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1. INTRODUCTION

In this paper we study free-probabilistic models for Hecke algebras and study repre-
sentations under the models, and investigate groups generated by certain operators
under the representations. In [7], the author and Gillespie considered certain embedded
free-probabilistic subalgebras of Hecke algebras induced by p-adic number fields for
primes p. And, in [2], the author extended the free-probabilistic representations of [7]
to those fully on the given Hecke algebras, and investigated elements of Hecke algebras
as operators realized under the representations. Especially, the spectral theory of such
Hilbert-space operators was considered in [2]. As a continuation, here, we keep studying
free probability on the Hecke algebras in the extended sense of [2], and concentrate on
studying certain group C*-(sub-)algebras determined by the representations (under
quotient).

1.1. BACKGROUND

We have considered how primes (or prime numbers) act on operator algebras. The
relations between primes and operator algebra theory have been studied from various
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different approaches. For instance, in [1], we studied how primes act “on” certain von
Neumann algebras generated by p -adic and Adelic measure spaces. Also, the primes
as operators in certain von Neumann algebras, have been studied in [3] and [5].

Independently in [6] and [4] we have studied primes as linear functionals acting on
arithmetic functions, i.e., each prime p induces a free-probabilistic structure (A4, g,) on
the algebra A of all arithmetic functions. In such a case, one can understand arithmetic
functions as Krein-space operators (for fixed primes) via certain representations (see [8]).

These studies are motivated by number-theoretic results (e.g., [9,10] and [14])
under free probability techniques (e.g., [11,12] and [13]).

1.2. MOTIVATION

In modern number theory and its applications, p-adic analysis provides important
tools not only for studying mathematical analysis, analytic number theory and
non-Archimedian analysis (e.g., [1,3,7,9] and [10]), but also for studying geometry
at small distances in mathematical quantum physics (e.g., [14]). So, it is interested in
both various mathematical fields and related scientific fields.

In [2] we studied free probability on Hecke algebras (see Sections 3 and 4 below).
From the free-probabilistic models on Hecke algebras, we established certain represen-
tations of Hecke algebras, and considered corresponding C*-algebras of Hecke algebras
obtained from the representations, i.e., we understand every Hecke-algebra element
as a Hilbert-space operator. Especially in [2], spectral properties (self-adjointness,
normality, isometry-property, unitarity, etc.) of such operators were characterized.

In this paper we are typically interested in projections and partial isometries induced
by generating elements of H(G,). By understanding them pure operator-theoretically
we construct group C*-algebras generated by certain “nice” partial isometries having
their common initial-and-final projections. The operator-algebraic properties of such
C*-algebras will be studied as embedded C*-subalgebras of the C*-algebra induced
by Hecke algebras.

Our study will provide bridges among number theory, operator algebra, operator
theory and free probability.

1.3. OVERVIEW

In Section 2 we introduce definitions and fundamental properties for our work. In
Sections 3 and 4 we briefly review our free probability models on Hecke algebras.
Some free-moment and free-cumulant computations are provided for our main re-
sults. In Section 5 we establish Hilbert-space representations of Hecke algebras and
construct corresponding C*-algebras, as operator-algebraic structures containing full
free-probabilistic information of Hecke algebras.

In Section 6 we study partial isometries and projections induced by generating
elements of Hecke algebras under our representations in detail. Projections and par-
tial isometries in our Hecke C*-algebras have been considered in [2], but we here
provide much more detailed properties and characterizations of them (Theorem 6.1
and Theorem 6.2) independently. Moreover, we fix finitely many partial isometries,
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having identical initial-and-final projections, and then construct groups generated by
such partial isometries, as multiplicative subgroups of Hecke C*-algebras. We study
isomorphism theorems of such groups (see Theorem 6.3). Naturally, corresponding
group C*-algebras will be constructed as embedded C*-subalgebras of the Hecke
C*-algebras. We consider structure theorems of such group C*-algebras in Theorem 6.4
and Corollary 6.5.

In Section 7 free probability on these group C*-algebras will be studied. We
study free-distributional data of operators in the algebras by computing free-moments
(Theorem 7.1 and Corollary 7.2), and consider freeness conditions (Theorem 7.6) on the
group C*-algebras by observing free-cumulants (Theorem 7.4) of generating operators.

2. DEFINITIONS AND BACKGROUND

In this section we review concepts and backgrounds of our proceeding works.

2.1. THE HECKE ALGEBRA OVER GL3(Q,)

Throughout this section let p be a fixed prime, and let Q, be the p-adic number field
for p. This set Q, is by definition the completion of the rational numbers Q with

respect to the p-adic norm
k
_ kﬁ‘ _ (1
lal,, ’p - (p)
forq=pk%eQandk€Z.
Define now the (multiplicative) group GL2(Q,) of all invertible (2 x 2)-matrices

over the p-adic number field Q,,

61a@) = { (¢ 1) ()

a, b, ¢, de Qp,
ad —bc # 0 ’

where M5(Qp) means the set of all (2 x 2)-matrices over Q.
In the rest of this paper we denote GL3(Q,) simply by G,, if there is no confusion.
The group G, is locally profinite coming from the topology on Q,, i.e., it has a
neighborhood base of the identity u, of G, consisting of the compact-open subgroups

Ky =u, + (p")GLy(Z,) forall keN,

where GLy(Z,) means the subset of GLy(Q,) whose elements have their entries in Z,,
and where

Up = (é g) is the identity matrix of M2(Qp).

Then the subgroup
Ko = GLy(Zy)

forms the maximal compact-open subgroup of G,.
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Now let (V,7) be a representation of G, that is V' is a vector space, and 7 is a
group action,
w: G, —> GL(V)

acting on V', where GL(V) is the set of all invertible linear transformations on V.

Definition 2.1. We say a representation (V, ) is a smooth representation, if given
any vector v € V, there is a compact-open subgroup K of G, such that

m(y)v=v forall yeK.

Denote by VE the set of vectors in V' that are fixed by K under the action of .
Then the definition of smoothness implies that

V= U VE,

KcG)p: compact-open
Given two smooth representations (V1,71) and (Va, m2) of G,, we denote by
Homgp(ﬂhﬂ'g),

the set of C-linear maps
fVi—>V,

such that
fomi(g) =ma(g)o f

for all g € G,.
Definition 2.2. Define the Hecke algebra H(G,) of G, by
H(Gp) = {f : Gp — C| f has compact-open support, and it is p-smooth}. (2.1)

The p-smoothness means that #(G)) is a smooth representation of G, under right
translation. In other words, for any element f € H(G,), there is a compact-open
subgroup K of G}, such that

p(y)f(g) = flgy) = f9) (2.2)

for all g € G,. We sometimes say also that f is locally constant.
We make H(G,,) into an associative algebra by taking f1, fo € H(G,) and defining
convolution (as a vector multiplication)

(h* f2) (9) = f £1(2) fola g)dpp (1), (2.3)

Gp

where i, denotes a left Haar measure on the locally compact-open group G
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2.2. FREE PROBABILITY

Throughout this paper we use Speicher’s combinatorial free probability techniques in
the sense of [12] (also, see cited papers therein). The original analytic free probability
theory is established by Voiculescu, and since the mid 1980’s, it has developed as one
of the main branches of operator algebra theory. By replacing independence of classical
probability theory to (noncommutative) freeness, we can have the noncommutative
(and hence, possibly commutative) operator-algebraic and operator-theoretic proba-
bility and corresponding statistics (for instance, free stochastic calculus, etc). Such a
noncommutative(-or-commutative)-algebraic extended probability theory, called free
probability, has various applications not only in mathematics (operator theory, in
particular, spectral theory, and operator algebra, see e.g. [11]), but also in related
scientific fields (e.g., free entropy theory, quantum probability, and quantum statistics,
ete).

In combinatorial free probability the free-probabilistic information of given opera-
tors in an algebra is determined by free moments or free cumulants (see e.g., [12]). In
fact free moments and free cumulants are equivalent under the Mobius inversion; but
free moments are used for studying free-distributional data of operators, while free
cumulants are used for studying freeness among operators in the algebra.

We refer readers to [12] and [13] for more about free probability theory. Especially,
we will use the same concepts and results of [12] in this paper (without introducing
them precisely).

2.3. GROUP ALGEBRAS

Let G be a countable discrete group. Then one can construct the algebra Ag by

Acz(C[G]z{Ztgg:tgeCforallgeG},

geG

where | means a finite sum, i.e., Ag is the algebra generated by G. We call Ag, the
group algebra generated by G.

Each group algebra Ag is understood as a #-algebra over C, by defining the adjoint
(#) on it by

%
def —
(Z tg.‘]) = Z g9 17
geG geG

where g~! in the right-hand side mean group-inverse of g.
All groups G of this paper are assumed to be countable discrete groups.

Every group algebra Ag acts on the Hilbert space Hg = [?(G) via a group-action
u, under the left regular unitary representation denoted by (Hg,u), where [2(G) means
the [?-space with its orthonormal basis (or its Hilbert basis)

{& 1 9 € G\leal),
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where eq is the group-identity of G, satisfying
<£g17£92>2 = 591792,

where (-, )y means the inner product on Hg and § means the Kronecker delta.

In particular, the group-action u acts as follows: for each g € G, the image u(g),
denoted by u,, becomes a unitary operator in the sense that: uj = ug_l, where uj
means the (Hilbert-space-operator-)adjoint of ug, and ugl means the (operator-)inverse
of ug on He. In particular, the unitary operators {ug}qsec satisfy

def

g, (§g.) = €169: = Egrg
for all g1, g2 € G, and &, € Hg, and

Ug, Ugy = Ug, gy for all g1,92 € G,

and

w=ul=u,1 forall geG,

g g g
where v, mean the operator-inverses of u, for all g € G.

By construction it is easy to check that a group algebra Ag is a (#-)subalgebra of
the operator algebra B(H¢), consisting of (bounded linear) operators on Hg (pure
algebraically, without considering topology).

So under operator-norm topology of B(Hg), we can have the group C*-algebra
Ag: also, under weak-operator topology, one can have the group von Neumann algebra
(or the group W*-algebra) AG"Y, ete.

Let Ag be the group algebra. Define a linear functional

1

trg : Ag — C
by
de
tra (Z tgg> I,
geG

Then it is a well-defined linear functional. Moreover, it satisfies
trg(xime) = trg(zexy) for all zp,z0 € Ag,

even though ziz9 # xox1 in Ag, i.e., trg is a trace on Ag. We usually call trg the
canonical trace on Ag (e.g., [11]).

Thus, the pair (Ag,trg) forms a free probability space in the sense of Section 2.2.
This free probability space (Ag, trg) is called the (canonical) group(-algebra)free
probability space (under topologies, the group C*-free probability space, or the group
W*-probability space, etc).

3. NORMAL HECKE PROBABILITY SPACES

In this section we review free-probabilistic structures obtained in [7], and main results
of [7] will be introduced for our future work.
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3.1. NORMAL HECKE SUBALGEBRAS Hy, OF H(G,)
Notice, first that, by the very definition (2.1), the Hecke algebra #H(G,) can be
re-defined by

N
H(G,) = (C*[{f = Z t; Xg;jK‘N e N, and t; € C, K is a compact-open
j=1

1
subgroup of G, depending on f (3.1)

forallz; e Gp, j = 1,...,N}],
where C,[X] mean algebras generated by X under the usual functional addition

and convolution in the sense of Section 2.1, and xy mean characteristic functions of
pp-measurable subsets Y of G, where p,, is in the sense of (2.2). The set

N
X, = {f = Z t; ijK‘N e N, and t; € C, K is a compact-open

=1
’ . (3.2)
subgroup of G, depending on f

forallz; € Gp,j = 1,...,N}

generating the Hecke algebra H(G),), is said to be the generating set of H(G,), and
we call elements of X, of (3.2) generating elements of H(G,), i.e.,

H(Gp) = C*[Xp]' (3.3)
By (3.1) and (3.3), one may write

N
H(Gy) = { Dt Xa,x,|N €N, and t; € C, and
j=1

34
K; are compact-open subgroups of G, (3-4)

forallgcje(}’]mjzl,...J\/’}7

set-theoretically.
By construction H(G)) is a well-defined vector space over C. As in Section 2.1, the
convolution (*) on H(G)), as a vector multiplication, is defined by

(% f2)(g) = J 1@ fale g)duy(g)
Gp

for all f1, fo € H(G,), for all g € Gp.

Proposition 3.1 ([7]). Let Xz, Kk, , Xas Kk, e generating elements of H(G,), forz; € Gp,
and compact-open subgroups K; of Gy, for j = 1,2. Then

(XﬂﬂlKl * X12K2) (g) = Up (‘TlKl @ gK21‘2_1) (35)
forall g € G,
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Thus by (3.5), we obtain the following general result; if f; = 37 | ) kXa, K, are
generating elements of H(Gp) in X, for j = 1,2, then

ny mn2
(fr= f2)(g 22 (t1,6t2,0) pp ($1kK1 ﬁngxgl)
for all g € G,.

Without loss of generality, for any = € G, one can understand

pp(zK N gK) _ pp(zK N gK)
pip (2 K) pip (K)

Xk (9) = (3.6)

by (2.2).

We now consider specific generating elements x,x in X,, where K are “normal”
compact-open subgroups of G,. Recall that a subgroup K is normal in an arbitrary
group I, if gK = Kg for all g € I'. As usual, we denote this normal subgroup-inclusion
by K «T.

Define a subset Y), of the generating set X, of H(G,) by

Y, def{thXIKeX K <G, } (3.7)
Jj=1

Then we have a subalgebra

Hy, < CL[V,] of H(G,). (3.8)

Proposition 3.2 ([7]). Let xu,x; € Hy,, where v € Gy, and K; <G, compact-open,
for 3 =1,2. Then

X$1K1 * XI2K2 = /’LP(Kl N K2)XI1$2K1K27 (39)
where K1 K> is the product group of Ky and Ko in Gp.

Definition 3.3. Let Y}, be the subset (3.7) of the generating set X, and let Hy, =
C4[Y}] be the subalgebra (3.8) of the Hecke algebra H(G)). Then we call Y, and Hy, ,
the normal sub-generating set of X, and the normal Hecke subalgebra of H(G)),
respectively.

N
. N . .
For convenience, denote | |j:1 xzjand x K simply by 1.y and K, .. n, respectively,
j:]_ ’

for all N € N, where x4, ..., a2y € G, and Ky, ..., Ky are (normal) compact-open
subgroups of G,. Also, denote

K1,...,(N71) N Ky by Kf,...,N

for all N e N\{1}.
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We obtain the following general computations.

Proposition 3.4. Let x.,x, be generating elements of the normal Hecke subalgebra
Hy, for j € N. Then

N

G, = (K7 )i (KT p5) - pp (BT ) X, o (3.10)
for all N € N.
Proof. The proof of (3.12) is done by (3.9), inductively (e.g., [2] and [7]). O

From now on, let us denote the convolution fx ...xf of n-copies of f simply by f(™
for all n € N and f € H(G,).

3.2. FREE-PROBABILISTIC MODELS ON Hy,

Let #(G)p) be the Hecke algebra generated by the generalized linear group G, =
GLy(Q,) over the p-adic number field Q,, for a fixed prime p. From Section 3.1, we
start to understand this algebra H(G),) as an algebra C[X,,] generated by X, of (3.1),
consisting of C-valued functions f formed by

N
f= Z tiXe;x for t;eC,x;e Gy, (3.11)
j=1

where K is a compact-open subgroup of Gp, for N € N. So, to consider

free-distributional data, we concentrate on generating elements x.x’s and e,x’s,

for z € G, and compact-open subgroups K. Moreover, in this section, we restrict

further our interests to the normal Hecke subalgebra Hy, of H(G),), for a fixed prime p.
Let u, be the group-identity of Gy, i.e.,

up = ((1) ‘D € G, = GLy(Q).

For the fixed u,, define now a linear functional ¢, on Hy, by

wp (f) = f(up) forall feHy,. (3.12)

The construction of the linear functional ¢, on Hy, (originally introduced in [7])
is motivated by the canonical traces on group von Neumann algebras (e.g., [11]), and
thepoint-evaluation linear functionals on arithmetic functions in the sense of [4-6]
and [8]. Clearly, the morphism ¢, is a well-defined linear functional on Hy, , and hence,
the pair (Hy,, yp) forms a free probability space in the sense of Section 2.2.

Definition 3.5. We call the linear functional ¢, of (3.12) on the normal Hecke
subalgebra Hy , the canonical linear functional. And the corresponding free probability
space (Hyp, ¢p) is said to be the normal Hecke probability space.
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Then we obtain the following fundamental free-moment computations.

Proposition 3.6 ([7]). Let xuk, Xz, K, €cK» €z, K, be generating free random variables
in the normal Hecke probability space (Hy,,pp) for all j € N. Then

N (KT 5) o pp(KY o )ip(er, nEi N0 K1 N)
SOP * XZ]‘KJ' = (313)
Jj=1 ,Up(Kl,...,N)
for all N e N.
Indeed,
N o (e} o
Pp ji<1 Xz;K; | = Pp (Np(Kl,z)Np(Kl,Q,s) S Hp(Kl,.i.,N)Xacl ,,,,, NK1,.. N)
by (3.10)
= MP(K?Q)MP(K{),Q,?)) s MP(Kf,...,N)(pP (le,..A,NKl ..... N)
= Hp(Kf,z)Np(Kf,z,:s) .- 'N;D(Klo,...,N)Xm ..... ~Er v (Up)
by (3.12)
pp(z1,. NEK1,. . NNEK1, N)
= Mp(Kf,z)Mp(Kf,2,3)~-~Mp(Kf,...,N) L K
,“p( 1,...,N)
by (3.6)
_ ﬂp(Kf,z)Np(Ki),2,3) .. 'Mp(Kf,...,N):“p(xl,m,NKl,m,N NKi  N)
Mp(Klﬁ...,N)
for all N € N.
Let Xz,ky» -5 XenKy € (Hy,,0p) for N € N. Then
k]{[ (X:clK17 ey XINKN)
= ] (Hsop (.;Vxxijmj> w (O, 1V)>
meNC(N) \Ven J

by the Mé&bius inversion of Section 2.2

= ] [T ) e, 1v) |,

FENC(N) V:(i17...,i|v‘)6ﬂ'
(3.14)
by (3.13), where
MP(KzQ],ig) s MP(szl,...,iW‘ ):up(xil,m’i\wKil;n-,i\w N Kihu.,i\v\)

pp(V) = )
P Mp(Kil,m,i\w)
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are the block-depending free moments for all V € 7 and 7 € NC(N), where kE(...)
means free cumulant determined by ¢, as in Section 2.2.

By (3.14) one can get the following freeness condition (3.15) on the normal Hecke
subalgebra Hy,. And this freeness condition shows that classical independence guar-
antees our freeness.

Proposition 3.7 ([7]). Let f; = xxk, be free random variables in the normal Hecke
[free probability space (Hy,, pp) for j =1,2. Then

fi and fy are free in (Hy,, 0p) < pp(KD) = pp(K)pp(K2).  (3.15)

4. FREE PROBABILITY ON H(G,)

In this section we extend the free probability on the normal Hecke subalgebra Hy, of
Section 3.2 to free probability fully on the Hecke algebra H(G),). For more information
about such extensions, see [2].

Let G be an arbitrary group and let K be a subgroup of G. The normal core
Coreg(K) of K in G is defined by the subgroup of G,

Coreg(K) = oS (97'Kg). (4.1)

Then the normal core Coreg(K) is the maximal normal subgroup of G contained
in K, i.e.,
Coreg(K) < G and Coreg(K) < K. (4.2)

For convenience, we denote the normal core Coreg(K) of (4.1) satisfying (4.2)
simply by Kg.

Define now a linear transformation E, on the Hecke algebra H(G,) by a morphism
satisfying (4.3) and (4.4) below:

XzKa, ifzK = Kz,

Ep (Xar) = { (4.3)

03(g,) otherwise
and

By (Xor ks # Xoukis) — {gp(KiQ)le’2Kl'2:Gp if xin': Kjxj for all 4, j € {1,2},
H(G,) otherwise,

(4.4)
where K¢, and K7 2., mean the normal cores of K and K 2 in Gy, respectively, and
where 0y, is the zero element of H(G)).

By (4.3) and (4.4), if K; are compact-open subgroups of G, and z; € G,, and if

2K = Kjx; forall 4,5=1,...,N, (4.5)
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for N € N, then

EP (X:IflKl oo X:I?NKN)
=k, (Mp(Klo,z)Mp(ng,?,) s Up(Kf,...7N) Xz,
= lu‘P(Klo,Q):up(Kf,Q,B) oot (KT N)Xay

N (4.8)

FRRE) seeey VML,

holds in H(G)), without normality of Ky, ..., Ky in G, (see [2]), and hence, the
formula (4.6) holds, and hence the equality (4.7) holds, by (4.3) and (4.6).

Proposition 4.1. Let f; = x., K, be generating elements of the Hecke algebra H(G)),
forj=1,...,N, for N €N, and let E, be the linear transformation (4.4) on H(G,).

If
K = Kjz; forall i,7=1,...,N,

then
N N o
Ep j>f1 fj = HMP(KL...,]‘) X1, ,nKi,.. N:Gp- (4'9)
= i

Otherwise, they are identical to the zero element Oy, ) of the Hecke algebra H(G)).
Proof. The proof of (4.9) is done by (4.5) and (4.8). See [2] for more details. O

By construction it is not difficult to check that the linear transformation FE,
maps H(G)p) onto the normal Hecke subalgebra Hy, . Moreover, this morphism E,, is
idempotent in the sense that

Ez(f) = Ep (Ep(f)) = E;v(f)
for all f € H(G,), because normal cores are normal subgroups of G,.
Definition 4.2. We will call the morphism E,, of (4.2), the normal-coring on H(G)).

Define now a linear functional v, on the Hecke algebra H(G),) by

© o, 0 B, on H(G,). (4.10)

¥p

By the linearity of both the canonical linear functional ¢, on Hy, and the

normal-coring F, on H(G,), the morphism ), is a linear functional on H(G,). We

call the linear functional ¢, of (4.10), the normal-cored (canonical) linear functional
on H(Gp). So, the pair (H(G)),p) forms a free probability space.

Definition 4.3. The free probability space (H(Gy), ¥p) of the Hecke algebra H(G),)
and the normal-cored linear functional ¢, of (4.10) is said to be the normal-cored
Hecke probability space.
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Generally we obtain the following joint free-moment computations.

Theorem 4.4. Let (H(G,),v,) be the normal-cored Hecke probability space, and
let fj = Xa,K; be generating free random variables in (H(Gp),p) for j € N. If the
condition (4.5) holds for N € N, then we obtain

4.11
(Np(Klo,z)ﬂp(Kf,Q,S)"~MP(K10 ..... N)) Kp (xl,m,NKL...,N:G mKvl,m’N:G,D) ( )

Mp (Kl,“.,N:Gp)

for all N € N, where K1, n.q, s in the sense of (4.2). If there exists at least one
pair (i,5) € {1,...,N}?, for N € N, such that x;K; # K;z; in G, then the formulas
(4.11) wvanish in H(Gp).

Proof. Suppose first that

z, K; = Kjz; forall 4,j=1,...,N

)

for N € N, i.e., assume that the condition (4.5) holds. Then we have

by (4.6)
= Hp(Kf,z)Hp(Kf,z,g,) e Hp(Kf,...,N)d’p (Xxl ..... NKl,...,N)
= Np(Kf,z) (KT N) ep (Ep(X:rrl

by (3.9)
l‘p(Kf,Q)---l‘p(Kf

So, the formula (4.11) holds.
Of course if there exists at least one pair (4, j), such that z; K; # K,z;, then the
formulas (4.11) and (4.12) simply vanish, by (4.3) and (4.4). O

So we obtain that

" <J>X\£XK ) _ Mp(Kf,z)Mp(Kf,z,?,)~--Mp(Kf,...,N)Mp(Kl,m,N:Gp)
PTG pp(K1,.. N:c,) (4.12)

= Np(Kf,Z,)Up(Kf,z,g,) . Hp(Kf,...,N)a

by (4.11).

Now let K1 and K> be compact-open subgroups of G, and let xx; be correspond-
ing free random variables in the normal-cored Hecke probability space (H(Gp), ¥p).
Suppose kn(...) is the free cumulant for the normalized linear functional 1,. Then,
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for any (i, ..., ix) € {1,2}", for all N € N, we obtain the following free cumulant
computation:
kn (XK,i17--~7XKiN) = ] (Vlg 1 (V) 1 (O, 1v)) (4.13)
reNC(N) N "
with

(V) = oK, i it (K, iy ) i (KD, i)

by (4.12), whenever V' = (jy,...,jx) € 7 for all m € NC(N) and for all N € N, where
pp(V) are the V-block-depending free moments.

By the above joint free-cumulant formula (4.13), we obtain the following freeness
condition on the normalized Hecke probability space (H(Gp), ¥p)-

Theorem 4.5 ([2]). Let f; = xx,; and hj = ek, be free random variables in the
normal-cored Hecke probability space (H(Gp),¥p) for j = 1,2. Then

fi and fz are free in (H(Gp)sp) < 1p(KS 5) = 1ip(K ) (Ka). (4.14)

5. REPRESENTATIONS ON NORMAL-CORED HECKE PROBABILITY SPACES

In this section we introduce representations of the normal-cored Hecke probability
spaces (H(Gp),p), for primes p. Let p be a fixed prime, and let (H(Gp),p) be the
corresponding normal-cored Hecke probability space.

Define a sesqui-linear form on the Hecke algebra H(G,),

[ ]p : H(Gp) x H(Gp) — C
by

L, folp S (fr 5 £5) forall i, fo € H(G,), (5.1)

where ;
[*(x) 2] f(z)inC forall zeG,,

where Z means the conjugate of z for all z € C. We call the above unary operation
feH(Gy) — f* e H(G,), (5.2)

the adjoint. And the element f* of (5.2) is said to be the adjoint of f. Since the
adjoint (5.2) is well-defined on H(G)), one may understand our Hecke algebra H(G))
as a *-algebra over C.

The form [-,-], of (5.1) is indeed sesqui-linear, since

[t1f1 + tafo, f3]p = talf1. f3] + L2 fo, f5]

and
[f1,taf2 + tafslp = t2[f1, folp + E3[f1, f3]p
for all fl,fg, f3 € H(Gp) and tl,tg,tg e C.
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Consider now that, for any fixed generating element x,x of H(G)), for z € Gp,
and a compact-open subgroup K of G,, we have

- 2
[tXars tXar]p = Up (EXak * TXar) = [t ¥p (Xak * Xok)

by the sesqui-linearity of [-,-],, where |¢| means the modulus V¢ ¢ of ¢,

|t|2¢P (/J;,(K) Xz2x) oK = Kz

0 otherwise
_ (up(K) |t|2> (ﬂp(z&?&:fcp)) if 1K = Kz
0 otherwise

1t (“‘”(K) ””<$2KG"“KGP)> if 1K = Ka

= lu‘IJ(KGp)
0 otherwise
by (4.11), i.e.,
o ((p(K)pp(2*Ke, 0 Kcy,))
tXeK, X2k p = |t ( , or 0, 5.3
[ ]P ‘ | :up(KGp) ( )
where K¢, is the normal core of K in Gy. So, by (5.3), we obtain that
[tXach tXwK]p = 0 (54)
for all z € G, for all compact-open subgroups K of G, for all t € C.
By (5.4) one can get in general that
[f,flp =0 forall feH(G,). (5.5)

Proposition 5.1 ([2]). The sesqui-linear form [-,-], on the Hecke algebra H(G,)
forms a pseudo-inner product on H(Gp).

Suppose K is a nonempty proper “normal” compact-open subgroup of G, and let
K be the left coset of K by x € G},. As “non-empty subsets” of G, it is possible that

K n K = @, and hence, p,(cK n K) = 0.
In such a case we have
[XzK7 X:vK]p = "/’p (MP(K)XJUK) = ©p (,up(K) XzK)
i (K)pip (2K 0 K)

= () = pp(zK n K) =0,

i.e., there exist nonzero elements f of H(G,) such that

[f,f]p:O
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Indeed, if xK # Kz in G), then, by the very definition of E,,

Ep (Xax * Xai) = On(a,)»

and hence,
Vp(XaK * Xak) = ¢p (OH(Gp)) =0,
even though x.x # Oy (qa,), 1.,

3 # O, = 1f flp = 0. (5.6)

So the pseudo-inner product space (H(Gp), [, -]p) is not an inner product space,
by (5.6).

When we understand our Hecke algebra H(G),) as a pseudo-inner product space,
we denote it by H,.

On the pseudo-inner product space H,, define a relation R, by

def
[iRpf2 == [f1, filp = [f2 folp- (5.7)
By the very definition (5.7) of R,, it is an equivalence relation on H,,.

Definition 5.2. Let H,, be the pseudo-inner product space (5.6), and let R, be the
equivalence relation (5.7) on H,. Define the quotient space £, by

Np = Hp/va (5-8)

equipped with the inherited pseudo-inner product, also denoted by [-,], on it. Then

Hp = (ﬁpv ['7 ]p) = (Hp/Rpa ['a ‘]p)
is called the (normal-cored) Hecke inner product space.

From now on, if there is no confusion we denote equivalence classes

[flr, = {heH,p: hRp [}

simply by f in the Hecke inner product space $),.0
Indeed, our Hecke inner product space $),, is an inner product space, by R, of
(5.7), i.e., it satisfies

[f: flp =0 <= [ =04, = 03, /Ry, (5.9)

where 0y, is the zero element of H,,.
For the given inner product space £),, one can define the corresponding norm |-| v

on $, by
def

I, = A/fs flp forall fe$, (5.10)

and the corresponding metric d, on §, by

dp (fl, fz) = Hfl — ngp for all fl,fg € f’:)p. (5.11)
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Definition 5.3. Construct the dy-metric topology closure of §),,, also denoted by $,,
where d,, is in the sense of (5.11) induced by the norm |-, of (5.10). It is called the
(normal-cored) Hecke Hilbert space.

Then by the very construction of the Hecke Hilbert space £, from the
normal-cored Hecke probability space (H(Gp),p), the algebra H(G,) acts on $y,
via an algebra-action oP;

aP(f)(h) = f=h forall he$,, (5.12)

for all f € H(G,). More precisely, the above relation (5.12) means

a?(f)(h) = o (f) ([Alw,) = [f = hi, (5.13)

in $, for f € #(Gp). For convenience, we denote o (f) by o for all f € H(G)).
The above morphism of of (5.12) and (5.13) is indeed a well-defined algebra-action
of H(G,) acting on £, since

oy, (N) = fr=foxh=fi=(foxh)
— e (o) = o, () = (o) )
for all h € 9, and fi, f2 € H(G)), i.e.,
Ufyagy = O O, 00 Dy (5.14)

for all f1, fo € H(G,). Also, o? satisfies that

I:Ol?(hl), hg]p = [f* h17 hg]p
=P ((f # ha) = h3)
:wp<hl*f*h>2k)
=Yy (ha # (B3 # f)) ¥y (R = (f* = ha)¥)

= [h1, f* * ho]p, = [hl, a?*(hQ)]
P
for all hy, he € $, and f € H(G)), i-e.,
*
(d;) —al, on$, forall feH(G,). (5.15)
Therefore, the morphism o? of (5.12) is a #-algebra-action of H(G,) acting on $),, by

(5.14) and (5.15).

Theorem 5.4. The pair (9p, o) of the Hecke Hilbert space $, and the morphism
aP of (5.12) forms a Hilbert-space representation of the Hecke algebra H(G)) acting
on $p.

Proof. The proof is done by (5.13), (5.14) and (5.15). (See [2] for more details.) O
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We call the algebra-action o of (5.12) the (normal-cored) Hecke(-algebra) action
of H(Gp) acting on $,.

Definition 5.5. The Hilbert-space representation (f,,a”) of the Hecke algebra
H(G,) is called the (normal-cored) Hecke representation (of the normal-cored Hecke
probability space (H(Gp),¥p)).

6. CERTAIN PROJECTIONS AND PARTIAL ISOMETRIES ON $,

In this section under the Hecke representation (), a?) of the Hecke probability space
(H(Gp), 1), certain generating elements of H(G),) will be considered as Hilbert-space
operators on §),, (under quotient). In particular, we are interested in partial isometries
induced by generating elements and their initial and final projections.

Already in [2] we studied some operator-theoretic information; self-adjointness,
normality, unitarity, isometry-property and hyponormality; of such operators. In
particular, we realized that, by the very constructions of the Hecke algebra H(G,) and
our representation (),,a?), there are no isometries (and hence, no unitaries) formed
by afxz «» fort € C,x € Gy, and compact-open subgroups K of G,. However, operators
o}y, are always normal on £,

Since there are neither isometries nor unitaries we are interested in the op-
erators anIK which are projections, and partial isometries having their identical
initial-and-final projections on £3,.

Recall that an operator T on a Hilbert space H is said to be a partial isometry,
if T*T is a projection on H. It is well-known that: T is a partial isometry, if and
only if TT*T =T on H, if and only if T%* is a partial isometry on H, if and only if
T*TT* =T* on H, if and only if TT* is a projection on H. i.e., a partial isometry T
is a unitary from T*T(H) onto TT*(H).

If T is a partial isometry on H, then the projection T*T is called the initial
projection of T, and the projection T'T* is called the final projection of T on H. Also,
the (closed) subspaces T*T(H) and TT*(H) of H are called the initial subspace and
the final subspace of T in H, respectively.

If T is a partial isometry on H, then it is a unitary from its initial subspace onto
its final subspace, in the sense that:

T*T = 1T*T(H) and TT* = 1TT*(H)7

where 1x means the identity operators on Hilbert (sub-)spaces K (in H). Thus, if T
has identical initial and final subspaces K in H, then

T*T = 1) = TT*,

and hence, one can understand T as unitary in the operator subalgebra B(K) of B(H).
Notice that in Section 5 (and [2]), we observed that:

(o) (o) = Fup, forall fi, fo € H(Gy), (6.1)
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@ﬂ*:ﬂ*meIfeH@ﬁ. (6.2)

Theorem 6.1. Let f = x.x be a generating element of H(Gp) for x € Gp, and
a compact-open subgroup K of G,. Assume tK = Kz in G,, and let az; be the
corresponding operator on the Hecke Hilbert space )p.

ot is a projection on ), <= p,y(K) =1, andz € K. (6.3)

Proof. Recall that an operator T on an arbitrary Hilbert space H is a projection, if
(i) T is self-adjoint in the sense that T* = T on H, where T* is the adjoint of T, and
(ii) 7T is idempotent in the sense that 72 = T on H.

Observe now that

*
p _ b _ P — AP _ P
(af) T T Yn0x T Mxex T A

by (6.2). Thus, the operator a? is self-adjoint on §),. So, the given operator a? satisfies
the self-adjointness condition (i) automatically.
Now observe that

2
(az}) - az}*f - aﬁp(K)xsz on 9y, (6.4)

by (6.1), and by the assumption: K = Kz in G,,.
So to satisfy the idempotence condition (ii), the operator oz? must satisfy

aip(K) Xo2x of . on 9y, (6.5)
by (6.4).
(<) If pp(K) =1, and z € K, then xK = K, and hence, 22K = K, moreover,
QZP(K)Xz’zK = aiK = aimK'

Therefore, the relation (6.5) holds, and hence o} is a projection on §),,.

(=) Suppose the relation (6.5) holds, and assume that either p,(K) # 1, or z ¢ K
in Gy.

Let z ¢ K in Gp. Then, in general, zK # 2?K, and hence, X,25 # Xak- S0, the
relation (6.5) does not hold true, and it contradicts our assumption.

Assume now that p,(K) # 1. Then, clearly,

pp(K)Xz2 K # XaKs

in general, thus the relation (6.5) does not hold either. It again contradicts our
assumption.
Therefore, we obtain the characterization

oy is an idempotent <= y,(K) = 1, and z € K. (6.6)

By the self-adjointness of o, and by (6.5) and (6.6), one can conclude that: o} is
a projection on §),,, if and only if

pup(K) =1, and z € K. O
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The above characterization (6.3) shows that the generating elements f = y,x of
the normal-cored Hecke probability space (H(G,), ;) assign projections afc on the
Hecke Hilbert space $),, whenever

f=xk with p,(K)=1. (6.7)

Let f; = xk,; be non-zero generating elements of (H(G}), 1), where u,(K;) =1,
equivalently, oz?j are projections on £),, by (6.3) and (6.7), for j = 1,2. Also, let
[ =xzx € (H(Gp),¥p), and 0/}7 the corresponding operator on §),,, where

2K =Kz in Gp.

Consider the following functional equation:

fff=fi and fxf*=fi on H(Gp). (6.8)
Observe that
[ o f=pup(K)xe2re = f f* in H(G,). (6.9)
Consider the equality (6.10) below:
tp(K)Xa2 e = XK - (6.10)
To satisfy (6.10), one must have that:
pp(K) =1, and 2°K = K. (6.11)

By (6.8), (6.9) and (6.10), we obtain the following theorem.

Theorem 6.2. Let zg € G,, and Ko, K, compact-open subgroups of Gp, where
J,‘()KO = Koxo m Gp. ]f
x0Ko = 25 K in Gy, with p,(Ko) =1 = p,y(K), (6.12)
then oF is a partial isometry with its initial and final projections of , - on $),,.
Proof. By (6.3) and (6.7), if u,(K) = 1, then of _ is a projection on §,,. Assume now
that
12Ky = K in G, where p,(Ko) =1,

for some xg € G),. Then we have

X:OKO * XzoKo = XaoKo * XaoKo = ;U’p(KO)XngO = XaZKo = XK

on $,, by (6.9), (6.10) and (6.11). Similarly, one obtains that
ps DY s Y,

* _ —
XzoKo * XzgKo = XaZKo = XK On Hp-

Thus, the operator L satisfies
* *
(@0e) (@) = 0 = (%) (20, (6.13)
on ), by the assumption that xo Ko = Koz in Gp.
The relation (6.13) shows that the operator ag’(m o is a partial isometry with its
initial and final projections identified with the projection of , on ;. O
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The above necessary condition (6.12) shows that, whenever we fix a projection o

XK
on §), (with y,(K) = 1), one may take a partial isometry of on §,, whenever

oKo
2Ky = K,

having its both initial and final projections of , . By the property of j,, one automati-
cally obtains that

:“p(mgKO) = pip(Ko) = pp(K) = 1.

Notice that the choice of K, for a fixed K, is not unique, i.e., one may have
multi-partial isometries having both initial and final projections of , on math frakH,.
Assume now that, for a fixed compact-open subgroup K of G, with p,(K) = 1, there
are “distinct” compact-open subgroups K; of G, such that

2 Kj = 2 ' K and p,(K;) = 1, (6.14)

for some z; € Gy, for j =1,...,N, for N e N.

Then by (6.12), the operators af . are self-adjoint partial isometries having
J707

their initial and final projections af —on $,, for j = 1,...,N. And, by (6.14), one

X
can understand the partial isometries o as certain perturbed operators «
T3

ij—1K

induced by acj_lK, satisfying (6.14) for all j = 1,..., N, i.e.,

O‘I;@jxj = af(flK onf, forall j=1,...,N.
J
The above equality holds by the quotient relation R, on the normal-cored Hecke
Hilbert space $,,.

Let us denote these partial isometries af@j K, = aimflK simply by TjK for
J
j=1,...,N.
Theorem 6.3. Let TjK be distinct partial isometries of, = ok | salisfying
Titg z. K

(6.14), whose initial and final projections af o, forj=1,...,N, for N € N, where
K; <Gy forj=1,...,N

(and hence, K <1 Gy, too, by (6.14)). Then the subgroup generated by {T}}L, (under
the operator-multiplication on the operator algebra B($)p)) is group-isomorphic to
a quotient group Ty,

In = ]_-({aj};v:l) /{a? = eN}j‘Vzl

where .F({aj}é\’:l) is the free group generated by {aj};v:l,

relator set of T, where ey is the group-identity of Tn.

and {a?

— N
7 = entj—y is the

Proof. Let TjK =aoP be given as above, and let

ijK]»

d t K
% (9p) TET 0y
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be the subspace of §,,. Since of is a well-defined projection on §,, its image ﬁff is

indeed a well-determined (closed) subspace of $),. Moreover, it is both the initial and
final subspaces of TJK, by (6.12) and (6.14), forall j =1,..., N, in §,.

So without loss of generality, one can understand T]-K are operators in the operator
(sub-)algebra B(§[) of B($),) for j = 1,...,N. By understanding {TjK}é-V:1 as a
subset of B(J), one can define the (multiplicative) subgroup T& (under operator
multiplication on B($)[)), by the group generated finitely by {Tj-K}ﬁ-V:17 ie.,

TH Y UTFNL) € B(9E) < B(5,), (6.15)

where (X') mean here the groups generated by sets X.
Now let T be the group,

Ty = F ({a;}31,) Al = en}ily, (6.16)

where F(X) mean the (noncommutative) free groups generated by sets X.
Define now a morphism
Q:38 >3y

by the binary—operation-preserving map such that
Q(Tf) =a; for j=1,....N (6.17)

(with possible re-arrangements), where TX is in the sense of (6.15), and Ty is in the
sense of (6.16).

Since both TX and T have N-generators, the generator-and-operation-preserving
morphism  of (6.17) is bijective. It also satisfies that

Q((TJK)Q) —a?=ey forall j=1,...,N. (6.18)
Indeed, by definition, one has
TE)? = (a? i =a? =aP =1
( i ) - aijKj - aijKj*ijKj - a“p(Kj)XI2Kj =0y = Hk>
J

where 1gx means the identity operator on the subspace H (in B(H)) of §,. Thus,
the formula (6.18) holds.

Remark that even though K, ..., Ky are normal in G, one has
KK _ . p _ P P _ KK
Tz TJ QX oy Ky ¥ X Ky Oéup(I(;>12,)><951,2,1r<1,2 7 aup(K;l)xxz,Iszl J Tl ’

in general, in TX, because z1 2 # 721 in G, while K 5 = Ko in G,.

Therefore, the bijective generator-and-operation-preserving morphism €2 also
preserves the relations between TX and Ty, and hence, it is a well-determined
group-isomorphism from X onto Ty, ie., two groups TX and Ty are
group-isomorphic. O
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Notice that in the above theorem, the normality condition for K, ..., Ky is
crucial.

By the above theorem we obtain the following sub-structure theorem in o (H(G,))
in B($,).

Theorem 6.4. Under the same hypothesis with the above theorem, the C*-subalgebra
generated by {TJ YN, in B($)) is x-isomorphic to the group C*-algebra Clhizy) (TN)
in the sense of Section 2.3, i.e.,

5 (TN) "= Clig,) (Tn) (6.19)

where C (X)) mean the C*-subalgebras of B(H) generated by subsets X of B(H) over
Hilbert spaces H.

Proof. By the above theorem the (sub)group T of (6.14) generated by {T/},
(in B(HY) = B($))) is group-isomorphic to the group Ty of (6.16), by the
group-isomorphism € of (6.17), i.e.,
Grou
TN =0 F ({a3ly) Had = a} i, = T
Therefore, the group C*-algebra
denote ~TeK]1
C* (Th) “E i (TN) = C[TX] of B(HX)

is =-isomorphic to the group C*-algebra

denote T e N\

C*(Tx) " Oy () = CT(Tn] of B ((Tw))

where u means the left-regular unitary representation in the sense of Section 2.3.
Indeed, one can extend the group-isomorphism  of (6.17) under linearization, i.e.,
we have a morphism

Q,: C* (TR) — C*(Tw),

such that
n N n
Q(Zwﬁ»@meﬂ=Zwmn
j=1 j=1 =1

fort;eC,j=1,...,nand ne Nu {0} (under C*-topology).
It is not difficult to check 2, is a *-isomorphism. O

The characterization (6.19) shows that o (H(G)p)) contains group C*-algebras
(#-isomorphic to) C* (T ), for N € N, where T are in the sense of (6.16), when-
ever there are compact-open normal subgroups K with u,(K) = 1, and distinct
compact-open subgroups K; with p,(K;) = 1, satisfying

;K =x;1K for j7=1,...,N.
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As in above theorems we assume K is a normal compact-open subgroup of G,
with p,(K) =1, and

2K =2 'K with p,(K;) =1

forall j =1,...,N.
As a special case we consider the following conditions (6.20) and (6.21) below;
suppose that the non-identity group elements x; of G, are self-invertible in the sense

that:

T = x;l — a:? =up = m;2, the group-identity of G, (6.20)

forall j =1,...,N.
And for the compact-open normal subgroup K, take

Kj=x;K forall j=1,...,N. (6.21)
Then automatically we have that
pp(K;) =1 forall j=1,...,N.

Remark 6.5. Indeed, such group elements x; exist in G),. For instance, if we let

a b
T = (1ba2 _a) € Gp,

for a,b € Q,, then 2 = u, in G,. So, one may take finitely many distinct elements
Z1,...,2n in Gy, for some N € N.

Moreover, for a fixed normal subgroup K of G, we can take such z1, ..., zn
in G, which are not contained in K. For instance, if K is the normal core Ug, of
U = GL2(Z,), then we can take

T = (_? _3) and zo = (_i’ _2) in G,

satisfying x1,z2 ¢ Ug, and hence, 11Ug, and z2Ug, are as in (6.21).

Remark that
B 3 7 2 -2 =7\ _
T1To = 1 _9 1 3) = X271,

in Gp. So, the group generated by {z1Ug,,22Ug,} is group-isomorphic to the noncom-
mutative group

F({ar, a2})/{aj" = a;}5,.

The corresponding operators TjK = of  are partial isometries on §),,, whose initial
J
and final projections are the projection of — on §,. Therefore, one can obtain the
group,
K K N
T <{Tj —a? j:1>, (6.22)

Xz K
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generated by {T |5 j=1, as a multiplicative subgroup of the operator algebra B(bff ),
where ij =af « (9p) is the subspace of §,. Note that

KpK D p —aP
7T = of, . = =aP aﬂp(KﬁK)X:rl:rgKK =af, . (6.23)

Assumption and Notation 6.6 (in short, AN 6.6 from below). In the rest of this
paper if we write a group TX, then it means a group (6.22), which is a special case of
the general construction (6.15), satisfying (6.23), i.e

Kj = J,‘jK

of (6.21), where z; satisfy (6.20), for j = 1,..., N. But if we need to handle general
cases as in (6.15) and (6.19), we will state clearly in the text.

By the group-isomorphic relation in the general format of (6.15) with (6.16),
a group TX of AN 6.6 is group-isomorphic to the group Ty of (6.16), too.
Recall that the group Ty of (6.16) is defined to be the quotient group

F ({a150) Hajt = a5},

In fact, the group Ty is naturally group-isomorphic to the finitely presented

group §n,
w =epn, and N
SN = {wj}] 1 wlw] = wjw; }Zjl ) (624)

Group
§

ie.,
N-

By the above discussions, we obtain the following refined results under AN 6.6.

Corollary 6.7. Let TK be a group in the sense of (6.22) under AN 6.6. Then it is
group-isomorphic to the finitely generated group Fn of (6.24). Moreover, the group
C*-algebra C’;’;K (QII\?) is x-isomorphic to the group C*-algebra C;;(SN) (Fn), i-e.,

P

—1 N
K Ggup dif AN a; = aj and 9
‘IN gN <{(Lj }j=1’ { aia; = a;ja; - ) (6 5)

;{f ((51]5) = > ) (Bn)-

Proof. By the discussion in the above paragraphs, the group Ty of (6.16) is
group-isomorphic to §y of (6.24), by (6.20), (6.21) and (6.23) (under AN 6.6).

So one can define a morphism ¥ : T — §ny by a generator-preserving bijection
between the two finite sets,

and

U(a;) =w; forall j=1,...,N,
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such that
U(aa;) = ¥(a;)¥(a;) = wiw;

(under possible re-arrangements) for all 4,5 = 1,..., N.
Therefore, one has that

‘IK Grgup Group 8,

N N -

By the above group-isomorphic relations we obtain

i (TR) ™27 Ol (Tw) "= Cli ) (B) O

7. FREE STRUCTURES ON C* (2X)

In this section we study freeness conditions on our group C*-algebras and their
structure theorems.

Now let K be a fixed normal compact-open subgroup of G, with p,(K) = 1, and
hence, the corresponding operator TK = ok . is a projection on the Hecke Hilbert
space §),, acting as the identity operator on the subspace ,6{,( =TK ($p) in Hp.
Assume further that there exist distinct self-invertible group elements x; € G, in the
sense that: m;l = z;, and distinct subsets K; of G}, with p,(K;) = 1, such that

K.

]=x;1K=ij forall j7=1,...,N,

as in AN 6.6. Then, by (6.12), the corresponding operators TJ-K = af  are the partial

isometries on §), with their initial and final projections identified with TK = ab
j=1,...,N.

We have seen in (6.19) and (6.25) the C*-algebra C* (TX) is *-isomorphic to the
group C*-algebra C* (T ) generated by the finitely generated group,

N
Group { } = €eN and }
a; =0 .
ala] =aja; ), .,

Let’s denote C* (SK ) and C*(Ty) simply by €% y, and €%, respectively. Because
of the #-isomorphic relations between €% ¥,y and ¢% we sometimes use €%, ¥,y and <%,
alternatively, as a same object. However, whenever we emphasize such C*-algebras
€% are constructed from our Hecke representational setting we will precisely use the
term € .

for

7.1. FREE-DISTRIBUTIONAL DATA ON €%

Let ‘Iﬁ be the group in the general sense of (6.14) and (‘I}’}’ N the corresponding
group C*-algebra generated by TX (without AN 6.6). On the C*-subalgebra kN
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of B(.ijf ) € B(%,), define a linear functional, also denoted by ,, by a morphism
satisfying

def

U (T7) = vy (aizjKj) = Y (XasK;) = o (xx,-xj:cp>
pp (K5 N Kj) (7.1)
o (K5) ’

by the normality conditions for K7, ..., Ky, where Kj.¢, means the normal core

= ®p (Xﬂijj) = Xz;K; (up) =

Coreg, (K;) of K; in G), as in Section 3 and where 1, in the second equality el of
(7.1) means the normal-cored linear functional ¢, o E, on the Hecke algebra H(G))
in the sense of (4.10) and ¢, is the canonical linear functional on the normal Hecke
algebra Hy, in the sense of (3.12).

The pair (QZ*K N 1/)17) becomes a well-determined a C*-probability space in the
sense of [12] and [13].
Definition 7.1. The C*-probability space ((’I}“{ N wp) is called the K (-concentrated-
-C*)-Hecke probability space on H (or, on $,).
Remark that since
z; K = xj_lK forall j7=1,...,N,

one has that

Kj:x;2K forall j=1,...,N, (7.2)

and hence,
-1 —2
ty (K, 0K pp (27 K n 2 ?K) B B
R
pA\vj

by (7.2), for all j =1,..., N.
Notice here in (7.3) that

zegK n ¢’K < x = gk, and © = ¢%k,, for some ki, ko € K
< gtz =k and g7z = gko

g lre KngK

s zeg(KngK),
and hence one has

gK n¢’K € g(K ngK) for g€ Gp.
Similarly,
x€g(K ngK) e x=gvwithv =k = gk, for some ky, ks € K
<z = gki and z = ¢%ks

= e gk n ¢*°K,
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and hence we have
g(KngK)< gK ng’K for geG,.

Therefore,

9K ng°K = g(K n gK),

for a compact-open subgroup K of G,, and g € Gp. So, the second equality of (7.3)
indeed holds.
It shows that the formula (7.3) can be re-written by

Uy (T]F) = pp (a7 K 0272 K) = oy (257" (K 027 K)) = pp (K 0 a7 'K,
ie.,
Uy (TF) = 1y (K 027 K) (7.4)
for all j =1,..., N, since j1,(K) = 1. So, one can conclude that
pp (2K 0 K)

MP(K)
_ W =1, (ijK) = ¥p (X%‘K) J

Yp (T]-K) tp (2, K 0 K) =

by the normality of K, where u, is the group-identity of G, by the normality of K
in G,. By (7.5), it is not difficult to check that

pip (K N up K)

w®

VYp (Tx) =y (O‘ix) =1 (xK) = XK (Up) =
It shows that the K-Hecke probability space (€% y,1p) is unital in the sense that

(M) =y (Tex ) = 1,

because T* is the identity operator 1@?,1\; on %, in (’:*K’N.
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Observe now that

K n n
Up (}ETik> =p <kf1ch1,kK7¢k) =1y <ki1 Xxik1K>
by (7.2)
=1y (MP(K)H_lXz.—lz.—l..,fl}()
i Tig T,

by the normality condition for K

pp (K" (4, -+ 24,) TP K 0 K)
fip (K)
tp (i, - 2i,) 'K K)
fip (K)
iy (2, - 2iy23,) 'K A K)

refining (7.4) and (7.5).
The above formulas (7.5) and (7.6) are also obtained under AN 6.6, too.

Theorem 7.2. If (i1, ..., in) €{1,..., N}, for n €N, then

n n—1 -1
o ([15) ([T ) wor) &
k=1 k=0

Proof. The proof of (7.7) is done by formula (7.6). O
So one obtains the following corollary immediately.

Corollary 7.3. Under AN 6.6, if (i1, ..., in) €{1, ..., N}" forn €N, then

¥ (f[l T ) = iy <(:I:T;x> K n K) . (78)

The above formula (7.7) (or (7.8)) characterizes the free-distributional data of our
partial isometries {7}/, (resp., under AN 6.6).

For (i1, ..., in) € {1,...,N}", for n € N, consider now the free cumulants,
K K K oK
kn (Til ) Ti2 st ann) = ]%( ) (Vre[ﬂ' <¢p (jl_EIVTIJ > K (O|V|a 1V)>>
TE n

by the Mé&bius inversion of Section 2.2, where k,,(...) means the free cumulant for ),
on €%
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oy (H (;w ((}gvx—1> Kg, Kap) 2 O 1v>>>. (7.9)

TeNC(n) ver MP(KGP)

By the free cumulant formula (7.9), we obtain the following equivalent
free-distributional data with (7.7) for the partial isometries {7}/, generating €%
in the K-Hecke probability space (@*K N> Up)-

Proposition 7.4. Under the same hypothesis with (7.8) one has
ky (TF, T, ..., TF)

117 T2 "

3 (0 Gy ) o

forall (i1, ..., i,) €{l,...,N}" and n € N.
Proof. The proof of (7.10) is done by (7.9). O

The above computation (7.10) provides the following freeness necessary condition
on our group C*-probability space (€% ,, 1¥p).

Theorem 7.5. Let €, y be the group C*-subalgebra of B(Y)ff) generated by the group

TK. Assume that the generators TjK = satisfy that

Xa:,ilK
pp ('K 0 K) = pp (2' K 0 K) (7.11)
forallii,io =1,...,N and
p ((m;lxglx;cl)KmK) = lp (m;lleK) (7.12)
for all (j1,...,75x) € {1,..., N}*, where the entries ji, ..., jx are all mutually distinct

in the k-tuples for all k € N. Then the family {TjK};\]:1 is a free family in (€% n, ¥p),
in the sense that: all elements of the family are free in (&% y,1yp) from each other.

Proof. Assume the generator set {TJK };V:l of the group TX satisfies the above two
conditions (7.11) and (7.12). Then by (7.10) we obtain a quantity 8, such that

Bo :up(a:;leK) forany j =1,...,N.

Thus for any “mixed” n-tuple, (i1, ..., in) € {1, ..., N}", one has

b (T T ) = (5 (O 1)

= Bo Z p(m, 1) | =0,

TeNC(n)

by Section 2.2, for all n € N\{1}. Therefore the generator set {T*}}, of TF is a free
family. O
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7.2. FREENESS ON ¢%

In this section we concentrate on freeness on our graph C*-subalgebra Q}‘(’ N generated
by TX in B (ﬁf ). Throughout this section we restrict our interests to the special case
where TX are under AN 6.6, for convenience. Remark that even though we are in the
general setting, the main results of this section would be similar.

Recall the #-isomorphic relation between Q”;{) y and €%, where €% is the group
C*-algebra generated by the group,

def _
Iy = F({a3)) [ {aj = a; 1Y,

Group {CL'}N a;1 = aj and N (713)
= =1 @i = aja; ), .y .

Like the above necessary freeness conditions (7.11) and (7.12), one can verify that in
some cases, the generator set {T/}IL, of the group T forms a free family in our
K-Hecke probability settings.

Corollary 7.6. Under AN 6.6, assume that the conditions (7.11) and (7.12) hold.
Then the subgroup TX of (6.22) in B(ﬁf) is group-isomorphic to the quotient group

G% = jgl {aj : aj_l =a;), (7.14)

where (x) in (7.13) means the “free product of groups” fori,j = 1,..., N. Therefore, in
this case, the C*-algebra T y is #-isomorphic to the group C*-algebra C* (G%V) , 1.e.,

Chy "E0 0 (GR). (7.15)

Proof. If the conditions (7.11) and (7.12) hold, then the generators {TjK}?]:1 of the
subgroup TX of (7.13) are free from each other in (€% n»¥p). Moreover, in such a
case, the group T]I\(, is group-isomorphic to G% of (7.13), since Tﬁ forms a free family
(under quotient). Thus, the group-isomorphic relation (7.14) holds.

Therefore, in this case, one has

C* (TR) = Chew "= C*(GR),
by (7.14). So, the *-isomorphic relation (7.16) holds. O

In the proof of (7.16) the freeness on TX (from (7.11) and (7.12)) in (Cx N ¥p) s

critical i.e., If TF is generated by a free family {T}}}_,, then

Th O Q% and €%y 0 0% (GR) .

Theorem 7.7. Under AN 6.6, if the set {TjK}é\]=1 of partial isometries forms a free
family in (€% n,p), then the subgroup T of (6.22) in B(ﬁf) is group-isomorphic
to the quotient group

G% = jgl {a; : a;l =a;), (7.16)
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where (x) means the “commutative” group-free product. And the corresponding group
C*-algebra €%, \ is x-isomorphic to the group C*-algebra C* (G?\,) ,

*-1 2\ ®-iso N —1
kN =°C* (Gy) =° f:(ch’* ({a; ra;t = a;)) -
Proof. The proof is done by similar arguments for the above corollary under arbitrary
freeness on {T].K }évzl in (€% 5,%p). Remark that in the above corollary, we give

necessary freeness condition from (7.11) and (7.12), while here we simply assume the
generators of TX are free from each other under AN 6.6. O

Assume now that {TjK }évzl under AN 6.6 forms a free family in (€% v, ). Then

for any n-tuple (i1, ..., i,) of {1,...,N}"™, for n € N, one has
K K K
Uy (TETE .1 = )] (Vl;lﬂkv> : (7.17)
meNC(n)
where

by =k (T8, T T )
whenever V = (ig,,... 7ik|vw) in , for all # € NC(n), where k,(...) means the free
cumulant in terms of the linear functional v,,.
By the freeness (7.16) under (7.7), all mixed free cumulants of {7/}, vanish. Let
(i1, .., i) € {1, ..., N}", for n € N, and assume 7(; ;) is a noncrossing partition
in NC(n) with its blocks V1, ..., V] L where |7| mean the numbers of blocks

of noncrossing partitions 7, such that: (i) each block has its form

i1,y

‘/j:(kj,k'j-.-,kj), fOI‘kjE{l,...,N} (718)

forallj=1,..., }77(1-1 _____ in)|, and (i) such a block V; is maximal, under noncrossing
ordering, satisfying (7.18), i.e., each block V; of m; . ;) is the maximal block,
consisting only of one number in {1,..., N} forall j =1, ..., |7T(1'17___7in)| .

Example 7.8. For example, if N = 3, and (1,1,2,2,2,1,3) is fixed as a 7-tuple, then
the corresponding partition 7(1 1 22,2,1,3) in NC(7) has its blocks,

(1,1),(2,2,2),(1) and (3),

ie.,
T(1,1,2,2,2,1,3) = {(1,1), (2,2,2), (1), (3)} in NC(7).
Also under same hypothesis, if (1,1,1,2,2,1,1,1,2) is fixed as a 9-tuple, then the

corresponding partition m(1,1,1,2,2,1,1,1,2) 1S

T(1,1,1,2,2,1,1,1,2) = {(1,17 1), (2,2% (17 1, 1)7 (2)}
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We call such noncrossing partitions m;, . ;) the free-depending partition of
{TJ-K}?’:1 for (i1,...,i,) in NC(n).
Therefore by [12] and by (7.17) and (7.18), one has that
Uy (Till(TiIZ( " 'Tilf) = 2 ke (Till(’ e ’T'K)

in

S R U (7.19)

11 )
TENC (i1,...,0n)

because all mixed free cumulants of {TjK }§V=1 vanish under assumed freeness, where
NC(ir, ... in) & {0 e NC(n) |0 <74, i)}

where 7(;, ;) is the free-depending partition of {T]-K};V:1 for (i1, ..., i) in NC(n),
and where the inclusion < on NC(n) is in the sense of [12].
Thus, one can obtain that if the partial isometries {TJK }§V=1 forms a free family

then

7ENC (i1, ,in)
by (7.19)
= Z Z k9 (Tlll(’ te 7Tllf) = Z 1pp:V7
Vem(iy,....in) \OENC(IV]) Ver iy, .. in)
where
K K K
Vv = Yy (Ti’“lT% '“Ti’“\w) ’

whenever

V = (ikl,ikQ, . ’ik\V\) in 71'(1-1’”.’1-”).

Proposition 7.9. Let {TjK}é\lz1 be a family of partial isometries on $), with their
initial and final projections identified with TX | satisfying AN 6.6. If this family forms
a free family in (€% n,¥p), then the joint-free-moment computations (7.19) becomes

Up (TEXTE .1 = Y v, (7.20)
VEﬂ'(ll ’’’’’ in)
where
_ K K ) _ i\
wp:V - ¢p (lel e .Ek\v\> = Hp ((xi’ﬂV) K n K) )
whenever V. = (ik,,ik,, ---, iky,) in the free-depending partition m(, . i) of
(i1, .. -,1n) in NC(n) for all (i1,...,1,) € {1, ..., N}™ and ne N.

Proof. The proof of (7.20) is done by (7.7) and (7.19), as we have discussed in the
above paragraph. O
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Example 7.10. Assume again that N = 3, and let {T{, T TE} be a family of
partial isometries satisfying both AN 6.0, and the conditions (7.11) and (7.12). Then,
one can compute the following free moments as follows:

vy (T (1) (T)(TF))
= ((T1)?) + 4y (T5°)°) + 4 (TV°) + (T

by (7.20)
= d)p (chzl)Kl) + wl) <X§c?;)K2> + ’l/)il) (X$1K1) + 11[}]) (ch}K:})
by (7.1)
— iy () 2 K) 4y () K)
+pp (27K A K) + pp (25K 0 K)
by (7.7).
Similarly,
Yy (TF)* (T3)*(Tf ) (14F))
= ((TF)?) + 0 () + 4y ((TF)7) + 0 (TF)
= fip ((m‘%)fl K n K) + Ly ((9@)71 K n K)
+pp (27K A K) 4 pp (25 K 0 K) .
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