compact-open subgroups of Gp,

for all xj P Gp, j “ 1, . . . , N
)

,

(3.4)

set-theoretically.
By construction HpGpq is a well-defined vector space over C. As in Section 2.1, the

convolution (˚) on HpGpq, as a vector multiplication, is defined by

pf1 ˚ f2qpgq “

ż

Gp

f1pxqf2px
´1gqdµppgq

for all f1, f2 P HpGpq, for all g P Gp.
Proposition 3.1 ([7]). Let χx1K1 , χx2K2 be generating elements of HpGpq, for xj P Gp,
and compact-open subgroups Kj of Gp for j “ 1, 2. Then

pχx1K1 ˚ χx2K2q pgq “ µp
`

x1K1 X gK2x
´1
2

˘

(3.5)

for all g P Gp.
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Thus by (3.5), we obtain the following general result; if fj “
řnj

k“1 tj,kχxj,kKj
are

generating elements of HpGpq in Xp, for j “ 1, 2, then

pf1 ˚ f2qpgq “
n1
ÿ

k“1

n2
ÿ

l“1
pt1,kt2,lqµp

´

x1,kK1 X gK2x
´1
2,l

¯

for all g P Gp.
Without loss of generality, for any x P Gp, one can understand

χxKpgq “
µppxK X gKq

µppxKq
“
µppxK X gKq

µppKq
(3.6)

by (2.2).
We now consider specific generating elements χxK in Xp, where K are “normal”

compact-open subgroups of Gp. Recall that a subgroup K is normal in an arbitrary
group Γ, if gK “ Kg for all g P Γ. As usual, we denote this normal subgroup-inclusion
by K C Γ.

Define a subset Yp of the generating set Xp of HpGpq by

Yp
def
“

#

N
ÿ

j“1
tjχxjK P Xp |K CGp

+

. (3.7)

Then we have a subalgebra

HYp

def
“ C˚rYps of HpGpq. (3.8)

Proposition 3.2 ([7]). Let χxjKj P HYp , where xj P Gp, and Kj CGp compact-open,
for j “ 1, 2. Then

χx1K1 ˚ χx2K2 “ µppK1 XK2qχx1x2K1K2 , (3.9)

where K1K2 is the product group of K1 and K2 in Gp.

Definition 3.3. Let Yp be the subset (3.7) of the generating set Xp, and let HYp
“

C˚rYps be the subalgebra (3.8) of the Hecke algebra HpGpq. Then we call Yp and HYp ,
the normal sub-generating set of Xp, and the normal Hecke subalgebra of HpGpq,
respectively.

For convenience, denote
śN
j“1 xj and

N
ˆ
j“1

Kj simply by x1,...,N andK1,...,N , respectively,

for all N P N, where x1, . . . , xN P Gp and K1, . . . ,KN are (normal) compact-open
subgroups of Gp. Also, denote

K1,...,pN´1q XKN by Ko
1,...,N

for all N P Nzt1u.
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We obtain the following general computations.

Proposition 3.4. Let χxjKj
be generating elements of the normal Hecke subalgebra

HYp
for j P N. Then

N
˚
j“1

χxjKj “
`

µppK
o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N q

˘

χx1,...,NK1,...,N
(3.10)

for all N P N.

Proof. The proof of (3.12) is done by (3.9), inductively (e.g., [2] and [7]).

From now on, let us denote the convolution f˚ . . . ˚f of n-copies of f simply by f pnq
for all n P N and f P HpGpq.

3.2. FREE-PROBABILISTIC MODELS ON HYp

Let HpGpq be the Hecke algebra generated by the generalized linear group Gp “
GL2pQpq over the p-adic number field Qp, for a fixed prime p. From Section 3.1, we
start to understand this algebra HpGpq as an algebra C˚rXps generated by Xp of (3.1),
consisting of C-valued functions f formed by

f “
N
ÿ

j“1
tjχxjK for tj P C, xj P Gp, (3.11)

where K is a compact-open subgroup of Gp, for N P N. So, to consider
free-distributional data, we concentrate on generating elements χxK ’s and exK ’s,
for x P Gp, and compact-open subgroups K. Moreover, in this section, we restrict
further our interests to the normal Hecke subalgebra HYp

of HpGpq, for a fixed prime p.
Let up be the group-identity of Gp, i.e.,

up “

ˆ

1 0
0 1

˙

P Gp “ GL2pQpq.

For the fixed up define now a linear functional ϕp on HYp
by

ϕp pfq
def
“ fpupq for all f P HYp

. (3.12)

The construction of the linear functional ϕp on HYp
(originally introduced in [7])

is motivated by the canonical traces on group von Neumann algebras (e.g., [11]), and
thepoint-evaluation linear functionals on arithmetic functions in the sense of [4–6]
and [8]. Clearly, the morphism ϕp is a well-defined linear functional on HYp

, and hence,
the pair pHYp

, ϕpq forms a free probability space in the sense of Section 2.2.

Definition 3.5. We call the linear functional ϕp of (3.12) on the normal Hecke
subalgebra HYp , the canonical linear functional. And the corresponding free probability
space pHYp

, ϕpq is said to be the normal Hecke probability space.
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Then we obtain the following fundamental free-moment computations.
Proposition 3.6 ([7]). Let χxK , χxjKj

, exK , exjKj
be generating free random variables

in the normal Hecke probability space pHYp
, ϕpq for all j P N. Then

ϕp

ˆ

N
˚
j“1

χxjKj

˙

“
µppK

o
1,2q . . . µppK

o
1,...,N qµppx1,...,NK1,...,N XK1,...,N q

µppK1,...,N q
(3.13)

for all N P N.
Indeed,

ϕp

ˆ

N
˚
j“1

χxjKj

˙

“ ϕp
`

µppK
o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N qχx1,...,NK1,...,N

˘

by (3.10)

“ µppK
o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N qϕp

`

χx1,...,NK1,...,N

˘

“ µppK
o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N qχx1,...,NK1,...,N

pupq

by (3.12)

“ µppK
o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N q

µppx1,...,NK1,...,N XK1,...,N q

µppK1,...,N q

by (3.6)

“
µppK

o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N qµppx1,...,NK1,...,N XK1,...,N q

µppK1,...,N q

for all N P N.
Let χx1K1 , . . . , χxNKN

P pHYp
, ϕpq for N P N. Then

kpN pχx1K1 , . . . , χxNKN
q

“
ÿ

πPNCpNq

˜

ź

V Pπ

ϕp

ˆ

˚
jPV

χxij
Kij

˙

µ
`

0|V |, 1|V |
˘

¸

by the Möbius inversion of Section 2.2

“
ÿ

πPNCpNq

¨

˝

ź

V“pi1,...,i|V |qPπ

pµppV qqµ
`

0|V |, 1|V |
˘

˛

‚,

(3.14)
by (3.13), where

µppV q “
µppK

o
i1,i2

q . . . µppK
o
i1,...,i|V |

qµppxi1,...,i|V |Ki1,...,i|V | XKi1,...,i|V |q

µppKi1,...,i|V |q
,
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are the block-depending free moments for all V P π and π P NCpNq, where kpnp. . .q
means free cumulant determined by ϕp as in Section 2.2.

By (3.14) one can get the following freeness condition (3.15) on the normal Hecke
subalgebra HYp

. And this freeness condition shows that classical independence guar-
antees our freeness.

Proposition 3.7 ([7]). Let fj “ χKj be free random variables in the normal Hecke
free probability space pHYp

, ϕpq for j “ 1, 2. Then

f1 and f2 are free in pHYp , ϕpq ô µppK
o
1,2q “ µppK1qµppK2q. (3.15)

4. FREE PROBABILITY ON HpGpq

In this section we extend the free probability on the normal Hecke subalgebra HYp
of

Section 3.2 to free probability fully on the Hecke algebra HpGpq. For more information
about such extensions, see [2].

Let G be an arbitrary group and let K be a subgroup of G. The normal core
CoreGpKq of K in G is defined by the subgroup of G,

CoreGpKq
def
“ X

gPG

`

g´1Kg
˘

. (4.1)

Then the normal core CoreGpKq is the maximal normal subgroup of G contained
in K, i.e.,

CoreGpKqCG and CoreGpKq ď K. (4.2)

For convenience, we denote the normal core CoreGpKq of (4.1) satisfying (4.2)
simply by KG.

Define now a linear transformation Ep on the Hecke algebra HpGpq by a morphism
satisfying (4.3) and (4.4) below:

Ep pχxKq “

#

χxKGp
if xK “ Kx,

0HpGpq otherwise
(4.3)

and

Ep pχx1K1 ˚ χx2K2q “

#

µppK
o
1,2qχx1,2K1,2:Gp

if xiKj “ Kjxj for all i, j P t1, 2u,
0HpGpq otherwise,

(4.4)
where KGp

and K1,2:Gp
mean the normal cores of K and K1,2 in Gp, respectively, and

where 0HpGpq is the zero element of HpGpq.
By (4.3) and (4.4), if Kj are compact-open subgroups of Gp, and xi P Gp, and if

xiKj “ Kjxi for all i, j “ 1, . . . , N, (4.5)
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for N P N, then

Ep pχx1K1 ˚ . . . ˚ χxNKN
q

“ Ep
`

µppK
o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N q χx1,...,NK1,...,N

˘

(4.6)
“ µppK

o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N qχx1,...,NK1,...,N:Gp

(4.7)

inductively by (4.4). Remark that if the condition (4.5) holds, then the formula

N
˚
j“1

χxjKj
“ µppK

o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N qχx1,...,NK1,...,N

(4.8)

holds in HpGpq, without normality of K1, . . . , KN in Gp (see [2]), and hence, the
formula (4.6) holds, and hence the equality (4.7) holds, by (4.3) and (4.6).

Proposition 4.1. Let fj “ χxjKj
be generating elements of the Hecke algebra HpGpq,

for j “ 1, . . . , N , for N P N, and let Ep be the linear transformation (4.4) on HpGpq.
If

xiKj “ Kjxi for all i, j “ 1, . . . , N,

then

Ep

ˆ

N
˚
j“1

fj

˙

“

˜

N
ź

j“2
µppK

o
1,...,jq

¸

χx1,...,NK1,...,N:Gp
. (4.9)

Otherwise, they are identical to the zero element 0HpGpq of the Hecke algebra HpGpq.

Proof. The proof of (4.9) is done by (4.5) and (4.8). See [2] for more details.

By construction it is not difficult to check that the linear transformation Ep
maps HpGpq onto the normal Hecke subalgebra HYp . Moreover, this morphism Ep is
idempotent in the sense that

E2
ppfq “ Ep pEppfqq “ Eppfq

for all f P HpGpq, because normal cores are normal subgroups of Gp.

Definition 4.2. We will call the morphism Ep of (4.2), the normal-coring on HpGpq.

Define now a linear functional ψp on the Hecke algebra HpGpq by

ψp
def
“ ϕp ˝ Ep on HpGpq. (4.10)

By the linearity of both the canonical linear functional ϕp on HYp
and the

normal-coring Ep on HpGpq, the morphism ψp is a linear functional on HpGpq. We
call the linear functional ψp of (4.10), the normal-cored (canonical) linear functional
on HpGpq. So, the pair pHpGpq, ψpq forms a free probability space.

Definition 4.3. The free probability space pHpGpq, ψpq of the Hecke algebra HpGpq
and the normal-cored linear functional ψp of (4.10) is said to be the normal-cored
Hecke probability space.
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Generally we obtain the following joint free-moment computations.

Theorem 4.4. Let pHpGpq, ψpq be the normal-cored Hecke probability space, and
let fj “ χxjKj

be generating free random variables in pHpGpq, ψpq for j P N. If the
condition (4.5) holds for N P N, then we obtain

ψp

ˆ

N
˚
j“1

fj

˙

“

`

µppK
o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N q

˘

µp
`

x1,...,NK1,...,N :G XK1,...,N :Gp

˘

µp
`

K1,...,N :Gp

˘

(4.11)

for all N P N, where K1,...,N :Gp
is in the sense of (4.2). If there exists at least one

pair pi, jq P t1, . . . , Nu2, for N P N, such that xiKj ‰ Kjxi in Gp, then the formulas
(4.11) vanish in HpGpq.

Proof. Suppose first that

xiKj “ Kjxi for all i, j “ 1, . . . , N,

for N P N, i.e., assume that the condition (4.5) holds. Then we have

ψp

ˆ

N
˚
j“1

fj

˙

“ ψp
`

µppK
o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N q χx1,...,NK1,...,N

˘

by (4.6)
“ µppK

o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N qψp

`

χx1,...,NK1,...,N

˘

“ µppK
o
1,2q . . . µppK

o
1,...,N q ϕp

`

Eppχx1,...,NK1,...,N
q
˘

“ µppK
o
1,2q . . . µppK

o
1,...,N q ϕp

´

χx1,...,NK1,...,N:Gp

¯

“ µppK
o
1,2q . . . µppK

o
1,...,N q

ˆ

µppx1,...,NK1,...,N:GXK1,...,N:Gpq

µppK1,...,N:Gpq

˙

by (3.9)
“

µppK
o
1,2q...µppK

o
1,...,N qµppx1,...,NK1,...,N:GXK1,...,N:Gpq

µppK1,...,N:Gpq
.

So, the formula (4.11) holds.
Of course if there exists at least one pair pi, jq, such that xiKj ‰ Kjxi, then the

formulas (4.11) and (4.12) simply vanish, by (4.3) and (4.4).

So we obtain that

ψp

ˆ

N
˚
j“1

χKj

˙

“
µppK

o
1,2qµppK

o
1,2,3q . . . µppK

o
1,...,N qµppK1,...,N :Gp

q

µppK1,...,N :Gp
q

“ µppK
o
1,2,qµppK

o
1,2,3,q . . . µppK

o
1,...,N q,

(4.12)

by (4.11).
Now let K1 and K2 be compact-open subgroups of Gp, and let χKj be correspond-

ing free random variables in the normal-cored Hecke probability space pHpGpq, ψpq.
Suppose kN p. . .q is the free cumulant for the normalized linear functional ψp. Then,
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for any pi1, . . . , iN q P t1, 2uN , for all N P N, we obtain the following free cumulant
computation:

kN

´

χKi1
, . . . , χKiN

¯

“
ÿ

πPNCpNq

ˆ

Π
V Pπ

µppV q µ
`

0|V |, 1|V |
˘

˙

(4.13)

with
µppV q “ µppK

o
ij1 ,ij2

qµp

´

Ko
ij1 ,ij2 ,ij3

¯

. . . µp

´

Ko
ij1 ,...,ijk

¯

,

by (4.12), whenever V “ pj1, . . . , jkq P π for all π P NCpNq and for all N P N, where
µppV q are the V -block-depending free moments.

By the above joint free-cumulant formula (4.13), we obtain the following freeness
condition on the normalized Hecke probability space pHpGpq, ψpq.

Theorem 4.5 ([2]). Let fj “ χKj and hj “ eKj be free random variables in the
normal-cored Hecke probability space pHpGpq, ψpq for j “ 1, 2. Then

f1 and f2 are free in pHpGpq, ψpq ô µppK
o
1,2q “ µppK1qµppK2q. (4.14)

5. REPRESENTATIONS ON NORMAL-CORED HECKE PROBABILITY SPACES

In this section we introduce representations of the normal-cored Hecke probability
spaces pHpGpq, ψpq, for primes p. Let p be a fixed prime, and let pHpGpq, ψpq be the
corresponding normal-cored Hecke probability space.

Define a sesqui-linear form on the Hecke algebra HpGpq,

r¨, ¨sp : HpGpq ˆHpGpq Ñ C

by
rf1, f2sp

def
“ ψppf1 ˚ f

˚
2 q for all f1, f2 P HpGpq, (5.1)

where
f˚pxq

def
“ fpxq in C for all x P Gp,

where z means the conjugate of z for all z P C. We call the above unary operation

f P HpGpq ÞÝÑ f˚ P HpGpq, (5.2)

the adjoint. And the element f˚ of (5.2) is said to be the adjoint of f. Since the
adjoint (5.2) is well-defined on HpGpq, one may understand our Hecke algebra HpGpq
as a ˚-algebra over C.

The form r¨, ¨sp of (5.1) is indeed sesqui-linear, since

rt1f1 ` t2f2, f3sp “ t1rf1, f3s ` t2rf2, f3s

and
rf1, t2f2 ` t3f3sp “ t2rf1, f2sp ` t3rf1, f3sp

for all f1, f2, f3 P HpGpq and t1, t2, t3 P C.
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Consider now that, for any fixed generating element χxK of HpGpq, for x P Gp,
and a compact-open subgroup K of Gp, we have

rtχxK , tχxKsp “ ψp
`

tχxK ˚ tχxK
˘

“ |t|
2
ψp pχxK ˚ χxKq

by the sesqui-linearity of r¨, ¨sp, where |t| means the modulus
?
t t of t,

“

#

|t|
2
ψp pµppKq χx2Kq if xK “ Kx

0 otherwise

“

$

&

%

´

µppKq |t|
2
¯

ˆ

µppx2KGpXKGpq
µppKGp q

˙

if xK “ Kx

0 otherwise

“

$

&

%

|t|
2
ˆ

µppKq µppx2KGpXKGpq
µppKGp q

˙

if xK “ Kx

0 otherwise
by (4.11), i.e.,

rtχxK , tχxKsp “ |t|
2
ˆ

µppKqµppx
2KGp

XKGp
q

µppKGpq

˙

, or 0, (5.3)

where KGp is the normal core of K in Gp. So, by (5.3), we obtain that

rtχxK , tχxKsp ě 0 (5.4)

for all x P Gp, for all compact-open subgroups K of Gp, for all t P C.
By (5.4) one can get in general that

rf, f sp ě 0 for all f P HpGpq. (5.5)

Proposition 5.1 ([2]). The sesqui-linear form r¨, ¨sp on the Hecke algebra HpGpq
forms a pseudo-inner product on HpGpq.

Suppose K is a nonempty proper “normal” compact-open subgroup of Gp and let
xK be the left coset of K by x P Gp. As “non-empty subsets” of Gp, it is possible that

xK XK “ ∅, and hence, µppxK XKq “ 0.

In such a case we have

rχxK , χxKsp “ ψp pµppKqχxKq “ ϕp pµppKq χxKq

“
µppKqµppxK XKq

µppKq
“ µppxK XKq “ 0,

i.e., there exist nonzero elements f of HpGpq such that

rf, f sp “ 0.
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Indeed, if xK ‰ Kx in Gp, then, by the very definition of Ep,

Ep pχxK ˚ χxKq “ 0HpGpq,

and hence,
ψppχxK ˚ χ

˚
xKq “ ϕp

`

0HpGpq

˘

“ 0,

even though χxK ‰ 0HpGpq, i.e.,

Df ‰ 0HpGpq : rf, f sp “ 0. (5.6)

So the pseudo-inner product space pHpGpq, r¨, ¨spq is not an inner product space,
by (5.6).

When we understand our Hecke algebra HpGpq as a pseudo-inner product space,
we denote it by Hp.

On the pseudo-inner product space Hp define a relation Rp by

f1Rpf2
def
ðñ rf1, f1sp “ rf2, f2sp. (5.7)

By the very definition (5.7) of Rp, it is an equivalence relation on Hp.

Definition 5.2. Let Hp be the pseudo-inner product space (5.6), and let Rp be the
equivalence relation (5.7) on Hp. Define the quotient space Hp by

Hp “ Hp{Rp, (5.8)

equipped with the inherited pseudo-inner product, also denoted by r¨, ¨sp on it. Then

Hp “ pHp, r¨, ¨spq “ pHp{Rp, r¨, ¨spq

is called the (normal-cored) Hecke inner product space.

From now on, if there is no confusion we denote equivalence classes

rf sRp “ th P Hp : hRpfu

simply by f in the Hecke inner product space Hp.˝
Indeed, our Hecke inner product space Hp is an inner product space, by Rp of

(5.7), i.e., it satisfies

rf, f sp “ 0 ðñ f “ 0Hp “ 0Hp{Rp, (5.9)

where 0Hp
is the zero element of Hp.

For the given inner product space Hp, one can define the corresponding norm }¨}p
on Hp by

}f}p
def
“

b

rf, f sp for all f P Hp, (5.10)

and the corresponding metric dp on Hp by

dp pf1, f2q “ }f1 ´ f2}p for all f1, f2 P Hp. (5.11)
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Definition 5.3. Construct the dp-metric topology closure of Hp, also denoted by Hp,
where dp is in the sense of (5.11) induced by the norm }¨}p of (5.10). It is called the
(normal-cored) Hecke Hilbert space.

Then by the very construction of the Hecke Hilbert space Hp from the
normal-cored Hecke probability space pHpGpq, ψpq, the algebra HpGpq acts on Hp
via an algebra-action αp;

αppfqphq “ f ˚ h for all h P Hp, (5.12)

for all f P HpGpq. More precisely, the above relation (5.12) means

αppfqphq “ αppfq
`

rhsRp

˘

“ rf ˚ hsRp
(5.13)

in Hp for f P HpGpq. For convenience, we denote αppfq by αpf for all f P HpGpq.
The above morphism αp of (5.12) and (5.13) is indeed a well-defined algebra-action

of HpGpq acting on Hp, since

αpf1˚f2
phq “ f1 ˚ f2 ˚ h “ f1 ˚ pf2 ˚ hq

“ f1 ˚
´

αpf2
phq

¯

“ αpf1

´

αpf2
phq

¯

“

´

αpf1
αpf2

¯

phq

for all h P Hp and f1, f2 P HpGpq, i.e.,

αpf1˚f2
“ αpf1

αpf2
on Hp (5.14)

for all f1, f2 P HpGpq. Also, αp satisfies that
”

αpf ph1q, h2

ı

p
“ rf ˚ h1, h2sp

“ ψp ppf ˚ h1q ˚ h
˚
2 q

“ ψp ph1 ˚ f ˚ h
˚
2 q

“ ψp ph1 ˚ ph
˚
2 ˚ fqqψp ph1 ˚ pf

˚ ˚ h2q
˚q

“ rh1, f
˚ ˚ h2sp “

”

h1, α
p
f˚ph2q

ı

p

for all h1, h2 P Hp and f P HpGpq, i.e.,
´

αpf

¯˚

“ αpf˚ on Hp for all f P HpGpq. (5.15)

Therefore, the morphism αp of (5.12) is a ˚-algebra-action of HpGpq acting on Hp, by
(5.14) and (5.15).

Theorem 5.4. The pair pHp, αpq of the Hecke Hilbert space Hp and the morphism
αp of (5.12) forms a Hilbert-space representation of the Hecke algebra HpGpq acting
on Hp.

Proof. The proof is done by (5.13), (5.14) and (5.15). (See [2] for more details.)
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We call the algebra-action αp of (5.12) the (normal-cored) Hecke(-algebra) action
of HpGpq acting on Hp.

Definition 5.5. The Hilbert-space representation pHp, αpq of the Hecke algebra
HpGpq is called the (normal-cored) Hecke representation (of the normal-cored Hecke
probability space pHpGpq, ψpq).

6. CERTAIN PROJECTIONS AND PARTIAL ISOMETRIES ON Hp

In this section under the Hecke representation pHp, αpq of the Hecke probability space
pHpGpq, ψpq, certain generating elements of HpGpq will be considered as Hilbert-space
operators on Hp (under quotient). In particular, we are interested in partial isometries
induced by generating elements and their initial and final projections.

Already in [2] we studied some operator-theoretic information; self-adjointness,
normality, unitarity, isometry-property and hyponormality; of such operators. In
particular, we realized that, by the very constructions of the Hecke algebra HpGpq and
our representation pHp, αpq, there are no isometries (and hence, no unitaries) formed
by αptχxK

, for t P C, x P Gp, and compact-open subgroups K of Gp. However, operators
αptχxK

are always normal on Hp.
Since there are neither isometries nor unitaries we are interested in the op-

erators αptχxK
which are projections, and partial isometries having their identical

initial-and-final projections on Hp.
Recall that an operator T on a Hilbert space H is said to be a partial isometry,

if T˚T is a projection on H. It is well-known that: T is a partial isometry, if and
only if TT˚T “ T on H, if and only if T˚ is a partial isometry on H, if and only if
T˚TT˚ “ T˚ on H, if and only if TT˚ is a projection on H. i.e., a partial isometry T
is a unitary from T˚T pHq onto TT˚pHq.

If T is a partial isometry on H, then the projection T˚T is called the initial
projection of T , and the projection TT˚ is called the final projection of T on H. Also,
the (closed) subspaces T˚T pHq and TT˚pHq of H are called the initial subspace and
the final subspace of T in H, respectively.

If T is a partial isometry on H, then it is a unitary from its initial subspace onto
its final subspace, in the sense that:

T˚T “ 1T˚T pHq and TT˚ “ 1TT˚pHq,

where 1K means the identity operators on Hilbert (sub-)spaces K (in H). Thus, if T
has identical initial and final subspaces K in H, then

T˚T “ 1K “ TT˚,

and hence, one can understand T as unitary in the operator subalgebra BpKq of BpHq.
Notice that in Section 5 (and [2]), we observed that:

´

αpf1

¯´

αpf2

¯

“ αpf1˚f2
for all f1, f2 P HpGpq, (6.1)
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´

αpf

¯˚

“ αpf˚ for all f P HpGpq. (6.2)

Theorem 6.1. Let f “ χxK be a generating element of HpGpq for x P Gp, and
a compact-open subgroup K of Gp. Assume xK “ Kx in Gp, and let αpf be the
corresponding operator on the Hecke Hilbert space Hp.

αpf is a projection on Hp ðñ µppKq “ 1, and x P K. (6.3)

Proof. Recall that an operator T on an arbitrary Hilbert space H is a projection, if
(i) T is self-adjoint in the sense that T˚ “ T on H, where T˚ is the adjoint of T , and
(ii) T is idempotent in the sense that T 2 “ T on H.

Observe now that
´

αpf

¯˚

“ αpf˚ “ αp
pχxKq

˚ “ αpχxK
“ αpf ,

by (6.2). Thus, the operator αpf is self-adjoint on Hp. So, the given operator αpf satisfies
the self-adjointness condition (i) automatically.

Now observe that
´

αpf

¯2
“ αpf˚f “ αpµppKqχx2K

on Hp, (6.4)

by (6.1), and by the assumption: xK “ Kx in Gp.
So to satisfy the idempotence condition (ii), the operator αpf must satisfy

αpµppKq χx2K
“ αpχxK

on Hp, (6.5)

by (6.4).
(ð) If µppKq “ 1, and x P K, then xK “ K, and hence, x2K “ K, moreover,

αpµppKqχx2K
“ αpχK

“ αpχxK
.

Therefore, the relation (6.5) holds, and hence αpf is a projection on Hp.
(ñ) Suppose the relation (6.5) holds, and assume that either µppKq ‰ 1, or x R K

in Gp.
Let x R K in Gp. Then, in general, xK ‰ x2K, and hence, χx2K ‰ χxK . So, the

relation (6.5) does not hold true, and it contradicts our assumption.
Assume now that µppKq ‰ 1. Then, clearly,

µppKqχx2K ‰ χxK ,

in general, thus the relation (6.5) does not hold either. It again contradicts our
assumption.

Therefore, we obtain the characterization

αpf is an idempotent ðñ µppKq “ 1, and x P K. (6.6)

By the self-adjointness of αpf , and by (6.5) and (6.6), one can conclude that: αpf is
a projection on Hp, if and only if

µppKq “ 1, and x P K.
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The above characterization (6.3) shows that the generating elements f “ χxK of
the normal-cored Hecke probability space pHpGpq, ψpq assign projections αpf on the
Hecke Hilbert space Hp, whenever

f “ χK with µppKq “ 1. (6.7)

Let fj “ χKj
be non-zero generating elements of pHpGpq, ψpq, where µppKjq “ 1,

equivalently, αpfj
are projections on Hp, by (6.3) and (6.7), for j “ 1, 2. Also, let

f “ χxK P pHpGpq, ψpq, and αpf , the corresponding operator on Hp, where

xK “ Kx in Gp.

Consider the following functional equation:

f˚ ˚ f “ f1 and f ˚ f˚ “ f2 on HpGpq. (6.8)

Observe that
f˚ ˚ f “ µppKqχx2K “ f ˚ f˚ in HpGpq. (6.9)

Consider the equality (6.10) below:

µppKqχx2K “ χK . (6.10)

To satisfy (6.10), one must have that:

µppKq “ 1, and x2K “ K. (6.11)

By (6.8), (6.9) and (6.10), we obtain the following theorem.
Theorem 6.2. Let x0 P Gp, and K0,K, compact-open subgroups of Gp, where
x0K0 “ K0x0 in Gp. If

x0K0 “ x´1
0 K in Gp, with µppK0q “ 1 “ µppKq, (6.12)

then αpχx0K0
is a partial isometry with its initial and final projections αpχK

on Hp.

Proof. By (6.3) and (6.7), if µppKq “ 1, then αpχK
is a projection on Hp. Assume now

that
x2

0K0 “ K in Gp, where µppK0q “ 1,
for some x0 P Gp. Then we have

χ˚x0K0
˚ χx0K0 “ χx0K0 ˚ χx0K0 “ µppK0qχx2

0K0 “ χx2
0K0 “ χK

on Hp, by (6.9), (6.10) and (6.11). Similarly, one obtains that

χx0K0 ˚ χ
˚
x0K0

“ χx2
0K0 “ χK on Hp.

Thus, the operator αpχx0K0
satisfies

´

αpχx0K0

¯˚ ´

αpχx0K0

¯

“ αpχK
“

´

αpχx0K0

¯´

αpχx0K0

¯˚

(6.13)

on Hp, by the assumption that x0K0 “ K0x0 in Gp.
The relation (6.13) shows that the operator αpχx0K0

is a partial isometry with its
initial and final projections identified with the projection αpχK

, on Hp.
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The above necessary condition (6.12) shows that, whenever we fix a projection αpχK

on Hp (with µppKq “ 1), one may take a partial isometry αpχx0K0
on Hp, whenever

x2
0K0 “ K,

having its both initial and final projections αpχK
. By the property of µp, one automati-

cally obtains that
µppx

2
0K0q “ µppK0q “ µppKq “ 1.

Notice that the choice of K0, for a fixed K, is not unique, i.e., one may have
multi-partial isometries having both initial and final projections αpχK

on mathfrakHp.
Assume now that, for a fixed compact-open subgroup K of Gp with µppKq “ 1, there
are “distinct” compact-open subgroups Kj of Gp such that

xjKj “ x´1
j K and µppKjq “ 1, (6.14)

for some xj P Gp, for j “ 1, . . . , N , for N P N.
Then by (6.12), the operators αpχxj Kj

are self-adjoint partial isometries having
their initial and final projections αpχK

on Hp, for j “ 1, . . . , N. And, by (6.14), one
can understand the partial isometries αpχxj Kj

as certain perturbed operators αpχ
x
´1
j

K

induced by x´1
j K, satisfying (6.14) for all j “ 1, . . . , N , i.e.,

αpχxj Kj
“ αpχ

x
´1
j

K
on Hp for all j “ 1, . . . , N.

The above equality holds by the quotient relation Rp on the normal-cored Hecke
Hilbert space Hp.

Let us denote these partial isometries αpχxj Kj
“ αpχ

x
´1
j

K
simply by TKj for

j “ 1, . . . , N .

Theorem 6.3. Let TKj be distinct partial isometries αpχxj Kj
“ αpχ

x
´1
j

K
satisfying

(6.14), whose initial and final projections αpχK
, for j “ 1, . . . , N , for N P N, where

Kj CGp for j “ 1, . . . , N

(and hence, K CGp, too, by (6.14)). Then the subgroup generated by tTKj uNj“1 (under
the operator-multiplication on the operator algebra BpHpq) is group-isomorphic to
a quotient group TN ,

TN “ F
`

taju
N
j“1

˘

{ta2
j “ eNu

N
j“1

where F
`

taju
N
j“1

˘

is the free group generated by tajuNj“1, and ta2
j “ eNu

N
j“1 is the

relator set of TN , where eN is the group-identity of TN .

Proof. Let TKj “ αpχxj Kj
be given as above, and let

αpχK
pHpq

denote
“ HKp
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be the subspace of Hp. Since αpχK
is a well-defined projection on Hp, its image HKp is

indeed a well-determined (closed) subspace of Hp. Moreover, it is both the initial and
final subspaces of TKj , by (6.12) and (6.14), for all j “ 1, . . . , N , in Hp.

So without loss of generality, one can understand TKj are operators in the operator
(sub-)algebra BpHKp q of BpHpq for j “ 1, . . . , N. By understanding tTKj uNj“1 as a
subset of BpHKp q, one can define the (multiplicative) subgroup TKN (under operator
multiplication on BpHKp q), by the group generated finitely by tTKj uNj“1, i.e.,

TKN
def
“

@

tTKj u
N
j“1

D

Ď BpHKp q Ď BpHpq, (6.15)

where xXy mean here the groups generated by sets X.
Now let TN be the group,

TN “ F
`

taju
N
j“1

˘

{ta2
j “ eNu

N
j“1, (6.16)

where FpXq mean the (noncommutative) free groups generated by sets X.
Define now a morphism

Ω : TKN Ñ TN

by the binary–operation-preserving map such that

Ω
`

TKj
˘

“ aj for j “ 1, . . . , N (6.17)

(with possible re-arrangements), where TKN is in the sense of (6.15), and TN is in the
sense of (6.16).

Since both TKN and TN have N -generators, the generator-and-operation-preserving
morphism Ω of (6.17) is bijective. It also satisfies that

Ω
´

`

TKj
˘2¯

“ a2
j “ eN for all j “ 1, . . . , N. (6.18)

Indeed, by definition, one has

`

TKj
˘2
“

´

αpχxj Kj

¯2
“ αpχxj Kj

˚χxj Kj
“ αpµppKjqχx2

j
Kj

“ αpχK
“ 1HK

p
,

where 1HK
p

means the identity operator on the subspace HKp (in BpHKp q) of Hp. Thus,
the formula (6.18) holds.

Remark that even though K1, . . . , KN are normal in Gp, one has

TKi T
K
j “ αpχx1K1˚χx2K2

“ αpµppKo
1,2qχx1,2K1,2

‰ αpµppKo
2,1qχx2,1K2,1

“ TKj T
K
i ,

in general, in TKN , because x1,2 ‰ x2,1 in Gp, while K1,2 “ K2,1 in Gp.
Therefore, the bijective generator-and-operation-preserving morphism Ω also

preserves the relations between TKN and TN , and hence, it is a well-determined
group-isomorphism from TKN onto TN , i.e., two groups TKN and TN are
group-isomorphic.
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Notice that in the above theorem, the normality condition for K1, . . . , KN is
crucial.

By the above theorem we obtain the following sub-structure theorem in αp pHpGpqq
in BpHpq.

Theorem 6.4. Under the same hypothesis with the above theorem, the C˚-subalgebra
generated by tTKj uNj“1 in BpHpq is ˚-isomorphic to the group C˚-algebra C˚l2pTN q

pTN q

in the sense of Section 2.3, i.e.,

C˚HK
p

`

TKN
˘ ˚-iso
“ C˚l2pTN q

pTN q , (6.19)

where C˚HpXq mean the C˚-subalgebras of BpHq generated by subsets X of BpHq over
Hilbert spaces H.

Proof. By the above theorem the (sub)group TKN of (6.14) generated by tTKj uNj“1
(in BpHKp q Ď BpHpq) is group-isomorphic to the group TN of (6.16), by the
group-isomorphism Ω of (6.17), i.e.,

TKN
Group
“ F

`

taju
N
j“1

˘

{ta2
j “ aju

N
j“1 “ TN .

Therefore, the group C˚-algebra

C˚
`

TKN
˘ denote
“ C˚HK

p

`

TKN
˘

“ C
“

TKN
‰

of BpHKp q

is ˚-isomorphic to the group C˚-algebra

C˚pTN q
denote
“ C˚l2pTN q

pTN q “ C rupTN qs of B
`

l2pTN q
˘

,

where u means the left-regular unitary representation in the sense of Section 2.3.
Indeed, one can extend the group-isomorphism Ω of (6.17) under linearization, i.e.,
we have a morphism

Ωo : C˚
`

TKN
˘

Ñ C˚ pTN q ,

such that

Ωo

˜

n
ÿ

j“1
tj T

K
j

¸

def
“

N
ÿ

j“1
tjΩ

`

TKj
˘

“

n
ÿ

j“1
tju pajq ,

for tj P C, j “ 1, . . . , n and n P NY t8u (under C˚-topology).
It is not difficult to check Ωo is a ˚-isomorphism.

The characterization (6.19) shows that αp pHpGpqq contains group C˚-algebras
(˚-isomorphic to) C˚ pTN q, for N P N, where TN are in the sense of (6.16), when-
ever there are compact-open normal subgroups K with µppKq “ 1, and distinct
compact-open subgroups Kj with µppKjq “ 1, satisfying

xjKj “ x´1
j K for j “ 1, . . . , N.
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As in above theorems we assume K is a normal compact-open subgroup of Gp
with µppKq “ 1, and

xjKj “ x´1
j K with µppKjq “ 1

for all j “ 1, . . . , N.
As a special case we consider the following conditions (6.20) and (6.21) below;

suppose that the non-identity group elements xj of Gp are self-invertible in the sense
that:

xj “ x´1
j ðñ x2

j “ up “ x´2
j , the group-identity of Gp (6.20)

for all j “ 1, . . . , N.
And for the compact-open normal subgroup K, take

Kj “ xjK for all j “ 1, . . . , N. (6.21)

Then automatically we have that

µppKjq “ 1 for all j “ 1, . . . , N.

Remark 6.5. Indeed, such group elements xj exist in Gp. For instance, if we let

x “

ˆ

a b
1´a2

b ´a

˙

P Gp,

for a, b P Qp, then x2 “ up in Gp. So, one may take finitely many distinct elements
x1, . . . , xN in Gp, for some N P N.

Moreover, for a fixed normal subgroup K of Gp, we can take such x1, . . . , xN
in Gp, which are not contained in K. For instance, if K is the normal core UGp of
U “ GL2pZpq, then we can take

x1 “

ˆ

2 3
´1 ´2

˙

and x2 “

ˆ

3 8
´1 ´3

˙

in Gp,

satisfying x1, x2 R UGp
and hence, x1UGp

and x2UGp
are as in (6.21).

Remark that
x1x2 “

ˆ

3 7
´1 ´2

˙

‰

ˆ

´2 ´7
1 3

˙

“ x2x1,

in Gp. So, the group generated by tx1UG1 , x2UG2u is group-isomorphic to the noncom-
mutative group

Fpta1, a2uq{ta
´1
j “ aju

2
j“1.

The corresponding operators TKj “ αpχKj
are partial isometries on Hp, whose initial

and final projections are the projection αpχK
on Hp. Therefore, one can obtain the

group,
TKN “

A

tTKj “ αpχxj K
uNj“1

E

, (6.22)
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generated by tTKj uNj“1, as a multiplicative subgroup of the operator algebra BpHKp q,
where HKp “ αpχK

pHpq is the subspace of Hp. Note that

TKj T
K
j “ αpχKi

αpχKj
“ αpαpµppKXKqχx1x2KK

“ αpχx1x2K
. (6.23)

Assumption and Notation 6.6 (in short, AN 6.6 from below). In the rest of this
paper if we write a group TKN , then it means a group (6.22), which is a special case of
the general construction (6.15), satisfying (6.23), i.e.,

Kj “ xjK

of (6.21), where xj satisfy (6.20), for j “ 1, . . . , N. But if we need to handle general
cases as in (6.15) and (6.19), we will state clearly in the text.

By the group-isomorphic relation in the general format of (6.15) with (6.16),
a group TKN of AN 6.6 is group-isomorphic to the group TN of (6.16), too.

Recall that the group TN of (6.16) is defined to be the quotient group

F
`

taju
N
j“1

˘

{ta´1
j “ aju

N
j“1.

In fact, the group TN is naturally group-isomorphic to the finitely presented
group FN ,

FN “

C

twju
N
j“1,

"

w2
j “ eN , and
wiwj “ wjwi

*N

i,j“1

G

, (6.24)

i.e.,
TN

Group
“ FN .

By the above discussions, we obtain the following refined results under AN 6.6.

Corollary 6.7. Let TKN be a group in the sense of (6.22) under AN 6.6. Then it is
group-isomorphic to the finitely generated group FN of (6.24). Moreover, the group
C˚-algebra C˚

HK
p

`

TKN
˘

is ˚-isomorphic to the group C˚-algebra C˚l2pFN q
pFN q, i.e.,

TKN
Group
“ FN

def
“

C

taju
N
j“1,

"

aj “ a´1
j and

aiaj “ ajai

*N

i, j“1

G

, (6.25)

and
C˚HK

p

`

TKN
˘ ˚-iso
“ C˚l2pFN q

pFN q .

Proof. By the discussion in the above paragraphs, the group TN of (6.16) is
group-isomorphic to FN of (6.24), by (6.20), (6.21) and (6.23) (under AN 6.6).

So one can define a morphism Ψ : TN Ñ FN by a generator-preserving bijection
between the two finite sets,

Ψpajq “ wj for all j “ 1, . . . , N,
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such that
Ψpaiajq “ ΨpaiqΨpajq “ wiwj

(under possible re-arrangements) for all i, j “ 1, . . . , N.
Therefore, one has that

TKN
Group
“ TN

Group
“ FN .

By the above group-isomorphic relations we obtain

C˚HK
p

`

TKN
˘ ˚-iso
“ C˚l2pTN q

pTN q
˚-iso
“ C˚l2pFN q

pFN q .

7. FREE STRUCTURES ON C˚
`

TKN
˘

In this section we study freeness conditions on our group C˚-algebras and their
structure theorems.

Now let K be a fixed normal compact-open subgroup of Gp, with µppKq “ 1, and
hence, the corresponding operator TK “ αpχK

is a projection on the Hecke Hilbert
space Hp, acting as the identity operator on the subspace HKp “ TK pHpq in Hp.
Assume further that there exist distinct self-invertible group elements xj P Gp in the
sense that: x´1

j “ xj , and distinct subsets Kj of Gp with µppKjq “ 1, such that

Kj “ x´1
j K “ xjK for all j “ 1, . . . , N,

as in AN 6.6. Then, by (6.12), the corresponding operators TKj “ αpχKj
are the partial

isometries on Hp with their initial and final projections identified with TK “ αpχK
, for

j “ 1, . . . , N.
We have seen in (6.19) and (6.25) the C˚-algebra C˚

`

TKN
˘

is ˚-isomorphic to the
group C˚-algebra C˚ pTN q generated by the finitely generated group,

TN
Group
“

C

taju
N
j“1,

"

a2
j “ eN and
aiaj “ ajai

*N

i, j“1

G

.

Let’s denote C˚
`

TKN
˘

and C˚pTN q simply by C˚K,N , and C˚N , respectively. Because
of the ˚-isomorphic relations between C˚K,N and C˚N we sometimes use C˚K,N and C˚N ,
alternatively, as a same object. However, whenever we emphasize such C˚-algebras
C˚N are constructed from our Hecke representational setting we will precisely use the
term C˚K,N .

7.1. FREE-DISTRIBUTIONAL DATA ON C˚K,N

Let TKN be the group in the general sense of (6.14) and C˚K,N , the corresponding
group C˚-algebra generated by TKN (without AN 6.6). On the C˚-subalgebra C˚K,N
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of BpHKp q Ď BpHpq, define a linear functional, also denoted by ψp, by a morphism
satisfying

ψp
`

TKj
˘

“ ψp

´

αpχxj Kj

¯

def
“ ψp

`

χxjKj

˘

“ ϕp

´

χxjKj:Gp

¯

“ ϕp
`

χxjKj

˘

“ χxjKj
pupq “

µp pxjKj XKjq

µppKjq
,

(7.1)

by the normality conditions for K1, . . . , KN , where Kj:Gp
means the normal core

CoreGppKjq of Kj in Gp, as in Section 3 and where ψp in the second equality def
“ of

(7.1) means the normal-cored linear functional ϕp ˝ Ep on the Hecke algebra HpGpq
in the sense of (4.10) and ϕp is the canonical linear functional on the normal Hecke
algebra HYp

in the sense of (3.12).
The pair

´

C˚K,N , ψp

¯

becomes a well-determined a C˚-probability space in the
sense of [12] and [13].

Definition 7.1. The C˚-probability space
´

C˚K,N , ψp

¯

is called the K(-concentrated-
-C˚)-Hecke probability space on HKp (or, on Hp).

Remark that since

xjKj “ x´1
j K for all j “ 1, . . . , N,

one has that
Kj “ x´2

j K for all j “ 1, . . . , N, (7.2)
and hence,

ψp
`

TKj
˘

“
µp pxjKj XKjq

µppKjq
“
µp

`

x´1
j K X x´2

j K
˘

µppx
´2
j Kq

“ µp
`

x´1
j K X x´2

j K
˘

(7.3)

by (7.2), for all j “ 1, . . . , N.
Notice here in (7.3) that

x P gK X g2K ô x “ gk1 and x “ g2k2, for some k1, k2 P K

ô g´1x “ k1 and g´1x “ gk2

ô g´1x P K X gK

ô x P g pK X gKq ,

and hence one has

gK X g2K Ď g pK X gKq for g P Gp.

Similarly,

x P g pK X gKq ô x “ gv with v “ k1 “ gk2, for some k1, k2 P K

ô x “ gk1 and x “ g2k2

ô x P gK X g2K,
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and hence we have

g pK X gKq Ď gK X g2K for g P Gp.

Therefore,

gK X g2K “ g pK X gKq ,

for a compact-open subgroup K of Gp, and g P Gp. So, the second equality of (7.3)
indeed holds.

It shows that the formula (7.3) can be re-written by

ψp
`

TKj
˘

“ µp
`

x´1
j K X x´2

j K
˘

“ µp
`

x´1
j

`

K X x´1
j K

˘˘

“ µp
`

K X x´1
j K

˘

,

i.e.,

ψp
`

TKj
˘

“ µp
`

K X x´1
j K

˘

(7.4)

for all j “ 1, . . . , N , since µppKq “ 1. So, one can conclude that

ψp
`

TKj
˘

“ µp pxjK XKq “
µp pxjK XKq

µppKq

“
µp pxjK X upKq

µppKq
“ ψp

`

χxjK

˘

“ ϕp
`

χxjK

˘

,

(7.5)

by the normality of K, where up is the group-identity of G, by the normality of K
in Gp. By (7.5), it is not difficult to check that

ψp pTKq “ ψp
`

αpχK

˘

“ ψp pχKq “ χKpupq “
µppK X upKq

µppKq
“ 1.

It shows that the K-Hecke probability space pC˚K,N , ψpq is unital in the sense that

ψppT
Kq “ ψp

´

1C˚
K,N

¯

“ 1,

because TK is the identity operator 1C˚
K,N

on HKp in C˚K,N .
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Observe now that

ψp

˜

n
ź

k“1
TKik

¸

“ ψp

ˆ

n
˚
k“1

χxik
Kik

˙

“ ψp

ˆ

n
˚
k“1

χx´1
ik
K

˙

by (7.2)

“ ψp

´

µppKq
n´1χx´1

i1
x´1

i2
...x´1

in
K

¯

by the normality condition for K

“
µppKq

n´1µp
`

pxin . . . xi1q
´1K XK

˘

µppKq

“
µp

`

pxin . . . xi1q
´1K XK

˘

µppKq

“ µp
`

pxin . . . xi2xi1q
´1K XK

˘

(7.6)

refining (7.4) and (7.5).
The above formulas (7.5) and (7.6) are also obtained under AN 6.6, too.

Theorem 7.2. If pi1, . . . , inq P t1, . . . , Nun, for n P N, then

ψp

˜

n
ź

k“1
TKik

¸

“ µp

˜˜

n´1
ź

k“0
xin´k

¸´1

K XK

¸

. (7.7)

Proof. The proof of (7.7) is done by formula (7.6).

So one obtains the following corollary immediately.

Corollary 7.3. Under AN 6.6, if pi1, . . . , inq P t1, . . . , Nun for n P N, then

ψp

˜

n
ź

k“1
TKik

¸

“ .µp

ˆˆ

n´1
Π
k“0

xin´k

˙

K XK

˙

. (7.8)

The above formula (7.7) (or (7.8)) characterizes the free-distributional data of our
partial isometries tTKj uNj“1 (resp., under AN 6.6).

For pi1, . . . , inq P t1, . . . , Nun, for n P N, consider now the free cumulants,

kn
`

TKi1 , T
K
i2 , . . . , T

K
in

˘

“
ÿ

πPNCpnq

ˆ

Π
V Pπ

ˆ

ψp

ˆ

Πo

jPV
TKij

˙

µ
`

0|V |, 1|V |
˘

˙˙

by the Möbius inversion of Section 2.2, where knp. . .q means the free cumulant for ψp
on C2

K,N
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“
ÿ

πPNCpnq

˜

Π
V Pπ

˜µp

ˆˆ

Πo

jPV
x´1
ij

˙

KGp
X KGp

˙

µppKGpq
µ
`

0|V |, 1|V |
˘

¸¸

. (7.9)

By the free cumulant formula (7.9), we obtain the following equivalent
free-distributional data with (7.7) for the partial isometries tTKj uNj“1 generating C˚K,N
in the K-Hecke probability space pC˚K,N , ψpq.
Proposition 7.4. Under the same hypothesis with (7.8) one has

kn
`

TKi1 , T
K
i2 , . . . , T

K
in

˘

“
ÿ

πPNCpnq

ˆ

Π
V Pπ

ˆ

µp

ˆˆ

Π
jPV

x´1
ij

˙

K X K

˙

µ
`

0|V |, 1|V |
˘

˙˙

(7.10)

for all pi1, . . . , inq P t1, . . . , Nun and n P N.
Proof. The proof of (7.10) is done by (7.9).

The above computation (7.10) provides the following freeness necessary condition
on our group C˚-probability space pC˚K,N , ψpq.

Theorem 7.5. Let C˚K,N be the group C˚-subalgebra of BpHKp q generated by the group
TKN . Assume that the generators TKj “ αpχ

x
´1
j

K
satisfy that

µp
`

x´1
i1
K XK

˘

“ µp
`

x´1
i2
K XK

˘

(7.11)
for all i1, i2 “ 1, . . . , N and

µp
``

x´1
j1
x´1
j2
. . . x´1

jk

˘

K XK
˘

“ µp
`

x´1
j1
K XK

˘

(7.12)

for all pj1, . . . , jkq P t1, . . . , Nuk, where the entries j1, . . . , jk are all mutually distinct
in the k-tuples for all k P N. Then the family tTKj uNj“1 is a free family in pC˚K,N , ψpq,
in the sense that: all elements of the family are free in pC˚K,N , ψpq from each other.

Proof. Assume the generator set tTKj uNj“1 of the group TKN satisfies the above two
conditions (7.11) and (7.12). Then by (7.10) we obtain a quantity βo such that

βo “ µppx
´1
j K XKq for any j “ 1, . . . , N.

Thus for any “mixed” n-tuple, pi1, . . . , inq P t1, . . . , Nun, one has

kn
`

TKi1 , T
K
i2 , . . . , T

K
in

˘

“ βo

¨

˝

ÿ

πPNCpnq

ˆ

Π
V Pπ

µ
`

0|V |, 1|V |
˘

˙

˛

‚

“ βo

¨

˝

ÿ

πPNCpnq

µ pπ, 1nq

˛

‚“ 0,

by Section 2.2, for all n P Nzt1u. Therefore the generator set tTKj uNj“1 of TKN is a free
family.
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7.2. FREENESS ON C˚K,N

In this section we concentrate on freeness on our graph C˚-subalgebra C˚K,N generated
by TKN in BpHKp q. Throughout this section we restrict our interests to the special case
where TKN are under AN 6.6, for convenience. Remark that even though we are in the
general setting, the main results of this section would be similar.

Recall the ˚-isomorphic relation between C˚K,N and C˚N , where C˚N is the group
C˚-algebra generated by the group,

TN
def
“ F

`

taju
N
j“1

˘

{ taj “ a´1
j u

N
j“1

Group
“

C

taju
N
j“1,

"

a´1
j “ aj and
aiaj “ ajai

*N

i, j“1

G

.
(7.13)

Like the above necessary freeness conditions (7.11) and (7.12), one can verify that in
some cases, the generator set tTKj uNj“1 of the group TKN forms a free family in our
K-Hecke probability settings.

Corollary 7.6. Under AN 6.6, assume that the conditions (7.11) and (7.12) hold.
Then the subgroup TKN of (6.22) in BpHKp q is group-isomorphic to the quotient group

G2
N “

N
‹
j“1

@

aj : a´1
j “ aj

D

, (7.14)

where (‹) in (7.13) means the “free product of groups” for i, j “ 1, . . . , N . Therefore, in
this case, the C˚-algebra C˚K,N is ˚-isomorphic to the group C˚-algebra C˚

`

G2
N

˘

, i.e.,

C˚K,N
˚-iso
“ C˚

`

G2
N

˘

. (7.15)

Proof. If the conditions (7.11) and (7.12) hold, then the generators tTKj uNj“1 of the
subgroup TKN of (7.13) are free from each other in pC˚K,N , ψpq. Moreover, in such a
case, the group TKN is group-isomorphic to G2

N of (7.13), since TKN forms a free family
(under quotient). Thus, the group-isomorphic relation (7.14) holds.

Therefore, in this case, one has

C˚
`

TKN
˘

“ C˚K,N
˚-iso
“ C˚pG2

N q,

by (7.14). So, the ˚-isomorphic relation (7.16) holds.

In the proof of (7.16) the freeness on TKN (from (7.11) and (7.12)) in pC˚K,N , ψpq is
critical i.e., If TNK is generated by a free family tTjuNj“1, then

TKN
Group
“ G2

N , and C˚K,N
˚-iso
“ C˚

`

G2
N

˘

.

Theorem 7.7. Under AN 6.6, if the set tTKj uNj“1 of partial isometries forms a free
family in pC˚K,N , ψpq, then the subgroup TKN of (6.22) in BpHKp q is group-isomorphic
to the quotient group

G2
N “

N
‹
j“1

@

aj : a´1
j “ aj

D

, (7.16)
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where (‹) means the “commutative” group-free product. And the corresponding group
C˚-algebra C˚K,N is ˚-isomorphic to the group C˚-algebra C˚

`

G2
N

˘

,

C˚K,N
˚-iso
“ C˚

`

G2
N

˘ ˚-iso
“

N
‹C
j“1

C˚
`@

aj : a´1
j “ aj

D˘

.

Proof. The proof is done by similar arguments for the above corollary under arbitrary
freeness on tTKj uNj“1 in pC˚K,N , ψpq. Remark that in the above corollary, we give
necessary freeness condition from (7.11) and (7.12), while here we simply assume the
generators of TKN are free from each other under AN 6.6.

Assume now that tTKj uNj“1 under AN 6.6 forms a free family in pC˚K,N , ψpq. Then
for any n-tuple pi1, . . . , inq of t1, . . . , Nun, for n P N, one has

ψp
`

TKi1 TKi2 . . .TKin
˘

“
ÿ

πPNCpnq

ˆ

Π
V Pπ

kV

˙

, (7.17)

where
kV “ k|V |

´

TKik1
, TKik2

, . . . , TKik|V |

¯

,

whenever V “
`

ik1 , . . . , ik|V |
˘

in π, for all π P NCpnq, where knp. . .q means the free
cumulant in terms of the linear functional ψp.

By the freeness (7.16) under (7.7), all mixed free cumulants of tTKj uNj“1 vanish. Let
pi1, . . . , inq P t1, . . . , Nun, for n P N, and assume πpi1,...,inq is a noncrossing partition
in NCpnq with its blocks V1, . . . , V|πpi1,...,inq|

, where |π| mean the numbers of blocks
of noncrossing partitions π, such that: (i) each block has its form

Vj “ pkj , kj , . . . , kjq, for kj P t1, . . . , Nu (7.18)

for all j “ 1, . . . ,
ˇ

ˇπpi1,...,inq
ˇ

ˇ, and (ii) such a block Vj is maximal, under noncrossing
ordering, satisfying (7.18), i.e., each block Vj of πpi1,...,inq is the maximal block,
consisting only of one number in t1, . . . , Nu for all j “ 1, . . . ,

ˇ

ˇπpi1,...,inq
ˇ

ˇ .

Example 7.8. For example, if N “ 3, and p1, 1, 2, 2, 2, 1, 3q is fixed as a 7-tuple, then
the corresponding partition πp1,1,2,2,2,1,3q in NCp7q has its blocks,

p1, 1q, p2, 2, 2q, p1q and p3q,

i.e.,
πp1,1,2,2,2,1,3q “ tp1, 1q, p2, 2, 2q, p1q, p3qu in NCp7q.

Also under same hypothesis, if p1, 1, 1, 2, 2, 1, 1, 1, 2q is fixed as a 9-tuple, then the
corresponding partition πp1,1,1,2,2,1,1,1,2q is

πp1,1,1,2,2,1,1,1,2q “ tp1, 1, 1q, p2, 2q, p1, 1, 1q, p2qu .
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We call such noncrossing partitions πpi1,...,inq the free-depending partition of
tTKj u

N
j“1 for pi1, . . . , inq in NCpnq.

Therefore by [12] and by (7.17) and (7.18), one has that

ψp
`

TKi1 T
K
i2
. . . TKin

˘

“
ř

πPNCpnq

kπ
`

TKi1 , . . . , T
K
in

˘

“
ř

πPNCpi1,...,inq

kπ
`

TKi1 , . . . , T
K
in

˘

,
(7.19)

because all mixed free cumulants of tTKj uNj“1 vanish under assumed freeness, where

NCpi1, . . . , inq
def
“

 

θ P NCpnq
ˇ

ˇθ ď πpi1,...,inq
(

,

where πpi1,...,inq is the free-depending partition of tTKj uNj“1 for pi1, . . . , inq in NCpnq,
and where the inclusion ď on NCpnq is in the sense of [12].

Thus, one can obtain that if the partial isometries tTKj uNj“1 forms a free family
then

ψp
`

TKi1 TKi2 . . .TKin
˘

“
ř

πPNCpi1,...,inq

kπ
`

TKi1 , . . . , T
K
in

˘

by (7.19)

“
ÿ

V Pπpi1,...,inq

¨

˝

ÿ

θPNCp|V |q

kθ
`

TKi1 , . . . , T
K
in

˘

˛

‚“
ÿ

V Pπpi1,...,inq

ψp:V ,

where
ψp:V “ ψp

´

TKik1
TKik2

. . . TKik|V |

¯

,

whenever
V “ pik1 , ik2 , . . . , ik|V |q in πpi1,...,inq.

Proposition 7.9. Let tTKj uNj“1 be a family of partial isometries on Hp with their
initial and final projections identified with TK , satisfying AN 6.6. If this family forms
a free family in pC˚K,N , ψpq, then the joint-free-moment computations (7.19) becomes

ψp
`

TKi1 T
K
i2 . . . T

K
in

˘

“
ÿ

V Pπpi1,...,inq

ψp:V , (7.20)

where
ψp:V “ ψp

´

TKik1
. . . TKik|V |

¯

“ µp

ˆ

´

x
|V |
ik|V |

¯´1
K XK

˙

,

whenever V “ pik1 , ik2 , . . . , ik|V |q in the free-depending partition πpi1,...,inq of
pi1, . . . , inq in NCpnq for all pi1, . . . , inq P t1, . . . , Nun and n P N.

Proof. The proof of (7.20) is done by (7.7) and (7.19), as we have discussed in the
above paragraph.
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Example 7.10. Assume again that N “ 3, and let tTK1 , TK2 , TK3 u be a family of
partial isometries satisfying both AN 6.0, and the conditions (7.11) and (7.12). Then,
one can compute the following free moments as follows:

ψp
`

pTK1 q
2pTK2 q

3pTK1 qpT
K
3 q

˘

“ ψp
`

pTK1 q
2˘` ψp

`

pTK2 q
3˘` ψp

`

TK1
˘

` ψppT
K
3 q

by (7.20)

“ ψp

´

χ
p2q
x1K1

¯

` ψp

´

χ
p3q
x2K2

¯

` ψp pχx1K1q ` ψp pχx3K3q

by (7.1)

“ µp
`

px2
1q
´1K XK

˘

` µp
`

px3
2q
´1K XK

˘

` µp
`

x´1
1 K XK

˘

` µp
`

x´1
3 K XK

˘

by (7.7).

Similarly,

ψp
`

pTK1 q
3pTK2 q

2pTK1 q
3pTK2 q

˘

“ ψp
`

pTK1 q
3˘` ψp

`

pTK2 q
2˘` ψp

´

`

TK1
˘3¯

` ψppT
K
2 q

“ µp

´

`

x3
1
˘´1

K XK
¯

` µp

´

`

x2
2
˘´1

K XK
¯

` µp
`

x´1
1 K XK

˘

` µp
`

x´1
2 K XK

˘

.

Acknowledgments
The author specially thanks to editors and reviewers of Opuscula Mathematica for their
kind suggestions and opinions, enriching this paper’s quality.

REFERENCES

[1] I. Cho, Operators induced by prime numbers, Methods Appl. Math. 19 (2013) 4, 313–340.

[2] I. Cho, Representations and corresponding operators induced by Hecke algebras, Complex.
Anal. Oper. Theory, DOI: 10.1007/s11785-014-0418-7, (2014).

[3] I. Cho, p-adic Banach space operators and adelic Banach space operators, Opuscula
Math. 34 (2014) 1, 29–65.

[4] I. Cho, Free distributional data of arithmetic functions and corresponding generating
functions, Complex. Anal. Oper. Theory 8 (2014) 2, 537–570.



Free probability on Hecke algebras and certain group C˚-algebras. . . 187

[5] I. Cho, Dynamical systems of arithmetic functions determined by primes, Banach J.
Math. Anal. 9 (2015), 173–215.

[6] I. Cho, Classification on arithmetic functions and corresponding free-moment L-functions,
Bulletin Korean Math. Soc. (2015), to appear.

[7] I. Cho, T. Gillespie, Free probability on the Hecke algebra, Complex Anal. Oper. Theory,
DOI: 10.1007/s11785-014-0403-1, (2014).

[8] I. Cho, P.E.T. Jorgensen, Krein-space representations of arithmetic functions dertermined
by primes, Alg. Rep. Theo. 17 (2014) 6, 1809–1841.

[9] T. Gillespie, Superposition of zeroes of automorphic L-functions and functoriality, PhD
Thesis, Univ. of Iowa, (2010).

[10] T. Gillespie, Prime number theorems for Rankin-Selberg L-functions over number fields,
Sci. China Math. 54 (2011) 1, 35–46.

[11] F. Radulescu, Random matrices, amalgamated free products and subfactors of the
C˚-algebra of a free group of nonsingular index, Invent. Math. 115 (1994), 347–389.

[12] R. Speicher, Combinatorial theory of the free product with amalgamation and
operator-valued free probability theory, Amer. Math. Soc. Mem. 132 (1998) 627.

[13] D. Voiculescu, K. Dykemma, A. Nica, Free Random Variables, vol. 1, CRM Monograph
Series, 1992.

[14] V.S. Vladimirov, I.V. Volovich, E.I. Zelenov, p-Adic Analysis and Mathematical Physics,
vol. 1, Ser. Soviet & East European Math., World Scientific, 1994.

Ilwoo Cho
choilwoo@sau.edu

St. Ambrose University
Department of Mathematics and Statistics
421 Ambrose Hall, 518 W. Locust St.
Davenport, Iowa, 52803, USA

Received: March 30, 2015.
Revised: May 19, 2015.
Accepted: July 6, 2015.


