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PARAMETRIC BOREL SUMMABILITY
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Abstract. In this paper we study the Borel summability of formal solutions with a parameter
of first order semilinear system of partial differential equations with n independent variables.
In [Singular perturbation of linear systems with a regular singularity, J. Dynam. Control.
Syst. 8 (2002), 313–322], Balser and Kostov proved the Borel summability of formal solutions
with respect to a singular perturbation parameter for a linear equation with one independent
variable. We shall extend their results to a semilinear system of equations with general
independent variables.
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1. INTRODUCTION

Since the pioneering works by Lutz-Miyake-Schäfke, Balser et al. the Borel summabil-
ity of formal solutions of partial differential equations with respect to the independent
variables has been studied extensively (cf. [3, 5, 8, 10, 11]). On the other hand, con-
cerning the summability of formal solutions of a partial differential equation with a
singular perturbation parameter we cite [2] and [4]. (See also [6, 7] and [9].)

In this paper we shall study the Borel summability of formal solutions of partial
differential equations with a parameter. More precisely, we shall extend the results in
[2] to a semilinear system of partial differential equations with general independent
variables. We note that our system is not contained in the class of equations studied
in the above, nor can be decomposed into first order single equations. We use the
method of characteristics in order to prove our theorem which is different from that
of [2]. We observe that our method also yields the summability when the independent
variable moves in a given bounded open set.
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This paper is organized as follows. In Section 2, we state the main theorem, The-
orem 2.1 and give remarks to Theorem 2.1. In Section 3, we study formal solutions
and the Gevrey estimate. In Section 4, we prove elementary properties of the con-
volution needed for the proof of Theorem 2.1. In Section 5, we reduce the proof of
Theorem 2.1 to that of Theorem 5.1. After having prepared six lemmas we give the
proofs of Theorems 2.1 and 5.1. In Section 6, we give an extension of Theorem 2.1
when the independent variable lies in some open set not containing the origin.

2. STATEMENT OF RESULTS

Let x = (x1, . . . , xn), n ≥ 1, be the variable in Cn. For λj ∈ C, λj 6= 0 (j = 1, 2, . . . , n),
define

L :=

n∑

j=1

λjxj
∂

∂xj
. (2.1)

Let N ≥ 1 be an integer and let f(x, u) = (f1(x, u), . . . , fN (x, u)), u = (u1, . . . , uN ) ∈
CN be a holomorphic vector function in the neighborhood of the origin of x ∈ Cn and
u ∈ CN . We consider Borel summability of formal solutions of the semilinear system
of equations

ηLu = f(x, u), (2.2)

where η ∈ C is a complex parameter. We assume

f(0, 0) = 0, det(∇uf(0, 0)) 6= 0, (2.3)

where ∇uf(0, 0) denotes the Jacobi matrix of f(x, u) with respect to u at the point
x = 0, u = 0.

We shall construct the formal power series solution v(x, η) of (2.2) in the form

v(x, η) =

∞∑

ν=0

ηνvν(x) = v0(x) + ηv1(x) + . . . , (2.4)

where the series is a formal power series in η with the coefficient vν(x) being
a holomorphic vector function of x in some open set independent of ν. We set

vν(x) ≡ vν = (v
(1)
ν , . . . , v

(N)
ν ). We denote by Ω0 the neighborhood of the origin on

which every coefficient vν(x) is defined.
In order to state our results we recall some definitions (cf. [1] and [2]). The formal

Borel transform of v(x, η) is defined by

B(v)(x, y) :=

∞∑

ν=0

vν(x)
yν

Γ(ν + 1)
, (2.5)

where Γ(z) is the Gamma function. For an opening θ > 0 and the bisecting direction ξ,
define the sector Sθ,ξ by

Sθ,ξ =

{
z ∈ C; |arg z − ξ| < θ

2

}
. (2.6)
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(Sθ,ξ is illustrated in Figure 1.) We say that v(x, η) is 1-summable in the direction ξ
with respect to η if B(v)(x, y) converges in the neighborhood of the origin of (x, y),
and there exists the neighborhood U of the origin x = 0 and a θ > 0 such that
B(v)(x, y) can be analytically continued to (x, y) ∈ U × Sθ,ξ and of exponential
growth of order 1 with respect to y in Sθ,ξ. For the sake of simplicity, we denote the
analytic continuation with the same notation B(v)(x, y). The Borel sum V (x, η) of
v(x, η) is then given by the Laplace transform

V (x, η) :=

∞eiξ∫

0

y−1e−yη−1

B(v)(x, y)dy. (2.7)

We assume

∇uf(x, 0) is a diagonal matrix. (2.8)

We set

∇uf(0, 0) = diag (µ1, . . . , µN ). (2.9)

Moreover, we assume

λj > 0, Reµk > 0 (j = 1, . . . , n, k = 1, . . . , N). (2.10)

Fig. 1. Sθ,ξ
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Fig. 2. C0
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Let C0 be the convex closed positive cone with vertex at the origin containing λj

(j = 1, 2, . . . , n) and (µk)
−1 (j = 1, 2, . . . , n; k = 1, . . . , N). Write

C0 = {z ∈ C;−θ2 ≤ arg z ≤ θ1} (2.11)

for some 0 ≤ θ1 < π/2 and 0 ≤ θ2 < π/2 (Figure 2). Define ξ = −π + θ1−θ2
2 and

θ = π−θ1−θ2. We observe that Sπ+θ,ξ is equal to C\C0. Then we have the following
theorem.

Theorem 2.1. Suppose (2.3), (2.8) and (2.10). Then there exists the neighborhood
U of x = 0 such that v(x, η) is 1-summable in the direction arg η with η ∈ Sθ,ξ when
x ∈ U . Moreover, V (x, η) is holomorphic and satisfies (2.2) when (x, η) ∈ U ×Sπ+θ,ξ.
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Remark 2.2.

(a) In [2] the summability of formal solutions (2.4) was shown for (2.2) with N = 1
and n = 1 assuming that f is the polynomial of degree 1 with respect to u. In fact,
in Theorem 5.1 of [2] the summability was proved under the condition equivalent
to (2.10). It was also shown that (2.10) is necessary in general.

(b) An interesting phenomenon shown in [2] is that a certain Diophantine phe-
nomenon appears in the summability, while it does not appear for an irregular
singular equation (cf. [4]). In the case of general independent variables one can
easily see that a similar multi-dimensional Diophantine condition enters in the
analysis. Because we do not know how to generalize the proof in [2] to a semilin-
ear multi-dimensional case, we use the method of characteristics in order to prove
the summability. More precisely, the stable behavior of the characteristics in our
proof corresponds to the Diophantine type condition in [2]. We note that our
method also shows the summability in the case when the independent variable is
outside the origin without assuming (2.10). We briefly mention the extension in
the last section.

3. FORMAL POWER SERIES IN THE PERTURBATION PARAMETER

In this section we construct a formal solution of (2.2) and obtain some estimates of
formal series.

Construction of a formal solution. We substitute the expansion (2.4) into (2.2) with
u = v. The left-hand side is given by

ηLv =
∞∑

ν=0

Lvν(x)ην+1. (3.1)

By the partial Taylor expansion of f with respect to v the right-hand side of (2.2) is
written as

f(x, v) = f(x, v0 + v1η + v2η
2 + . . .)

= f(x, v0) + η(∇uf)(x, v0)v1 +O(η2).
(3.2)

By comparing the coefficients of η, we obtain for η0 = 1

f(x, v0(x)) = 0 (3.3)

and for η

Lv0 = (∇uf)(x, v0)v1. (3.4)

We solve (3.3) with the condition v0(0) = 0 by means of an implicit function theorem
on some Ω0 in view of the assumption f(0, 0) = 0 in (2.3). Next, we solve v1 from (3.4)
on Ω0, where we may assume det(∇uf(x, v0(x))) 6= 0 on Ω0, since det(∇uf(0, 0)) 6= 0.
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In order to determine vν(x) (ν ≥ 2) we compare the coefficients of ην of (2.2).
Indeed, we differentiate (3.2) (ν − 1)-times with respect to η and put η = 0. Then we
obtain

Lvν−1 = (∇uf)(x, v0)vν + (terms consisting of vk, k < ν). (3.5)

We observe that the second term in the right-hand side appears from products of
terms in (3.2) of the form vijη

ij such that

i1 + i2 + . . .+ iℓ = ν, i1 ≥ 0, . . . , iℓ ≥ 0, ij 6= 0

for some ℓ ≥ 2 and j ≤ ℓ. It follows that all terms in the second term satisfy vk,
k < ν. Therefore, one can write (3.5) in the following way

∇uf(x, v0)vν = Hν(x, v0, v1, . . . , vν−1) for all ν ≥ 2.

Since det(∇uf(x, v0(x))) 6= 0 on Ω0, one can inductively determine vν .
The next theorem gives the existence of a formal solution.

Proposition 3.1. Assume (2.3). Then every coefficient of (2.4) is uniquely deter-
mined as a holomorphic function on Ω0.

Proof. By (2.3) and an implicit function theorem, v0(x) is uniquely determined as the
holomorphic function at the origin such that v0(x) = O(|x|). Suppose that vk(x) is
determined up to some ℓ− 1 in the neighborhood of the origin. Then, by an implicit
function theorem one can determine vℓ(x) uniquely in the neighborhood of the origin
depending on ℓ. Because vk(x) are determined recursively by differentiations and alge-
braic calculations, the recurrence formula for vℓ(x) implies that vℓ(x) is holomorphic
on Ω0.

Gevrey estimate of order 1. We shall show the following proposition.

Proposition 3.2. Assume that f(x, u) be analytic with respect to x in the neighbor-
hood of the origin 0 ∈ Cn and an entire function of u ∈ CN . Let v in (2.4) be the
formal series solution given by Proposition 3.1. Then there exist a neighborhood U of
the origin, x = 0 and a neighborhood W of the origin y = 0 in C such that B(v)(x, y)
converges in U ×W .

Proof. We use the majorant relation u ≪ v. Namely, for u =
∑

α xαuα and v =∑
α xαvα the relation u ≪ v holds if |uα| ≤ vα for every α. If u and v are vector

functions, then u ≪ v means that for every j, the j-th component uj of u and vj of v
satisfy uj ≪ vj . If v is a scalar function, then u ≪ v means that uj ≪ v for every j.
For ρ > 0, define

φρ(x) :=

(
1− x1 + . . .+ xn

ρ

)−1

. (3.6)

The set of holomorphic functions at the origin such that u ≪ φρC for some C ≥ 0
forms a Banach space with the norm ‖u‖ given by the infimum of C satisfying
u ≪ φρC.
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First we estimate the differentiation. For any integers 1 ≤ j ≤ n and k ≥ 1, we
have

∂

∂xj
φρ(x)

k =
k

ρ
φρ(x)

k+1. (3.7)

On the other hand, because xj(∇uf)(x, v0)
−1 is analytic at the origin for 1 ≤ j ≤ n

we have, for sufficiently small ρ > 0

xj(∇uf)(x, v0)
−1 ≪ Kφρ (3.8)

for some K > 0. Similarly, we have v0 ≪ ‖v0‖φρ.
We next estimate v1. By virtue of (3.4) we have v1 = (∇uf)(x, v0)

−1Lv0. Hence,
by (3.7) and (3.8), we have v1 ≪ ‖v0‖C0φ

3
ρ for some C0 > 0. We shall show that there

exists C ≥ 1 independent of ν ≥ 1 such that

vm ≪ C2m−1m!φ4m−1
ρ , m = 1, 2, . . . (3.9)

Suppose that (3.9) holds up to m ≤ ν − 1 and consider vν . In view of (3.5) we first
consider (∇uf)(x, v0)

−1Lvν−1.

(∇uf)(x, v0)
−1Lvν−1 ≪ C2ν−3(ν − 1)!(4ν − 5)φ4ν−3

ρ C1 ≤ 4C1C
2ν−3ν!φ4ν−3

ρ (3.10)

for some C1 > 0 depending only on K and L. Hence, if 4C1 ≤ C and C > 1, then we
have an estimate like (3.9) since 1 ≪ φρ.

Next, we estimate the nonlinear term. Set v = v0 + u, u = ηv1 + η2v2 + . . . and
expand

f(x, v) = f(x, v0) +∇uf(x, v0) · u+
∑

|β|≥2

rβ(x, v0)u
β . (3.11)

By inserting the expansion of u and by comparing the coefficients of ην of the
right-hand side of (3.11) we see that the nonlinear term in (3.5) is given by

∑

|β|≥2

|β|∑

ℓ=2

∑

ν1+...+νℓ=ν,νj≥1

rβ(x, v0)vν1
. . . vνℓ

. (3.12)

By inductive assumptions on vm we have

|β|∑

ℓ=2

∑

ν1+...+νℓ=ν,νj≥1,ℓ≥2

vν1
. . . vνℓ

≪
|β|∑

ℓ=2

∑
ν1! . . . νℓ!C

2ν−ℓφ4ν−ℓ
ρ . (3.13)

We recall the inequality

∑

ν1+...+νℓ=ν,νj≥1,ℓ≥2

ν1! . . . νℓ!

ν!
≤ 1. (3.14)

Then the right-hand side of (3.13) is bounded by

≪ C2ν−2ν!

|β|∑

ℓ=2

C2−ℓφ4ν−2
ρ ≪ C2ν−2C2ν!φ

4ν−2
ρ
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for some C2 > 0 independent of ν because
∑∞

ℓ=2 C
2−ℓ < ∞ by C > 1.

In order to estimate (∇uf)(x, v0)
−1 times (3.12) we consider

(∇uf)(x, v0)
−1
∑

|β|≥2

rβ(x, v0). (3.15)

By virtue of (3.11) we have

∑

|β|≥2

rβ(x, v0) = f(x, v0 + e)− f(x, v0)−∇uf(x, v0) · e, (3.16)

where e = (1, . . . , 1). By using the scale change of variables u 7→ εu, ε > 0, one may
assume that f(x, v0+e) is analytic at x = 0, if necessary. Therefore, one can estimate
(3.15) like ≪ Kφρ for some K > 0.

Therefore, (∇uf)(x, v0)
−1 times (3.12) can be estimated by C2ν−2C2Kν!φ4ν−1

ρ .
By inserting this estimate and (3.10) into (3.5) we obtain (3.9) for m = ν. By (3.9)
and the definition of majorant relations, we obtain the convergence of the formal Borel
transform in U ×W . This ends the proof.

4. CONVOLUTION ESTIMATE

Let Ω be the smallest open set containing the sector Sθ,π in (2.6) with 0 < θ < π and
the disk {|z| < r0} for small r0 > 0 such that z ∈ Ω implies z + t ∈ Ω for every real
number t ≤ 0. For c > 0, we define the space Hc(Ω) as the set of those h ∈ H(Ω)
such that there exists K ≥ 0 for which

|h(z)| ≤ Ke−cRe z(1 + |z|)−2 for all z ∈ Ω, (4.1)

where H(Ω) is the set of holomorphic functions in Ω. Obviously, Hc(Ω) is the Banach
space with the norm

‖h‖Ω,c := sup
z∈Ω

|h(z)|(1 + |z|)2ecRe z. (4.2)

The convolution f ∗ g (f, g ∈ Hc(Ω)) is defined by

(f ∗ g)(z) := d

dz

z∫

0

f(z − t)g(t)dt =
d

dz

z∫

0

f(t)g(z − t)dt. (4.3)

Remark 4.1. The above definition (4.3) seems different from the usual one of the
convolution. In the summability theory developed in [1] or [2], the operation ∗ in (4.3)
plays the role of the usual convolution. Indeed, for nonnegative integers i and j the
formal Borel transform B(ηi+j) of ηi+j = ηiηj is given by ζi+j/(i+ j)! with ζ being
the dual variable of η, which might be equal to B(ηi) ∗ B(ηj) = ζi ∗ ζj/(i!j!), where
∗ denotes a “convolution”. If we use the definition of the operator ∗ as in the above,
then one can verify that ζi ∗ ζj/(i!j!) coincides with ζi+j/(i + j)!. For more details
we refer to [1].
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Write f ′(z) = (df/dz)(z). Then we have the following proposition.

Proposition 4.2. For every f, g ∈ Hc(Ω) such that f(0) = g(0) = 0 and f ′, g′ ∈
Hc(Ω) we have f ∗ g ∈ Hc(Ω) with the estimates

‖f ∗ g‖Ω,c ≤ 8‖f ′‖Ω,c‖g‖Ω,c, ‖f ∗ g‖Ω,c ≤ 8‖f‖Ω,c‖g′‖Ω,c. (4.4)

Proof. Because f ∗ g = g ∗ f we shall prove the first inequality of (4.4). We have

f ∗ g(z) = d

dz

z∫

0

f(z − t)g(t)dt = f(0)g(z) +

z∫

0

f ′(z − t)g(t)dt

=

z∫

0

f ′(z − t)g(t)dt.

By (4.2) and by taking the path of integration from 0 to z, we have
∣∣∣∣∣∣

z∫

0

f ′(z − t)g(t)dt

∣∣∣∣∣∣
≤ ‖f ′‖Ω,c‖g‖Ω,ce

−cRe z

z∫

0

(1 + |z − t|)−2(1 + |t|)−2|dt|

≤ ‖f ′‖Ω,c‖g‖Ω,ce
−cRe z

|z|∫

0

(1 + |z| − s)−2(1 + s)−2ds.

(4.5)

We divide the integral in the right-hand side into two parts, s ≤ |z|
2 and s > |z|

2 . If

s ≤ |z|
2 , then we have (1 + |z| − s)−2 ≤ 4(1 + |z|)−2, while in case s > |z|

2 we have
(1 + s)−2 ≤ 4(1 + |z|)−2. Hence we have

|z|/2∫

0

1

(1 + |z| − s)2(1 + s)2
ds ≤ 4

(1 + |z|)2

|z|/2∫

0

(1 + s)−2ds ≤ 4

(1 + |z|)2 . (4.6)

One can similarly estimate the other part like

|z|∫

|z|/2

(1 + |z| − s)−2(1 + s)−2ds ≤ 4(1 + |z|)−2.

Therefore, we see that the left-hand side term of (4.5) can be estimated by
8‖f ′‖Ω,c‖g‖Ω,ce

−cRe z(1 + |z|)−2. This ends the proof.

5. PROOF OF THEOREM 2.1

First we define a function space. Let D and Ω be the open connected set in the
neighborhood of the origin of Cn and the set given in (4.1), respectively. Let H(D,Ω)
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be the set of holomorphic functions in (x, y) ∈ D × Ω. Then we define Hc(D,Ω) as
the set of those h ≡ h(x, y) ∈ H(D,Ω) such that there exists K0 ≥ 0 for which

sup
x∈D

|h(x, y)| ≤ K0e
−cRe y(1 + |y|)−2 for all y ∈ Ω. (5.1)

The space Hc(D,Ω) is a Banach space with the norm ‖h‖c = inf K0, where K0 is
given in (5.1).

Proof of Theorem 2.1. We first show the summability of v(x, η) in the direction
arg η = π when x ∈ U , where U is given in Proposition 2. One may assume λn = 1
without loss of generality by dividing the equation with λn 6= 0. In terms of (2.2)
with u replaced by v0 + u, (3.11) and f(x, v0) = 0 we obtain

Lu = −Lv0 + η−1∇uf(x, v0)u+ η−1
∑

|β|≥2

rβ(x, v0)u
β . (5.2)

Let û(y) := B(u) be the formal Borel transform of u with respect to η, where y is the
dual variable of η. By the formal Borel transform of (5.2) and by recalling that η−1

corresponds to ∂/∂y, we obtain

Lû = −Lv0 +∇uf(x, v0)
∂û

∂y
+

∂

∂y

∑

|β|≥2

rβ(x, v0)(û)
∗β , (5.3)

where (û)∗β = (û1)
∗β1 . . . (ûN )∗βN , β = (β1, . . . , βN ), and (ûj)

∗βj is the βj-convolution
product, (ûj)

∗βj = ûj ∗ . . . ∗ ûj .
Let v be the formal solution given by Proposition 3.1 and consider the formal

Borel transform B(v). Define û(x, y) := B(v) − v0. Then û(x, y) is analytic when
(x, y) ∈ U ×W , and û is the solution of (5.3) in the neighborhood of y = 0 such that
û(x, 0) ≡ 0 in x. We show that every solution of (5.3) analytic at y = 0 and satisfying
û(x, 0) ≡ 0 is uniquely determined. Indeed, by definition the convolution product of
yi/i! and yj/j! is equal to yi+j/(i+ j)!. Hence, if we expand û in the power series of
y and insert (5.3), then every coefficient of the expansion can be uniquely determined
from the recurrence relation because ∇uf(x, v0) is invertible. Therefore, if we can
show the existence of the solution of (5.3) being analytic in (x, y) ∈ U ×W which is
of exponential growth with respect to y in Ω, then we have the analytic continuation
of the formal Borel transform of v with exponential growth in y ∈ Ω. Hence we have
the summability of v.

Therefore, it is sufficient to prove the following theorem.

Theorem 5.1. There exist c > 0, a neighborhood of the origin x = 0, D and Ω as in
(4.2) such that (5.3) has a solution û in Hc(D,Ω).

The proof of Theorem 5.1 is given after having prepared six lemmas.
Let c > 0, D and Ω be given. We may assume that D is contained in an open

ball centered at the origin. In order to prove the solvability of (5.3) when x is in the
neighborhood of the origin and y ∈ Ω we shall study

Lw − (∇uf)(x, 0)
∂w

∂y
= g(x, y), (5.4)
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where w = (w1, . . . , wN ) and g = g(x, y) = (g1, . . . , gN ), gj ∈ Hc(D,Ω) is a given
function.

By the assumption (2.8), for a given j, 1 ≤ j ≤ N we denote the j-th diagonal
component of (∇uf)(x, 0) by (∇uf)j(x, 0). We use the method of characteristics in
order to solve (5.4). Namely, we consider

dζ

ζ
=

dxk

λkxk
= − dy

(∇uf)j(x, 0)
, k = 1, 2, . . . , n− 1. (5.5)

Let b ∈ C, b 6= 0 be sufficiently small and y0 ∈ Ω be given. By integrating (5.5) we
have

xk = ckζ
λk (k = 1, 2, . . . , n− 1), y = y0 − Φj(ζ, b), (5.6)

where

Φj(ζ, b) =

ζ∫

b

(∇uf)j(s
λ1c1, . . . , s

λn−1cn−1, s; 0)s
−1ds, (5.7)

and the integral is taken along the non self-intersecting curve which does not encircle
the origin. Then we make analytic continuation around the origin. Here y0 := y(b) ∈ Ω
is the initial value of y = y(ζ) at ζ = b and ck’s are chosen so that the initial point
x(0) := (x1(b), . . . , xn−1(b), b) lies in D. Define Φ(ζ, b) := (Φ1(ζ, b), . . . ,ΦN (ζ, b)).
Then we have the following lemma.

Lemma 5.2. Let ζ0 ∈ D \ {0}. Then, for every j, 1 ≤ j ≤ N there exists a curve
γζ0,j which passes ζ0 and tends to the origin such that ImΦj(ζ, b) = ImΦj(ζ0, b) for
every ζ ∈ γζ0,j.

Proof. The condition ImΦj(ζ, b) = ImΦj(ζ0, b) is equivalent to ImΦj(ζ, ζ0) = 0. We
shall look for the curve γζ0,j satisfying the latter condition. We first observe that there
exist R(ζ) and ρ > 0 such that

Φj(ζ, ζ0) = µj log

(
ζ

ζ0

)
+R(ζ), (5.8)

where R(ζ) = O(ζρ) when ζ → 0. Indeed, by assumption (2.9) we have that
(∇uf)j(x, 0) = µj + O(|x|) (Reµj > 0) when x ∈ Ω0. Because λk > 0, the integral

Φj(ζ, ζ0) =
∫ ζ

ζ0
t−1(∇uf)j(x, 0)dt with xk = ckt

λk has the expression (5.8).
Set µj = αj + iβj with αj > 0. Then we have

(αj + iβj) log(ζ/ζ0) = (αj + iβj)(log(|ζ|/|ζ0|) + i arg(ζ/ζ0))

= (αj log(|ζ|/|ζ0|)− βj arg(ζ/ζ0))

+ i (αj arg(ζ/ζ0) + βj log(|ζ|/|ζ0|)) .
(5.9)

Hence the relation ImΦj(ζ, ζ0) = 0 is written as

αj arg(ζ/ζ0) + βj log(|ζ|/|ζ0|) + ImR(ζ) = 0. (5.10)
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We define θ := arg(ζ/ζ0), r := |ζ|/|ζ0| and m(r, θ) := ImR(ζ). Then (5.10) can be
written in

αjθ + βj log r +m(r, θ) = 0. (5.11)

By (5.8), we have m(r, θ) = O(rρ) as r → 0. Let ℓ ≥ 1 be an integer such that ρℓ > 1.
Set r = r̃ℓ. Then (5.11) can be written as αjθ+ βjℓ log r̃+m(r̃ℓ, θ) = 0. Assume that
βj 6= 0. Then it follows that

log r̃ = −(βjℓ)
−1(αjθ +m(r̃ℓ, θ)). (5.12)

Hence we have

r̃ = exp

(
−αjθ

βjℓ
− m(r̃ℓ, θ)

βjℓ

)
. (5.13)

Clearly, m(r̃ℓ, θ) is continuously differentiable with respect to r̃ and the derivative
is small if r̃ is sufficiently small. By an implicit function theorem we see that (5.13)
can be solved as r̃ = r̃(θ). Clearly, r̃(θ) asymptotically equals exp (−(αjθ)/(βjℓ)). We
define the curve γζ0,j = γζ0,j(ζ) by the relation

r = r̃(θ)ℓ, θ := arg(ζ/ζ0), r := |ζ|/|ζ0|, (5.14)

which passes ζ0 and tends to zero. In order that they tend to the origin we require
the following conditions.

(i) If βj > 0, then we have αj/βj > 0. We define γζ0,j by (5.14) with θ ≥ 0. Hence
the curve encircles around the origin counterclockwise and tends to the origin.
(See Figure 3.)

(ii) If βj < 0, then we have αj/βj < 0. We define γζ0,j by (5.14) with θ ≤ 0. Then
the curve encircles around the origin clockwise and tends to the origin. (See
Figure 4.)

(iii) If βj = 0, then by (5.11) we have αjθ+m(r, θ) = 0. In order to solve the relation
with respect to θ we study the derivative of R(ζ) with respect to θ. By definition
we have

R(ζ) =

ζ0re
iθ∫

ζ0

(
(∇uf)j(s

λ1c1, . . . , s
λn−1cn−1, s; 0)− µj

)
s−1ds. (5.15)

Differentiating the right-hand side of (5.15) with respect to θ we see that it is con-
tinuous with respect to θ. Therefore, by an implicit function theorem, (5.11) can be
solved as θ = θ(r). We define γζ0,j by (5.14) with r = r̃(θ)ℓ replaced by θ = θ(r),
0 < r ≤ 1, θ(1) = 0. (See Figure 5.) Moreover, we have

|θ(r)| ≤ α−1
j |m(r, θ)| ≤ Crρ/αj

for some C > 0 independent of r. This proves that the curve γζ0,j tends to the origin.
This ends the proof.
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O ζ0

Fig. 3. βj > 0

O
ζ0

Fig. 4. βj < 0

γζ0,j γζ0,j

O

ζ0

Fig. 5. βj = 0

γζ0,j

Lemma 5.3. Let c 6= 0 and ζ0 6= 0 be given complex constants. Then, for every j,
1 ≤ j ≤ N , ReΦj(ζ, c) is monotone decreasing when ζ approaches the origin along
the curve γζ0,j.

Proof. By (5.9), we have

ReΦj(ζ, ζ0) = αj log r − βjθ + m̃(r, θ), (5.16)

where m̃(r, θ) := ReR(ζ), ζ/ζ0 = reiθ. First we consider the case βj > 0. In view of
the definition of γζ0,j the parameter of the curve is θ ≥ 0. It is sufficient to show that
the right-hand side of (5.16) is a monotone decreasing function of θ in θ ≥ 0. Because
−βjθ trivially has the property, we consider αj log r + m̃(r, θ). Let ρ > 0 the number
given in (5.8). Let ℓ satisfy ℓρ > 1. We set r = r̃ℓ. Then, in view of (5.12) we shall
show that

αjℓ log r̃ + m̃(r̃ℓ, θ) = −α2
jθ/βj − αjm(r̃ℓ, θ)/βj + m̃(r̃ℓ, θ) (5.17)

is a decreasing function of θ. We shall show that the derivatives of m(r̃ℓ, θ) and
m̃(r̃ℓ, θ) with respect to θ are small if r is small. We consider m(r̃ℓ, θ) = ImR(ζ).
Since ζ = ζ0re

iθ, we will estimate (∂/∂θ)R(ζ). In view of (5.15) we have

∂

∂θ
R(ζ) = i(∇uf)j(ζ

λ1c1, . . . , ζ
λn−1cn−1, ζ; 0)− iµj . (5.18)
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By the assumption λj > 0 this quantity is bounded when |ζ| is sufficiently small uni-
formly in θ. This proves the assertion. The smallness of the derivative of m̃(r̃ℓ, θ) with
respect to θ is proved similarly. Hence, by (5.16) and (5.17) we see that ReΦj(ζ, ζ0)
is a decreasing function when ζ tends to the origin. Next we consider the case βj < 0.
We take θ ≤ 0 and we make the same argument as in the case βj > 0 by using (5.16).
Hence we have the same assertion.

We study the case βj = 0. By a similar argument as in (5.16), we have

ReΦj(ζ, ζ0) = αjℓ log r̃ + m̃(r̃ℓ, θ). (5.19)

By Lemma 5.2, the parameter of γζ,j is r̃. The point ζ on the curve tends to the origin
as r̃ → 0. We calculate (∂/∂r̃)m̃(r̃ℓ, θ). By the same calculation as in (5.18) we may
consider the following quantity

ζ0e
iθℓr̃ℓ−1

(
(∇uf)j(ζ

λ1c1, . . . , ζ
λn−1cn−1, ζ; 0)− µj

)
ζ−1. (5.20)

Since (∇uf)j − µj = O(|ζ|ρ) and |ζ| = r̃ℓ, the quantity in (5.20) is bounded by
r̃−1|ζ|ρ = r̃ρℓ−1. Because ρℓ > 1, the quantity is arbitrarily small if r̃ is sufficiently
small. In terms of (5.19) this implies that ReΦj(ζ, ζ0) is monotone decreasing as
r̃ → 0. This completes the proof.

Lemma 5.4. Let g = g(x, y) = (g1, . . . , gN ), gj ∈ Hc(D,Ω) be such that g(0, y) ≡ 0
for every y ∈ Ω. Then the solution of (5.4) is given by

w = P0g := (P0,1g1, . . . , P0,NgN ). (5.21)

Here, for every j, 1 ≤ j ≤ N and ζ 6= 0 in a neighbourhood of the origin we take ζ0
such that ζ ∈ γζ0,j and P0,j is given by

P0,jgj :=

ζ∫

ζ0

gj(s
λ1c1, . . . , s

λn−1cn−1, s; y0 − Φj(s, b))s
−1ds, (5.22)

where the integral is taken along the curve γζ0,j from ζ0 to ζ ∈ γζ0,j. The independent
variables in (5.22) satisfy the relation (5.6).

Proof. We show that the integrand in (5.22) is well defined. By (5.6) and (5.7), we
have

y0 − Φj(s, b) = y − Φj(s, b) + Φj(ζ, b) = y +Φj(ζ, s). (5.23)

By Lemma 5.2, we have that ImΦj(ζ, s) = 0 if s ∈ γζ0,j because ζ ∈ γζ0,j . On the
other hand, by Lemma 5.3, we have that ReΦj(ζ, s) is a monotone decreasing function
of ζ ∈ γζ0,j when ζ approaches the origin. Hence we have ReΦj(ζ, s) ≤ 0 on γζ0,j . In
view of the assumption on Ω we have y + ReΦj(ζ, s) ∈ Ω for every y ∈ Ω.

Next, we take the neighborhood U0 of the origin such that the formal solution is
holomorphic in U0. We want to show that substitution xk = sλkck into the integrand
of (5.22) is possible for s which is on the segment of γζ0,j between ζ0 and ζ. For the
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purpose of this we shall show that sλkck is sufficiently small by taking ck sufficiently
small. We observe that

sλj = exp (λj(log |s|+ i arg s)) . (5.24)

Because λj > 0, the absolute value of the right-hand side of (5.24) is monotone
decreasing when r = |s| tends to zero, namely s tends to the origin along γζ0,j . This
proves the assertion. Hence the right-hand side of (5.22) is well defined. We note that
the integrand is integrable at the origin in view of the assumption gj(0, y) ≡ 0 for
every y ∈ Ω.

Next, we shall show that wj := P0,jgj (j = 1, 2, . . . , N) satisfies the equation (5.4),
namely

Ljwj − (∇uf)j(x, 0)
∂wj

∂y
= gj(x, y). (5.25)

Indeed, by (5.5) and (5.6), we have

gj(x, y)x
−1
n =

dwj

dζ
=

n∑

k=1

∂xk

∂ζ

∂wj

∂xk
+

∂y

∂ζ

∂wj

∂y

=

n∑

k=1

λkxk

ζ

∂wj

∂xk
− (∇uf)j(x, 0)

ζ

∂wj

∂y
.

(5.26)

Multiplying both sides with ζ and setting ζ = xn we have (5.25). This completes the
proof.

Let ζ0 satisfy |ζ0| = r0 > 0. In the following we assume that there exists an ε0 > 0
such that |ζ|/|ζ0| ≥ ε0 for ζ corresponding to D, where we recall relation (5.6).

Lemma 5.5. There exists a constant c1 such that, for every 1 ≤ j ≤ N , gj ∈ H(D,Ω),
we have

‖P0,jgj‖c ≤ c1‖gj‖c,
∥∥∥∥
∂

∂y
(P0,jgj)

∥∥∥∥
c

≤ c1‖gj‖c. (5.27)

The constant c1 is independent of ζ0, |ζ0| = r0 > 0.

Proof. We first show that the integral (5.22) converges when ζ ∈ γζ0,j . Noting that
y0 −Φj(s, b) = y+Φj(ζ, s) we make the change of variable σ = y+Φj(ζ, s) in (5.22)

from s to σ. We have dσ = − (∇uf)j
s ds. Observe that the right-hand side is independent

of y. We have σ = y for s = ζ and σ = y+ ζ̃0 for s = ζ0, where ζ̃0 = Φj(ζ, ζ0). Clearly,
s ∈ γζ0,j is expressed as σ ∈ y + ˜γζ0,j , where ˜γζ0,j is the straight line connecting 0

and ζ̃0. Then (5.22) is written in

w = −
∫

˜γζ0,j

g(sλ1c1, . . . , s
λn−1cn−1, s;σ)

dσ

(∇uf)j
, (5.28)

where (∇uf)j is bounded from below by the assumption (2.3).
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We next estimate the growth of y0 − Φj(s, b). In terms of (5.23) we have

exp (−cRe (y0 − Φj(s, b))) = exp (−cRe (y +Φj(ζ, s))) . (5.29)

By Lemma 5.3, ReΦj(ζ, s) is decreasing in ζ as ζ tends to the origin along γζ0,j . It

follows that ReΦj(ζ, s) ≤ ReΦj(s, s) = 0. Hence we need to estimate e−cReΦj(ζ,s).
We have that Φj(ζ, s) is asymptotically equal to µj log(ζ/s). Set log(ζ/s) = x+iy and
µj = α+iβ with α > 0. Then we have Re (µj log(ζ/s)) = αx−βy. On the other hand,
by definition we have βx+αy = c for some c. Hence αx−βy = (α+β2α−1)x−cβα−1.
Noting that x = log(|ζ|/|s|) > log(|ζ|/|ζ0|) > log ε0, we have

exp(−c(αx− βy)) = exp(−(α+ β2α−1)cx+ c2βα−1)

≤ exp
(
(α+ β2α−1)c log ε−1

0 + c2βα−1
)
=: K0.

This proves
exp (−cRe (y0 − Φj(s, b))) ≤ K0 exp (−cRe y) . (5.30)

We shall estimate |y0 − Φj(s, b)| = |y + Φj(ζ, s)| from the below. Because
ImΦj(ζ, s) = 0 and ReΦj(ζ, s) ≤ 0 on γζ0,j , there exists C1 > 0 independent of
ζ and s such that

(1 + |y0 − Φj(s, b)|)−2 ≤ C1(1 + |y|)−2 for all y ∈ Ω. (5.31)

Therefore, we get from (5.30) and (5.31) that

‖wj‖c ≤ sup

(
(1 + |y|)2 exp (cRe y)

∫
‖gj‖c

exp (−cRe (y0 − Φj(s, b)))

(1 + |y0 − Φj(s, b)|)2
|dσ|

)

≤ C2‖gj‖c
∫

|dσ| ≤ C3‖gj‖c
(5.32)

for some C2 > 0 and C3 > 0.
We shall show the latter inequality of (5.27). We have

wy = −g(ζλ1
0 c1, . . . , ζ

λn−1

0 cn−1, ζ0; y + ζ̃0)
1

(∇uf)j

+ g(ζλ1c1, . . . , ζ
λn−1cn−1, ζ; y)

1

(∇uf)j
.

(5.33)

Using (5.33) we have the latter inequality of (5.27) by the same argument as ‖w‖c
since (∇uf)j is bounded.

We shall solve (5.3) in Hc(D,Ω). First we note

∇uf(x, v0)
∂û

∂y
= ∇uf(x, 0)

∂û

∂y
+ (∇uf(x, v0)−∇uf(x, 0))

∂û

∂y
. (5.34)

We note ‖∇uf(x, v0)−∇uf(x, 0)‖ = O(‖v0‖) when ‖v0‖ → 0. Note that these terms
are also estimated by K4ε‖wy‖c, where ε is small and K4 is some constant.
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We define the approximate sequence ûk (k = 0, 1, 2, . . .) by û0 = 0 and

û1 = −P0Lv0 (5.35)

û2 = P0

∑

|β|≥2

rβ(x, v0)
∂

∂y
(û1)

β
∗ − P0Lv0 + P0R(x)

∂

∂y
û1 (5.36)

+ P0(∇uf(x, v0)−∇uf(x, 0))
∂û1

∂y
,

...

ûk+1 = P0

∑

|β|≥2

rβ(x, v0)
∂

∂y
(ûk)

β
∗ − P0Lv0 + P0R(x)

∂

∂y
ûk (5.37)

+ P0(∇uf(x, v0)−∇uf(x, 0))
∂ûk

∂y
,

where k = 1, 2, . . . Then we have the following lemma.

Lemma 5.6. Let D be as in Lemma 5.5. Then there exists a constant K3 > 0
independent of k such that

‖ûk‖c ≤ CεK3, ‖(ûk)y‖c ≤ CεK3, k = 0, 1, 2, . . . (5.38)

Proof. In order to show that the sequence is well defined we make an a priori estimate.
Given ε > 0. We take |ζ0| sufficiently small such that ‖Lv0‖c ≤ ε. By (5.27), we have

‖û1‖c ≤ ‖P0Lv0‖c ≤ C‖Lv0‖c ≤ Cε. (5.39)

Similarly, by using (5.27) we have ‖(û1)y‖c ≤ Cε.
Next, we estimate ‖û2‖c and ‖(û2)y‖c. Because the argument is similar, we con-

sider ‖û2‖c. Because v0(x) = O(|x|), there exist K5 > 0 and K6 > 0 such that for
every ε > 0 we have

|rβ |∞ := sup
x∈D

|rβ(x, v0(x))| ≤ εK5K
|β|
6

for all |β| ≥ 2 if D is sufficiently small. By (5.36), (5.39), (4.4) and the elementary
property of convolution, we have

‖û2‖c ≤ C‖Lv0‖c + C
∑

|β|≥2

∥∥∥∥rβ
∂

∂y
(û1)

β

∥∥∥∥+ 2C2ε2K4

≤ Cε+ C
∑

β

|rβ |∞(Cε)|β| + 2C2ε2K4

≤ Cε


1 + CεK5

∑

|β|≥2

K
|β|
6 (Cε)|β|−1


+ 2C2ε2K4.

(5.40)
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If we take CεK6 < 1, then there exists K7 > 0 such that the right-hand side of (5.40)
can be estimated by Cε(1 + 2CεK4 + C2K5K

2
6K7ε

2). Hence, if we take ε so that
C2K5K

2
6K7ε ≤ 1, then we have ‖û2‖c ≤ CεK3 for some K3 > 0 independent of ε.

Similarly, we have ‖(û2)y‖c ≤ CεK3.
We continue to estimate ‖û3‖c and ‖(û3)y‖c. Clearly, we see that the same argu-

ment works if we replace K6 with some constant K8. By induction we have an a priori
estimate.

Lemma 5.7. Under the same assumptions as in Lemma 5.6 we have that ûk

(k = 1, 2, . . .) converges in Hc(D,Ω).

Proof. Let l > m and write ûl − ûm =
∑l−1

j=m(ûj+1 − ûj). By (5.37), we have

ûj+1 − ûj

= P0

∑

|β|≥2

rβ
∂

∂y

(
(ûj)

∗β − (ûj−1)
∗β)

− P0R(x)
∂

∂y
(ûj − ûj−1) + P0(∇uf(x, v0)−∇uf(x, 0))

∂

∂y
(ûj − ûj−1)

= P0

∑

β

rβ
∂

∂y

(
n∑

ν=1

(ûj,ν − ûj−1,ν) ∗Rν(ûj , ûj−1)

)

− P0R(x)
∂

∂y
(ûj − ûj−1) + P0(∇uf(x, v0)−∇uf(x, 0))

∂

∂y
(ûj − ûj−1),

(5.41)

where Rν(ûj , ûj−1) is the polynomial of ûj and ûj−1 with degree greater than or equal
to |β| − 1 ≥ 1 with respect to the convolution product.

We shall show that

‖ûj+1 − ûj‖c ≤ 2−1‖(ûj − ûj−1)y‖c, ‖(ûj+1 − ûj)y‖c ≤ 2−1‖(ûj − ûj−1)y‖c, (5.42)

if ε is sufficiently small. Because the proof is similar, we shall show the latter one. In
order to estimate ‖(ûj+1 − ûj)y‖c we apply ∂/∂y to both sides of (5.41). Then we
estimate the right-hand side. In view of Lemma 5.5 we may consider the following
terms

∑∥∥∥rβ
(∑

(ûj,ν − ûj−1,ν)y ∗Rν(ûj , ûj−1)
)∥∥∥

c

+ ‖R(x)(ûj − ûj−1)y‖c + ‖(∇uf(x, v0)−∇uf(x, 0))(ûj − ûj−1)y‖c .

The first term is estimated by using the estimate of the convolution in §4. Because
‖Rν(ûj , ûj−1)‖c = O(ǫ) by virtue of (5.38), we can estimate the first term by a
constant times ǫ‖(ûj−ûj−1)y‖c. The second and the third terms can be estimated by a
constant times ǫ‖(ûj−ûj−1)y‖c, because R(x) = O(|x|) and ∇uf(x, v0)−∇uf(x, 0) =
O(|x|). Hence, by taking ǫ sufficiently small, we have the second inequality of (5.42).
Finally, the estimate (5.42) shows that ûk is a Cauchy sequence in Hc(D,Ω) and it
converges to some û ∈ Hc(D,Ω). Hence, we obtain the solution û.
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We observe that Lemma 5.7 implies the solvability of (5.3) in Hc(D,Ω).

Proof of Theorem 5.1. First we show the solvability of (5.3) on D corresponding to
the annulus T0 = {ε0r0 < |ζ| < r0} in terms of (5.6). Take an open set A0 in the annu-
lus and solve (5.3) for D corresponding to A0. By Lemma 5.7, we have the solvability
of (5.3) on D as in the above, which is equivalent to the summability on D. Next, take
an open set A1 in the annulus such that A0 ∩A1 6= ∅. Then we have the summability
on some D1 corresponding to A1. By virtue of the uniqueness of the Borel sum two
sums corresponding to A0 and A1 coincide on the set A0 ∩A1. Hence, we have an
analytic continuation of the solution of (5.3) to the domain corresponding to A0 ∪A1.
By repeating the argument we have the solvability of (5.3) for D corresponding to ζ
such that ε0r0 < |ζ| < r0.

Next, we take annulus T1 with r0 replaced by r1 such that T0 ∩ T1 6= ∅. Then
we have the summability on the domain corresponding to T1. Moreover, in the proof
of Lemma 5.5 the constant in the estimate in (5.28) depends on an integral like∫ b

a
s−1ds = log(a/b). Hence we have the solvability of (5.3) in the same domain in

the sense that we have the summability in Hc(D1,Ω) for the same c and Ω. By
the uniqueness of the Borel sum we can make analytic continuation with respect ζ.
Therefore, we have the solution û in the small neighborhood of the origin such that
ζ 6= 0.

Let u be the Laplace transform of û. Then u is the Borel sum of the formal
solution with respect to η when x ∈ D. Note that u and û are analytic with respect
to x in D. We denote u and û, respectively, by uD and ûD. Let D′ be any domain
such that D ∩D′ 6= ∅ and let uD and uD′ be the corresponding Borel sum in D and
D′, respectively. Because the Borel sum with respect to η is unique for every x, we
have that uD = uD′ on D∩D′, from which we have an analytic continuation of uD to
D∪D′. By choosing the sequence of open sets D we make an analytic continuation of
uD to the set (C \ 0)n ∩B0, where B0 is a small open ball centered at the origin. By
the uniqueness of the Borel sum the analytic continuation of ûD(x, y) with respect to
x to the set (C \ 0)n ∩ B0, y ∈ Ω is single-valued. We also note that in view of the
construction of ûD the growth estimate with respect to y of ûD(x, y) is uniform for
x ∈ (C \ 0)n ∩ B0. Therefore, we can define û(x, y) := ûD(x, y) on x ∈ (C \ 0)n ∩ B0

and y ∈ Ω by taking x ∈ D.
The function û(x, y) may have singularity on x ∈ (Cn \ (C \ 0)n) ∩ B0, y ∈ Ω.

We shall prove that the singularity is removable. First consider the singularity with
codimension 1. For simplicity, let us take y0 ∈ Ω, x′

0 = (x0
2, . . . , x

0
n) with x0

j 6= 0 and
consider the expansion

û(x, y) =
∑

ν≥0,j≥0

ûν,j(x1)(x
′ − x′

0)
ν(y − y0)

j . (5.43)

By what we have proved in the above, the right-hand side is convergent if x′ − x′
0

and y− y0 are sufficiently small and x1 6= 0. Moreover, by the boundedness of û(x, y)
when x1 → 0 and Cauchy’s integral formula we have that ûν,j(x1) is holomorphic
and single-valued and bounded in the neighborhood of the origin except for x1 = 0.
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Hence, its singularity is removable. In the same way one can show that the singularity
of codimension 1 is removable.

Next, we consider the singularity of codimension 2. For the sake of simplicity,
consider the one x1 = x2 = 0, x′′

0 = (x0
3, . . . , x

0
n) with x0

j 6= 0. By arguing in the same
way as in the codimension-one case we have an expansion similar to (5.43) where
x′ − x′

0 and ûν,j(x1) are replaced by x′′ − x′′
0 and ûν,j(x1, x2), respectively. Because

ûν,j(x1, x2) is holomorphic and single-valued except for x1 = x2 = 0, we see that
the singularity is removable by Hartogs’ theorem. As for the singularity of higher
codimension ≥ 3 we can argue in the same way by using Hartogs’ theorem. We see
that û(x, y) is holomorphic and single-valued on x ∈ Cn ∩B0, y ∈ Ω.

The exponential growth of û(x, y) when y → ∞ in y ∈ Ω for x ∈ Cn ∩ B0 can be
proved by putting some ck to be equal to zero when constructing ûD(x, y). Indeed,
we have already proved the fact in the above argument. Hence, we have proved the
solvability of (5.3), and the summability of our solution as desired. If we choose the
neighborhood of x = 0 sufficiently small, then we have the summability of every
component of the formal solution. This completes the proof of Theorem 5.1.

End of the proof of Theorem 2.1. We shall prove the summability in the direction
η ∈ Sθ,ξ. By multiplying the equation (2.2) with e−iθ we see that η, λk, µj are
replaced by ηe−iθ, λk and µje

−iθ, respectively. Noting that the conditions (2.10)
are satisfied for 0 ≤ θ < π/2 − θ1, the summability holds for η = ei(π−θ) with
0 ≤ θ < π/2 − θ1. Hence, the summability holds for −3π/2 + θ1 < arg η ≤ −π. On
the other hand, we see that (2.10) is satisfied for −π/2 + θ2 < θ ≤ 0. It follows that
the summability holds for −π < arg η ≤ −π/2−θ2. Therefore, the summability holds
for −3π/2 + θ1 < arg η < −π/2 − θ2. Hence, we have the latter half in view of the
definition of Borel sum. This ends the proof of Theorem 2.1.

6. SOME REMARKS

In Theorem 2.1 we proved Borel summability of v(x, η) when x ∈ U . We study the
summability in the case x 6= 0. Instead of (2.3) we assume that there exists a ∈ Cn

and b ∈ CN such that

f(a, b) = 0, det(∇uf(a, b)) 6= 0. (6.1)

By an implicit function theorem one can construct v0(x) analytic at x = a such that
v0(a) = b and f(x, v0(x)) ≡ 0 in the neighborhood of a. Define Σ0 by

Σ0 := {x; det ((∇uf)(x, v0(x))) = 0, f(x, v0(x)) = 0} . (6.2)

Observe that a 6∈ Σ0. Let Ω1 ⊂ Cn \ Σ0 be the maximal domain containing a and
not containing the origin on which v0 is holomorphic. One can construct the formal
solution v(x, η) in (2.4). By a similar proof like Proposition 3.2 the formal Borel
transform of v(x, η) converges for x in some domain Ω′ ⊂ Ω1 with compact closure.
For the sake of simplicity we assume Ω′ = Ω1 in the following. We study Borel
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summability of v(x, η) with respect to η when x ∈ Ω1. In fact, we have the following
theorem.

Theorem 6.1. Assume that f(x, u) is an entire function of x ∈ Cn and u ∈ CN such
that ∇uf(x, v0(x)) is a diagonal matrix for every x ∈ Ω1. Then v(x, η) is 1-summable
in the direction ξ, π

2 < arg ξ < 3π
2 with respect to η for any x ∈ Ω1.

We observe that the condition (2.10) is not necessary in the above theorem. The
proof of Theorem 6.1 is done by modifying the proof of Theorem 2.1. We omit the
details.
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