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Abstract. In this paper, we study the behaviors of fixed points sets of non necessarily
pseudo-contractive multifunctions. Rather than comparing the images of the involved mul-
tifunctions, we make use of some conditions on the fixed points sets to establish general re-
sults on their stability and continuous dependence. We illustrate our results by applications
to differential inclusions and give stability results of fixed points sets of non necessarily
pseudo-contractive multifunctions with respect to the bounded proximal convergence.
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1. INTRODUCTION

Results about the behaviors of fixed points sets have brought in recent years the
attention of several authors since they not only can be used to describe the depen-
dence of solutions to differential inclusions or partial differential equations but, with-
out claim of completeness, they reinforce the links among several purposes such as
stability, optimal control, well-posedness, sensitivity analysis, generalized differentia-
tion, generalized equations, differential inclusions and optimization, see for example,
[8, 9, 14,15,17,18,25,28,30,32] and the references therein.

To our knowledge, the starting works in this direction for families of mappings
and multifunctions were done in [27,29], where the behaviors of fixed points sets have
been considered with respect to the Pompeiu-Hausdorff convergence.

Recently, the behaviors of fixed points sets of pseudo-contractive mappings in the
settings of complete metric spaces have been investigated and some results have been
obtained and illustrated by applications to different topics including applications to
differential inclusions, see for instance, [8, 30].
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Since the dependence of fixed point sets is a subject which is not limited to the
case of Lipschitzian multifunctions (see for instance, [4]), we consider here some con-
ditions and assume that the involved multifunctions have nonempty fixed points sets.
We establish some results on the continuous dependence of fixed points sets of non
necessarily pseudo-contractive multifunctions and present applications to differential
inclusions. Stability results of fixed points sets of multifunction with respect to the
bounded proximal convergence which is weaker than both Fisher convergence and
Attouch-Wets convergence and stronger than Wijsman convergence are also given.

2. NOTATIONS AND PRELIMINARIES

Throughout this paper, (X, d) stands for a metric space. Given x ∈ X and r ∈ (0,+∞],
we denote by Br(x) (resp. Br(x)) the open (resp. closed) ball around x with radius r,
where B+∞(x) = B+∞(x) = X.

The distance from a point x ∈ X to a set A 6= ∅ is given by

d (x,A) := inf{d (x, y) | y ∈ A}.

As usual, d(x, ∅) = +∞. For two subsets A and B of X, the excess of A over B with
respect to d is denoted by e(A,B) and defined by

e (A,B) := sup
x∈A

d (x,B)

and we adopt the convention that e (∅, B) = 0 when B 6= ∅.
The (extended real-valued) distance between A and B with respect to d defined by

h (A,B) := max {e (A,B) , e (B,A)}

is called the Pompeiu-Hausdorff metric, see [16].
Let (X, d) be metric spaces. In the sequel, a multifunction T from X to X will be

denoted by T : X ⇒ X. For a subset M of X, we denote by FM (X), the family of all
multifunctions from X to X with nonempty closed values onM . That is, T ∈ FM (X)
if T (x) 6= ∅ and T (x) ∈ CL(X), for every x ∈M . We write F(X) instead of FX(X).

Let M be a subset of X and let T ∈ FM (X) be a multifunction. Recall that T is
said to be λ-Lipschitzian on M if

h (T (x1) , T (x2)) ≤ λd (x1, x2) for all x1, x2 ∈M.

It is is clear that T is λ-Lipschitzian on M if and only if

e (T (x1) , T (x2)) ≤ λd (x1, x2) for all x1, x2 ∈M.

A λ-Lipschitzian multifunction is said to be λ-contractive if λ ∈ [0, 1).

Following [8], a multifunction T : X ⇒ X is said to be pseudo-L-Lipschitzian with
respect to a subset M of X if

e (T (x1) ∩M,T (x2)) ≤ Ld (x1, x2) for all x1, x2 ∈M.
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If L ∈ [0, 1), then the multifunction T is called pseudo-L-contractive with respect
to M .

In the sequel, for a multifunction T : X ⇒ X, we denote by Fix(T ), the fixed
points set of T , that is,

Fix(T ) = {x ∈ X | x ∈ T (x)} .

As well-known, there are several results in the literature about the existence of
fixed points of mappings and multifunctions. In the sequel, we will be mainly interested
in stability of fixed point sets. For the existence, we refer to [1, 8, 20, 23] and the
references therein.

3. THE BEHAVIORS OF FIXED POINTS SETS OF MULTIFUNCTIONS

The following result on the behavior of fixed point sets of multifunctions should be
compared to [8, Proposition 2.4] and [9, Proposition 2.4].

Theorem 3.1. Let (X, d) be a metric space. Let x0 ∈ X and r ∈ (0,+∞] be such
that Br (x0) is a complete subspace. Let λ ∈ (0, 1) and T ∈ FBr(x0)(X) with at least
one fixed point. Assume that:

1. the function x→ d(x, T (x)) is lower semicontinuous;
2. for any x ∈ Br(x0) and any y ∈ T (x) ∩Br(x0), one has

d(y, T (y)) ≤ λd(x, y); (3.1)

3. for some β > 0 such that β < (1− λ) r,

d (x, T (x)) < λβ for all x ∈ Fix (S) ∩Bβ(x0), (3.2)

where S : X ⇒ X is a multifunction.

Then,

e(Fix (S) ∩Bβ(x0),Fix(T )) ≤ 1
1− λ

sup
x∈Br(x0)

e (S(x) ∩Bβ (x0), T (x)) . (3.3)

Proof. Assume Fix (S) ∩Bβ (x0) 6= ∅, otherwise we are finished.
Put γ := supx∈Fix(S)∩Bβ(x0) d (x, T (x)), which is finite by (3.2), and fix ε, ε′ > 0

so that
∞∑
n=0

nλnε′ <
ε

1− λ
.

Let x1 ∈ S(x1) be such that d(x1, x0) < β. Thus d(x1, T (x1) ≤ γ and d (x1, T (x1)) <
λβ from (3.2). Hence there exists x2 ∈ T (x1) such that d(x1, x2) < min(γ + ε, λβ).

Moreover, as

d(x0, x2) ≤ d(x0, x1) + d(x1, x2) < (1 + λ)β < r,
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x2 ∈ Br(x0). Since x2 ∈ T (x1) ∩ Br(x0) with x1 ∈ Br(x0) (note that β < r) and T
satisfies (3.1), we get

d(x2, T (x2)) ≤ λd(x1, x2),

and so we can pick x3 ∈ T (x2) so that

d(x2, x3) < M1 := min(λd(x1, x2) + λε1, λ
2β).

Observe that x3 ∈ Br(x0), since

d(x0, x3) < (1 + λ+ λ2)β < (1− λ3)r.

Proceeding now by induction and suppose we have constructed a finite sequence
(xk)k=2,..,n such that xk+1 ∈ T (xk) ∩Br(x0) for any k ∈ {2, ..., n− 1} and

d(xk, xk+1) < Mk−1, (3.4)

where
Mk−1 := min(λd(xk−1, xk) + λk−1ε′, λkβ).

Using the contraction assumption for xn ∈ T (xn−1) ∩Br(x0), it yields

d(xn, T (xn)) ≤ λd(xn−1, xn) < min(λd(xn−1, xn) + λn−1ε′, λnβ),

since by (3.4), d(xn−1, xn) < λn−1β. So that one can pick xn+1 ∈ T (xn) such that
d(xn, xn+1) < Mn−1 with

Mn−1 := min(λd(xn−1, xn) + λn−1ε′, λnβ).

Moreover, as d(xk, xk+1) < λkβ for any k ≥ 1, we get from the following inequalities

d(x0, xn) ≤ d(x0, x1) +
n−1∑
k=1

d(xk, xk+1) <
n−1∑
k=0

λkβ (3.5)

<
1− λn

1− λ
β < (1− λn)r < r, (3.6)

xn ∈ Br(x0) and the construction is then achieved. Hence the sequence (xn)n≥2 is
well defined. Let us check now that it is a Cauchy sequence. Indeed, it follows from
(3.4) that for any n ≥ 2 and any p ∈ N,

d(xn, xn+p) ≤
n+p−1∑
k=n

d(xk, xk+1) <
n+p−1∑
k=n

λkβ < λn
(1− λp

1− λ

)
β.

We conclude that (xn)n≥2 is a Cauchy sequence and as it lies in B̄r(x0) which is
complete, it converges to some x̄ ∈ B̄r(x0). Remark that, by (3.6), the sequence
satisfies

d(x0, xn) <
1− λn

1− λ
β,
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so that
d(x0, x̄) ≤ (1− λ)−1β < r.

Thus x̄ ∈ Br(x0). Applying assumption (1) of lower semicontinuity of the function
d(, T (·)), it results that

d(x̄, T (x̄)) ≤ lim inf
n→∞

d(xn, T (xn)) ≤ λlim inf
n→∞

d(xn−1, xn) = 0,

since (xn) converges. Thus x̄ ∈ T (x̄) (T (x̄) being closed), that is, FixT 6= ∅.
On the other hand, for any n ≥ 2, we have

d(xn, xn+1) ≤ λd(xn−1, xn) + λn−1ε′

≤ λ2d(xn−2, xn−1) + 2λn−1ε′

...

≤ λn−1d(x1, x2) + (n− 1)λn−1ε′.

It follows that

d(x1, xn) ≤
n−1∑
k=1

d(xk, xk+1) ≤
n−2∑
k=0

λkd(x1, x2) +
n−2∑
k=0

kλkε′

≤ (1− λ)−1d(x1, x2) +
n∑
k=0

kλkε′

and, by letting n→∞, we obtain

d(x1, x̄) ≤ (1− λ)−1(d(x1, x2) + ε)

≤ (1− λ)−1(γ + 2ε),

which leads to d(x1, x̄) ≤ (1− λ)−1γ, since ε is arbitrary. Thus

d(x1,Fix(T )) ≤ d(x1, x̄) ≤ 1
1− λ

sup
x∈S(x)∩Bβ(x0)

d (x, T (x))

≤ 1
1− λ

sup
x∈Br(x0)

e (S (x) ∩Bβ (x0), T (x))
(3.7)

and the conclusion (3.3) follows by taking the supremum over Fix(S) ∩Bβ (x0).

Remark 3.2.

(i) It is proved in [14] that any multifunction T : X ⇒ X with nonempty
closed values on a complete metric space which satisfies assumptions (1) and
(2) and such that d(x0, T (x0) < (1− λ) r admits at least a fixed point and
d (x0,Fix(T )) ≤ 1

1−λd (x0, T (x0)). Thus, it is an immediate result that Fix(T ) is
nonempty whenever the condition (3.2) is satisfied for some x1 ∈ Fix(S)∩Bβ(x0).
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(ii) Let us point out that the assumption (1) in the above theorem could be weakened
in such a way that the restriction of the function x → d(x, T (x)) on Br(x0) is
lower semicontinuous. Note that the lower semicontinuity of the restriction on
Br(x0) is also weaker than the lower semicontinuity of the function on the subset
Br(x0) (with respect to the whole space), see [2, 3].

4. APPLICATION TO DIFFERENTIAL INCLUSIONS

Now, we illustrate our results by applications to the stability of solutions sets for
differential inclusions in some functional spaces. In this study, the solutions sets for
differential inclusions will be the fixed points sets of some suitable multifunctions.

4.1. OVERVIEW ON THE EXISTENCE OF SOLUTIONS
OF DIFFERENTIAL INCLUSIONS

We present here the data of the problem and recall the question of the existence of
solutions for the differential inclusion:{

.
x(t) ∈ F (t, x(t)) a.e. on I,
x (0) = ξ,

(D.I.)

where F : I × E ⇒ E is a multifunction, E is a separable Banach space, ξ ∈ E and
I := [0, T ] with T > 0.

Recall that a solution x (·) of the differential inclusion (D.I.) is an element of the
space X := W 1,1 (I, E) of continuous functions x : I → E such that there exists
u ∈ L1 (I, E) (the space of Bochner integrable functions from I into E) satisfying

x(t) = x (0) +

t∫
0

u (s) ds for all t ∈ I.

In the sequel we shall endow the space W 1,1 (I, E) with the usual norm given by

‖x‖X = ‖x (0)‖+

T∫
0

∥∥ .x (s)
∥∥ ds (4.1)

and we denote by SF (ξ) the solutions set of the differential inclusion (D.I.).
Following the work of Filippov [21] (see also [7, 8, 14, 19, 25, 30, 37]), the following

assumptions in which r > 0, θ (·) ∈ L1(I) and x0 ∈ X with

x0(t) = x0 (0) +

t∫
0

u0 (s) ds a.e. on I

are classical for the existence of solutions of the differential inclusion (D.I.) on some
interval [0, τ ] with τ ∈ (0, T ):
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(H1) for each (t, e) ∈
⋃
t∈I {t}×B̄r (x0(t)), the set F (t, e) is nonempty and closed, and

F (·, e) is measurable. That is, there exists a sequence (gn (·, e))n of measurable
mappings from I into E such that gn (t, e) ∈ F (t, e) a.e. on I for all n ∈ N and
F (t, e) ⊂

⋃
n∈N gn (t, e) a.e. on I (see [7] for more details);

(H2) for a.e. t ∈ I, the multifunction F (t, ·) is θ(t)-Lipschitzian on B̄r (x0(t)) ;
(H3) ρ (·) := d (u0 (·) , F (·, x0 (·))) is in L1(I).

Note that Filippov’s result has been recently generalized in [14, Theorem 3.1] (see
also [26]), where the assumption (H2) is weakened to the following:

(H̄2) There exists κ ≥ 0 such that for any (t, x1) , (t, x2) ∈ Vr, where Vr :=
⋃
t∈I {t}×

B2r (x0(t)), one has

u1 ∈ F (t, x1) =⇒ d (u1, F (t, x2)) ≤ (θ(t) + κ ‖u1‖) ‖x1 − x2‖ ,

and the generalized result is as follows:

V :=

T∫
0

e−θ̄t ‖u0(t)‖ dt, V̄ :=

T∫
0

e−θ̄tρ(t)dt, where θ̄ :=

T∫
0

θ(t)dt.

Theorem 4.1 ([14]). Suppose the assumptions (H1) ,
(
H̄2

)
hold, eθ̄β (r + V ) < 1 and

e2θ̄
(
V̄ + δ

(
1− e−θ̄ + β

(
V + V̄

)))
< r

(
1− eθ̄β (r + V )

)
,

where δ ∈ (0, r). Then, for all s0 ∈ [0, T ] and for all ξ0 ∈ Bδ (x0 (s0)), there exists
a solution x ∈ X of {

.
x(t) ∈ F (t, x(t)) a.e. on I,
x (s0) = ξ0.

The following lemma is useful for our study.

Lemma 4.2 ([8]). Let G : I ⇒ E be a measurable multifunction with values in a
Banach space E. Let v0 : T → E and γ : I → (0,+∞) be measurable. Then there
exists a measurable mapping v : I → E such that

v(t) ∈ G(t) and ‖v(t)− v0(t)‖ ≤ d (v0(t), G(t)) + γ(t) a.e. on I.

4.2. THE BEHAVIOR OF SOLUTIONS SETS
FOR DIFFERENTIAL INCLUSIONS

Our purpose now is to study the behavior of solutions sets SF (ξ) when the right hand
side of the differential inclusion (D.I.) and the initial point vary. For this aim, consider
a family of differential inclusions:{

.
x(t) ∈ Fω(t, x(t)) a.e. on I,
x (0) = ξ,

(D.I.)w
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where Fω : I×E ⇒ E are multifunctions with nonempty closed values parameterized
by λ ∈ Λ (Λ is a topological space) and let us assume that there exist r > 0, ω0 ∈ Λ,
ξ0 ∈ E and θ (·) ∈ L1(I) such that:

(i) for each (ω, e) ∈ Λ × Br (ξ0), Fω (·, e) is measurable and for any (t, ω) ∈ I × Λ,
Fω (t, ·) is Hausdorff upper semicontinuous, that is,

e (Fω (t, e) , Fω (t, e0)) →
e→e0

0;

(ii) there exists κ ≥ 0 such that for any (t, e1) , (t, e2) ∈ I×Br (ξ0) and u1 ∈ Fω (t, e1)
one has

d (u1, Fω (t, e2)) ≤ (θ(t) + κ ‖u1‖) ‖e1 − e2‖ for all ω ∈ Λ;

(iii) ρ (·) := d (0, Fω0 (·, ξ0)) is in L1(I).

In the sequel, we denote by Ty : X ⇒ X the multifunction defined as follows:

z ∈ Ty(x)⇐⇒
there exists u ∈ L1 (I, E) such that u(t) ∈ Fω(t, x(t)) a.e. t ∈ I,

z(t) = ξ +

t∫
0

u (s) ds
(4.2)

for any y := (ω, ξ) ∈ Λ×Br (ξ0) fixed. Observe that SFω (ξ) = Fix (Ty) .

Lemma 4.3. Let Λ be a topological space and (Fω : I × E ⇒ E)ω a family of multi-
functions with nonempty closed values and satisfying the assumptions (i), (ii) and (iii).
Assume that the function ε (·) := e (Fω0 (·, e) , Fω (·, e)) is integrable on I for any
(ω, e) ∈ Λ×Br (ξ0). Then the values of Ty are nonempty and closed on Br (ξ0).

Proof. Let us prove first that Ty is nonempty valued on X . Since SFω0
(ξ0) 6= ∅

by Theorem 4.1, there exists x0 ∈ X such that x0(t) = ξ0 +
∫ t

0
u0 (s) ds a.e. on

I with u0 ∈ L1 (I, E) and u0(t) ∈ Fω0 (t, x0(t)). Consider now x ∈ Br (ξ0) with
x(t) = x (0)+

∫ t
0
u (s) ds a.e. on I and u ∈ L1 (I, E) . Hence from assumptions (ii) and

(4.4), we get

d (u0(t), Fω(t, x(t))) ≤ d (u0(t), Fω0(t, x(t))) + e (Fω0(t, x(t)), Fω(t, x(t))) ≤ ρ(t),

where ρ (·) : t→ (θ(t) + κ ‖u0(t)‖) ‖x0(t)− x(t)‖+ ε(t) is in L1(I). And as the multi-
function t→ Fω(t, x(t)) is measurable (see [7, 35]), there exists from Lemma 4.2 (see
also [37, Lemma 3.1]), v ∈ L1 (I, E) such that

v(t) ∈ Fω(t, x(t)) and ‖u0(t)− v(t)‖ ≤ ρ(t) a.e. on I.

Thus z ∈ Ty(x) by setting z(t) := ξ +
∫ t

0
v (s) ds a.e. on I so that Ty(x) 6= ∅.

Consider now for x ∈ Br (ξ0), a sequence (zn)n such that for any n, zn ∈ Ty(x)
and (zn) converges to z in X.
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Since zn(t) = ξ +
∫ t

0
un (s) ds and z(t) = z (0) +

∫ t
0
u (s) ds with un, u ∈ L1 (I, E)

and un(t) ∈ Fω(t, x(t)) a.e. t ∈ I (for any n), we get

z (0) = ξ and un → u in L1 (I, E) .

Hence we can pick a subsequence
(
us(n)

)
such that us(n)(t) → u(t) a.e. on I and by

the closeness of Fω(t, x(t)), u(t) ∈ Fω(t, x(t)) a.e. t ∈ I. Thus z ∈ Ty(x), that is, the
values of Ty are closed.

Theorem 4.4. Let Λ be a topological space and (Fω : I × E ⇒ E)ω a family of multi-
functions with nonempty closed values and satisfying (i), (ii) and (iii) with the con-
dition

λ := κr + θ̄ < 1, (4.3)

where θ̄ :=
∫ T

0
θ(t)dt. Assume that for any β > 0 and any ω ∈ Λ, there exists εβ (ω, ·) ∈

L1(I) such that

e (Fω0 (t, e) , Fω (t, e)) ≤ εβ (ω, t) , for all e ∈ Bβ (ξ0) and t ∈ I (4.4)

with εβ (ω, ·) →
ω→ω0

0 in L1(I), for all β > 0. Then for all β ∈ (0, (1− λ) r), there exist

two neighborhoods U of ω0 and V of ξ0 such that for any (ω, ξ) ∈ U × V

e (SFω0 (ξ0) ∩Bβ (ξ0),SFω (ξ)) ≤ 1
1− λ

(
‖ξ − ξ0‖+ ‖εβ (ω, ·)‖L1(I)

)
.

Proof. Let δ ∈
(
0, r2
)
, γ := λ (1− λ) δ2 and let y := (ω, ξ) ∈ Λ×Bγ (ξ0) fixed. Define

the multifunction Ty : X ⇒ X as in the relation (4.2). Then, from the previous lemma,
Ty has nonempty closed valued. And clearly, the function x → d (x, Ty(x)) is lower
semicontinuous. Let us prove now that assumption (2) of Theorem 3.1 is fulfilled.
Indeed, let x ∈ Bδ (ξ0) and let z ∈ Ty(x) ∩Bδ (ξ0) so that z(t) = ξ +

∫ t
0
u (s) ds with

u ∈ L1 (I, E) and
·
z(t) = u(t) ∈ Fω(t, x(t)) a.e. on I. We have to show that

d (z, Ty (z)) ≤ λ ‖x− z‖ .

Applying [6, Theorem 2, p. 91], we get some v ∈ L1 (I, E) satisfying v(t) ∈
Fω (t, z(t)) and ‖u(t)− v(t)‖ = d (u(t), Fω (t, z(t))) a.e. on I. Define z′ ∈ X such
that z′(t) := ξ +

∫ t
0
v (s) ds so that z′ ∈ Ty (z) and then,

·
z
′
(t) = v(t). Thus we have

the following inequalities

d (z, Ty (z)) ≤ ‖z − z′‖X =

T∫
0

‖u(t)− v(t)‖ dt

≤
T∫

0

d (u(t), Fω (t, z(t))) dt

≤
T∫

0

(θ(t) + κ ‖u(t)‖) ‖x(t)− z(t)‖ dt.
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And since

‖x(t)− y(t)‖ ≤ ‖x (0)− ξ‖+

t∫
0

∥∥∥ ·x (s)− ·z (s)
∥∥∥ ds,

then

d (z, Ty (z)) ≤
T∫

0

k(t)

‖x (0)− ξ‖+

t∫
0

∥∥∥ ·x (s)− ·z (s)
∥∥∥ ds

 dt

≤ K0 ‖x (0)− ξ‖+

T∫
0

Ks

∥∥∥ ·x (s)− ·z (s)
∥∥∥ ds,

where k(t) := θ(t) + κ ‖u(t)‖ and Ks :=
∫ T
s
k(t)dt for s ∈ [0, T ).

On the other hand, since

T∫
0

‖u(t)‖ dt = ‖z − ξ‖ < δ + γ < r,

thus
Ks ≤ K0 < θ̄ + κr.

Hence, for any x ∈ Bδ (ξ0) and z ∈ Ty(x) ∩Bδ (ξ0), one has

d (z, Ty (z)) ≤ λ ‖x− z‖

with λ := θ̄+κr < 1 by assumption (4.3). This leads to condition (2) of Theorem 3.1.
It remains to prove that for β ∈ (0, (1− λ) δ)

d (x, Ty(x)) < λβ for any x ∈ Fix (Ty0) ∩Bβ (ξ0) .

Let us fix now ξ ∈ V : =Bγ̄ (ξ0) with γ̄ := λ (1− λ)β and take x ∈ Fix (Ty0) ∩
Bβ (ξ0) so that x(t) = ξ0 +

∫ t
0
u0 (s) ds a.e. on I with u0 ∈ L1 (I, E) and u0(t) ∈

Fω0(t, x(t)). As previously, one can pick u ∈ L1 (I, E) satisfying u(t) ∈ Fω(t, x(t))
and ‖u0(t)− u(t)‖ = d (u0(t), Fω(t, x(t))) . Thus for z(t) := ξ +

∫ t
0
u (s) ds a.e. on I,

we have z ∈ Ty(x) and by (4.4) and using the fact that x(t) ∈ Bβ (ξ0) for all t, we
have

‖x− z‖ = ‖ξ − ξ0‖+

T∫
0

‖u (s)− u0 (s)‖ ds ≤ ‖ξ − ξ0‖+

T∫
0

d (u0(t), Fω(t, x(t))) dt

≤ ‖ξ − ξ0‖+

T∫
0

e(Fω0(t, x(t)), Fω(t, x(t)))dt ≤ ‖ξ − ξ0‖+

T∫
0

εβ (ω, t) dt

≤ ‖ξ − ξ0‖+ ‖εβ(ω, ·)‖L1(I) < γ̄ + λ2β < λβ
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for any ω ∈ U , where U is a neighborhood of ω0 such that

‖εβ(ω, ·)‖L1(I) < λ2β for any ω ∈ U ,

and this is possible since ‖εβ (ω, ·)‖L1(I) →ω→ω0
0.

Observe finally that for any x ∈ Fix (Ty0) ∩Bβ (ξ0), we have

d(x, Ty(x)) ≤ ‖x− z‖ < γ̄ + λ2β < λβ.

Hence following Theorem 3.1, we obtain that for any y = (ω, ξ) ∈ U × V,

e (Fix (Ty0) ∩Bβ (ξ0),Fix (Ty)) ≤ 1
1− λ

sup
x∈Br(ξ0)

d (Ty0(x) ∩Bβ (ξ0) , Ty(x)) .

Observe now that for any x ∈ Br (ξ0),

e (Ty0(x) ∩Bβ (ξ0) , Ty(x)) ≤ ‖ξ − ξ0‖+ ‖εβ (ω, ·)‖L1(I) .

Indeed, let x ∈ Br (ξ0) and let z ∈ Ty0(x)∩Bβ (ξ0) so that z(t) = ξ +
∫ t

0
u (s) ds with

u ∈ L1 (I, E) and z′(t) = u(t) ∈ Fω0(t, x(t)) a.e. on I. Thus, for any z′ ∈ Ty(x), we
have d (z, Ty(x)) ≤ ‖z − z′‖ so that for all v ∈ L1 (I, E) such that v(t) ∈ Fω(t, x(t))
a.e. on I, we have

d (z, Ty(x)) ≤ ‖ξ − ξ0‖+

T∫
0

‖u (s)− v (s)‖ ds.

Taking the infimum over Fω(t, x(t)), we get (see [35])

d (z, Ty(x)) ≤ ‖ξ − ξ0‖+

T∫
0

d (u(t), Fω(t, x(t))) dt

and since u(t) ∈ Fω0(t, x(t)),

d (z, Ty(x)) ≤ ‖ξ − ξ0‖+

T∫
0

e (Fω0(t, x(t)), Fω(t, x(t))) dt

≤ ‖ξ − ξ0‖+ ‖εβ (ω, ·)‖L1(I) ,

which leads to the conclusion.



438 Boualem Alleche and Khadra Nachi

5. STABILITY OF FIXED POINTS SETS
WITH RESPECT TO PROXIMAL CONVERGENCE

Now, we will be concerned with the stability of fixed point sets of multifunctions with
respect to proximal convergence and especially, the bounded proximal convergence
which has been first introduced in [31] for optimization purposes. The bounded prox-
imal convergence fits very well in the collection of all set convergence and has been
the subject of interest of many authors. For more details on the bounded proximal
convergence and its corresponding hyperspace topology, the bounded proximal topol-
ogy, as well as for others notions of set convergence which abound in the literature,
we refer to [5, 10–13,24,28,33,34,36] and the references therein.

Let (X, d) be a metric space. We denote by B(X) the set of nonempty closed and
bounded subsets of X.

A sequence (An)n of subsets of X is said to be upper bounded proximal convergent
to A if

lim
n→+∞

e (An ∩B,A) = 0 for all B ∈ B(X).

The sequence (An)n is said to be bounded proximal convergent to A if it is lower and
upper bounded proximal convergent to A. Note that (An)n lower bounded proximal
converges to A if A ⊂ lim inf

n→+∞
An, where lim inf

n→+∞
An is given in the classical sense of

Painelevé-Kuratowski by

lim inf
n→+∞

An =
{
x ∈ X | lim sup

n→+∞
d(x,An) = 0

}
= {x ∈ X | for each n there exists xn ∈ An such that xn → x} .

It is well-known that the bounded proximal convergence is weaker than both Fisher
convergence and Attouch-Wets convergence and stronger than Wijsman convergence,
see [36, Corollary 9.4]. Note that the Fisher convergence is the sequential proximal
convergence.

The following result on the continuous dependence of fixed point sets of multi-
functions will be useful in the sequel.

Lemma 5.1. Let (X, d) be a metric space. Suppose all the conditions of Theorem 3.1
are satisfied. Then, for every subset B of X, we have

e(Fix (S) ∩Bβ(x0) ∩B,Fix(T )) ≤ 1
1− λ

sup
x∈Br(x0)

e (S(x) ∩Bβ(x0) ∩B, T (x)) .

Proof. The proof comes easily from the fact that the multifunction S ∩B satisfies all
the conditions of Theorem 3.1 whenever S satisfies them.

An adaptation of the upper bounded proximal convergence to the framework of
multifunctions yields the following definition. Let M be a subset of X, a sequence of
multifunctions (Tn)n is said to be upper bounded proximal convergent to a multifunc-
tion T in M if

lim
n→+∞

sup
x∈M

e (Tn(x) ∩B, T (x)) = 0, for all B ∈ B(X).
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Clearly, if (Tn)n is upper bounded proximal convergent to T in M , then for every
subset G of X (not necessarily closed), the sequence (Tn ∩G)n is upper bounded
proximal convergent to T in M .

Now, we derive the following result on the stability of fixed point sets of multi-
functions with respect to the bounded proximal convergence.

Theorem 5.2. Let (X, d) be a metric space. Let x0 ∈ X and r ∈ (0,+∞] be such
that Br(x0) is a complete subspace. Let λ ∈ (0, 1) and T ∈ FBr(x0)(X) with at least
one fixed point. Assume that the conditions (1) and (2) of Theorem 3.1 are satisfied
for T and the condition (3) is satisfied for every Tn, where (Tn)n is a sequence of
multifunctions. If the sequence (Tn ∩Bβ(x0))n is upper bounded proximal convergent
to T in Br(x0), then the sequence (Fix (Tn ∩Bβ(x0)))n is upper bounded proximal
converging to Fix (T ).

Proof. By hypothesis, for all B ∈ B(X) and ε > 0 there exists N such that for all
n ≥ N we have

sup
x∈Br(x0)

e (Tn(x) ∩Bβ(x0) ∩B, T (x)) < (1− λ) ε.

By applying Lemma 5.1, we obtain

∀B ∈ B(X) ∀ε > 0 ∃N ∀n ≥ N e (Fix (Tn) ∩Bβ (x0) ∩B,Fix(T ))

≤ 1
1− λ

sup
x∈Br(x0)

e (Tn(x) ∩Bβ(x0) ∩B, T (x)) < ε

which completes the proof.

Here some results on the stability of fixed point sets of multifunctions. The fol-
lowing result should be compared to [22, Corollary 4.7].

Corollary 5.3. Suppose the conditions of the above theorem hold and the sequence
(Tn ∩Bβ(x0)) is upper bounded proximal converging to T in Br(x0). If (xn)n is a
converging sequence to x and xn ∈ Fix (Tn) ∩Bβ(x0), for every n, then x ∈ Fix(T ).

Proof. By assumptions, we have d (xn, x0) < β < (1− λ) r, for every n. Since (xn)n
is a convergent sequence to x, then the set

B = {xn | n} ∪ {x}

is closed and bounded (compact). Let ε ∈ (0, λr). By the above theorem, let Nε be
such that

e (Fix (Tn) ∩Bβ (x0) ∩B,Fix(T )) < ε for all n ≥ Nε.

For every n ≥ Nε, choose x′n ∈ Fix(T ) such that d (xn, x′n) < ε. Clearly, x′n ∈ Br(x0).
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Now, let k0 ∈ N be such that 1
k0
∈ (0, λr). By choosing ε = 1

k with k ≥ k0, we
construct a subsequence (xnk)k of (xn)n and a sequence

(
x′nk
)
k
such that:

1. x′nk ∈ Fix(T ) ∩Br (x0) for every k ≥ k0,
2. d

(
xnk , x

′
nk

)
< 1

k .

The sequence
(
x′nk
)
k
is converging to x and by condition (1) on the semicontinuity

and since x′nk ∈ T
(
x′nk
)
, for every k, we have

d (x, T (x)) ≤ lim inf
k→+∞

d
(
x′nk , T

(
x′nk
))

= 0.

Since x ∈ Br(x0), it results that T (x) is closed and then, x ∈ T (x) which completes
the proof.

The following result should be compared to [27, Theorem 1].

Corollary 5.4. Suppose the conditions of the above corollary hold with X a real
Banach space, (xn)n is a weakly converging sequence to x and xn ∈ Fix (Tn)∩Bβ(x0),
for every n. If in addition T (x) is weakly closed and the condition (1) of Theorem 3.1
holds for weakly converging sequences, then x ∈ Fix(T ).

Proof. By the same proof as in Corollary 5.3, we construct a subsequence (xnk)k of
(xn)n and a sequence

(
x′nk
)
k
such that:

1. x′nk ∈ Fix(T ) ∩Br(x0) for every k ≥ k0,
2. d

(
xnk , x

′
nk

)
< 1

k .

The sequence
(
x′nk
)
k
is weakly converging to x and we have

d (x, T (x)) ≤ lim inf
k→+∞

d
(
x′nk , T

(
x′nk
))

= 0.

Since T (x) is weakly closed, we have x ∈ T (x).

Remark 5.5. Note that Corollary 5.4 is obtained under the upper bounded proximal
convergence for multifunctions considered in the paper which is a definition of a kind
of “uniform convergence” in the sense of the bounded proximal convergence. In view
of [27, Theorem 2] and even if the Banach space E satisfies Opial’s condition, it is not
clear whether the result remains true when we take only the “pointwise convergence”
in the sense of the bounded proximal convergence.
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