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Abstract. We consider n-dimensional cyclic systems of second order differential equations

(pi(t)|x′
i|αi−1x′

i)
′ = qi(t)|xi+1|βi−1xi+1, i = 1, . . . , n, (xn+1 = x1) (∗)

under the assumption that the positive constants αi and βi satisfy α1. . .αn > β1. . .βn and
pi(t) and qi(t) are regularly varying functions, and analyze positive strongly increasing so-
lutions of system (∗) in the framework of regular variation. We show that the situation for
the existence of regularly varying solutions of positive indices for (∗) can be characterized
completely, and moreover that the asymptotic behavior of such solutions is governed by the
unique formula describing their order of growth precisely. We give examples demonstrating
that the main results for (∗) can be applied to some classes of partial differential equations
with radial symmetry to acquire accurate information about the existence and the asymptotic
behavior of their radial positive strongly increasing solutions.

Keywords: systems of differential equations, positive solutions, asymptotic behavior, regu-
larly varying functions.
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1. INTRODUCTION

We consider the cyclic system of second order nonlinear differential equations

(pi(t)|x′i|αi−1x′i)
′ = qi(t)|xi+1|βi−1xi+1, i = 1, 2, . . . , n, (xn+1 = x1), (1.1)

for which the following conditions are always assumed to hold:
(a) αi and βi, i = 1, 2, . . . , n, are positive constants such that

α1α2. . .αn > β1β2. . .βn; (1.2)
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(b) pi, qi : [a,∞) → (0,∞), a > 0, i = 1, 2, . . . , n, are continuous functions;
(c) all pi(t) simultaneously satisfy either

∞∫

a

pi(t)
− 1

αi dt = ∞, i = 1, 2, . . . , n, (1.3)

or
∞∫

a

pi(t)
− 1

αi dt <∞, i = 1, 2, . . . , n. (1.4)

Systems of the form (1.1) arise, for example, in the study of positive radial solutions
in the exterior domain for the system of p-Laplacian equations

div(|∇ui|p−2∇ui) = fi(|x|)|ui+1|γi−1ui+1, i = 1, . . . , n, (un+1 = u1),

where p > 1 and γi > 0 are constants, |x| denotes the Euclidean length of x ∈ RN

and fi(t), i = 1, . . . , n, are positive continuous functions on [a,∞).

By a positive solution of the ordinary differential system (1.1) we mean a vector
function (x1(t), . . . , xn(t)) consisting of positive continuous components xi(t), i =
1, . . . , n, which are continuously differentiable together with pi(t)|x′i(t)|αi−1x′i(t) on
an interval of the form [T,∞) and satisfy the system of differential equations (1.1)
there. We are interested in the asymptotic behavior of positive solutions of (1.1)
as t → ∞. It should be noticed that a positive solution (x1(t), . . . , xn(t)) of (1.1)
may exhibit a variety of asymptotic behaviors as t → ∞ because if (1.3) holds each
component xi(t) is either increasing and satisfies

lim
t→∞

xi(t)

Pi(t)
= ∞ or lim

t→∞
xi(t)

Pi(t)
= const > 0,

where Pi(t) =
∫ t

a
pi(s)

−1/αids, or is decreasing and satisfies

lim
t→∞

xi(t) = const > 0 or lim
t→∞

xi(t) = 0,

while if (1.4) holds each component xi(t) is either increasing and satisfies

lim
t→∞

xi(t) = ∞ or lim
t→∞

xi(t) = const > 0,

or is decreasing and satisfies

lim
t→∞

xi(t) = const > 0 or lim
t→∞

xi(t)

πi(t)
= const > 0 or lim

t→∞
xi(t)

πi(t)
= 0,

where πi(t) =
∞∫
t

pi(s)
−1/αids.
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In our previous paper [8] we have studied the problem of existence and asymptotic
behavior of positive solutions (x1(t), . . . , xn(t)) of (1.1) all components of which are
decreasing and satisfy

lim
t→∞

xi(t) = 0, i = 1, . . . , n, in case (1.3) holds,

or

lim
t→∞

xi(t)

πi(t)
= 0, i = 1, . . . , n, in case (1.4) holds,

in the framework of regular variation, and have shown that almost complete analysis
can be made of regularly varying solutions of (1.1) having negative regularity indices,
by which we mean those solutions (x1(t), . . . , xn(t)) of (1.1) where all components
are regularly varying functions of negative indices. (See Section 2 for the definition of
regularly varying functions.)

A question naturally arises: Is it possible to analyze the existence and asymptotic
behavior of positive solutions (x1(t), . . . , xn(t)) of (1.1) all components of which are
increasing and satisfy

lim
t→∞

xi(t)

Pi(t)
= ∞, i = 1, . . . , n, in case (1.3) holds, (1.5)

or
lim
t→∞

xi(t) = ∞, i = 1, . . . , n, in case (1.4) holds, (1.6)

in the same spirit as in [8]? Such solutions are referred to as strongly increasing
solutions of (1.1). It is clear that a positive solution (x1(t), . . . , xn(t)) of (1.1) is
strongly increasing if and only if

lim
t→∞

xi(t) = lim
t→∞

pi(t)|x′i(t)|αi−1x′i(t) = ∞, i = 1, . . . , n. (1.7)

The aim of this paper is to give an affirmative answer to the above question by
showing that if we limit ourselves to the case where pi(t) and qi(t) are regularly
varying, then with the help of the theory of regular variation we can characterize the
situation in which (1.1) possesses strongly increasing solutions (x1(t), . . . , xn(t)) where
all the components are regularly varying functions of positive indices, and moreover
determine the unique precise growth law which governs the asymptotic behavior of
all such solutions of (1.1).

The main results of this paper will be presented in Section 4. Under the assumption
that pi(t) and qi(t) are regularly varying the existence of strongly increasing regularly
varying solutions of (1.1) is proved by solving the system of integral equations

xi(t) = ci +

t∫

T

(
1

pi(s)

s∫

T

qi(r)xi+1(r)
βidr

) 1
αi

ds, i = 1, . . . , n, (1.8)

for some positive constants ci and T > a with the help of fixed point techniques com-
bined with basic properties of regularly varying functions. Furthermore, the asymp-
totic behavior of the obtained solutions is shown to obey the unique law describing
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their order of growth accurately. For this purpose essential use is made of the fact that
one can acquire thorough knowledge of strongly increasing regularly varying solutions
of the following system of asymptotic relations associated with (1.1):

xi(t) ∼
t∫

T

(
1

pi(s)

s∫

T

qi(r)xi+1(r)
βidr

) 1
αi

ds, t→ ∞, i = 1, . . . , n, (1.9)

which may be regarded as an “approximation” of (1.8). Here and hereafter the symbol
∼ is used to mean the asymptotic equivalence

f(t) ∼ g(t), t→ ∞ ⇐⇒ lim
t→∞

g(t)

f(t)
= 1.

The exposition of the analysis of system (1.9) by means of regularly varying func-
tions is given in Section 3, which is preceded by Section 2 in which the definition and
some basic properties of regularly varying functions are summarized for the reader’s
benefit. In the final Section 5 it is shown that our main results for (1.1) can be
effectively applied to some classes of partial differential equations with radial symme-
try including metaharmonic equations and systems involving p-Laplace operators on
exterior domains in RN .

Since the publication of the book [14] of Marić in the year 2000 there has been an
increasing interest in the study of differential equations in the framework of regularly
varying functions and as a consequence the theory of regular variation has proved to
be a powerful tool in the asymptotic analysis of differential equations, giving rise to
detailed and accurate information about the existence, the asymptotic behavior and
the structure of positive solutions of various types of ordinary differential equations.
See, for example, the papers [6, 7, 9–13].

2. REGULARLY VARYING FUNCTIONS

For the reader’s convenience we summarize here the definition and some basic prop-
erties of regularly varying functions.

Definition 2.1. A measurable function f : [0,∞) → (0,∞) is called regularly varying
(at infinity) of index ρ ∈ R (written f ∈ RV(ρ)) if for all λ > 0

lim
t→∞

f(λt)

f(t)
= λρ.

The simplest example of a regularly varying function is the power function ctρ

where c > 0 is constant and ρ ∈ R, or, more generally, the function ctρ(1 + ε(t))
where ε(t) is a measurable function on (0,∞) such that ε(t) → 0 as t→ ∞.

We often use the symbol SV to denote RV(0) and call members of SV slowly
varying functions. Typical representatives of the class SV are measurable functions
on [a,∞) which have a (finite) positive limit at infinity, the logarithmic function,
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its powers (log t)β , β ∈ R and its iterates logm t defined by logm t = log logm−1 t,
m = 2, 3, . . .. Another nontrivial example is

exp{(log t)β1(log2 t)
β2 . . . (logm t)βm},

where βi ∈ (0, 1). Examples of oscillating slowly varying functions are 2+sin(log log t),
t > ee, and

L(t) = exp

{
(log t)θ cos (log t)θ

}
, θ ∈

(
0,

1

2

)
,

which satisfies

lim sup
t→∞

L(t) = ∞ and lim inf
t→∞

L(t) = 0.

It is easy to see that a regularly varying function f(t) of index ρ can always be
represented as f(t) = tρg(t) with g(t) ∈ SV, and so the class SV of slowly varying
functions is of fundamental importance in the theory of regular variation.

One of the most important properties of regularly varying functions is the following
representation theorem.

Proposition 2.2. f(t) ∈ RV(ρ) if and only if f(t) is represented in the form

f(t) = c(t) exp

{ t∫

t0

δ(s)

s
ds

}
, t ≥ t0, (2.1)

for some t0 > 0 and for some measurable functions c(t) and δ(t) such that

lim
t→∞

c(t) = c0 ∈ (0,∞) and lim
t→∞

δ(t) = ρ.

If in particular c(t) ≡ c0 in (2.1), then f(t) is referred to as a normalized regularly
varying function of index ρ.

The following result illustrates operations which preserve slow variation.

Proposition 2.3. Let L(t), L1(t), L2(t) be slowly varying. Then, L(t)α for any
α ∈ R, L1(t) + L2(t), L1(t)L2(t) and L1(L2(t)) (if L2(t) → ∞) are slowly varying.

A slowly varying function may grow to infinity or decay to 0 as t → ∞. But its
order of growth or decay is severely limited as is shown in the following proposition.

Proposition 2.4. Let f(t) ∈ SV. Then, for any ε > 0,

lim
t→∞

tεf(t) = ∞, lim
t→∞

t−εf(t) = 0.

The following result called Karamata’s integration theorem is of highest impor-
tance in handling slowly and regularly varying functions analytically, and will be used
throughout the paper.



52 Jaroslav Jaroš and Kusano Takaŝi

Proposition 2.5. Let L(t) ∈ SV. Then:

(i) if α > −1,
t∫

a

sαL(s)ds ∼ 1

α+ 1
tα+1L(t), t→ ∞;

(ii) if α < −1,
∞∫

t

sαL(s)ds ∼ − 1

α+ 1
tα+1L(t), t→ ∞;

(iii) if α = −1,

l(t) =

t∫

a

L(s)

s
ds ∈ SV and m(t) =

∞∫

t

L(s)

s
ds ∈ SV,

provided L(t)/t is integrable near the infinity in the latter case.

Definition 2.6. A vector function (x1(t), . . . , xn(t)) is said to be regularly varying
of index (ρ1, . . . , ρn) if xi ∈ RV(ρi) for i = 1, . . . , n. If all ρi are positive (or nega-
tive), then (x1(t), . . . , xn(t)) is called regularly varying of positive (or negative) index
(ρ1, . . . , ρn). The set of all regularly varying vector functions of index (ρ1, . . . , ρn) is
denoted by RV(ρ1, . . . , ρn).

For the most complete exposition of the theory of regular variation and its appli-
cations the reader is referred to the book of Bingham, Goldie and Teugels [2]. See also
Seneta [15]. A comprehensive survey of results up to the year 2000 on the asymptotic
analysis of second order ordinary differential equations by means of regular variation
can be found in the monograph of Marić [14].

3. ASYMPTOTIC RELATIONS ASSOCIATED WITH (1.1)

We assume that pi ∈ RV(λi) and qi ∈ RV(µi) and that they are expressed as

pi(t) = tλi li(t), qi(t) = tµimi(t), li, mi ∈ SV, i = 1, 2, . . . , n, (3.1)

and seek positive increasing solutions (x1(t), . . . , xn(t)) of system (1.1) consisting of
components xi ∈ RV(ρi), ρi > 0, represented in the form

xi(t) = tρiξi(t), ξi ∈ SV, i = 1, . . . , n. (3.2)

We note that condition (1.3) is satisfied if either

λi < αi, or λi = αi and

∞∫

a

t−1li(t)
− 1

αi dt = ∞, (3.3)



Strongly increasing solutions of cyclic systems of second order differential equations. . . 53

while condition (1.4) is satisfied if either

λi > αi, or λi = αi and

∞∫

a

t−1li(t)
− 1

αi dt <∞. (3.4)

In analyzing strongly increasing solutions of system (1.1) it is convenient to dis-
tinguish the case where pi(t) satisfy (1.3) from the case where pi(t) satisfy (1.4). For
the case of (1.4), which is equivalent to (3.4) holding for i = 1, . . . , n, the solutions
(x1(t), . . . , xn(t)) of (1.1) will be sought in the class RV(ρ1, . . . , ρn) with ρi > 0,
i = 1, . . . , n. For the case of (1.3), however, our attention will be focused on the two
extreme cases:

(a) λi = αi, i = 1, . . . , n, and (b) λi < αi, i = 1, . . . , n,

which imply, respectively, that

Pi(t) =

t∫

a

s−1li(s)
− 1

αi ds ∈ SV and Pi(t) ∼
αi

αi − λi
t
αi−λi

αi li(t)
− 1

αi ∈ RV
(αi − λi

αi

)
,

and an attempt will be made to detect solutions belonging to RV(ρ1, . . . , ρn) with
ρi > 0, i = 1, . . . , n, or to RV(ρ1, . . . , ρn) with ρi > (αi − λi)/αi, i = 1, . . . , n,
according to whether (1.1) or (b) holds, respectively.

Let (x1(t), . . . , xn(t)) be a strongly increasing solution of (1.1) on [T,∞). Inte-
grating (1.1) twice on [T, t], we have

xi(t) = ci0+

t∫

T

[
1

pi(s)

(
ci1+

s∫

T

qi(r)xi+1(r)
βidr

)] 1
αi

ds, t ≥ T, i = 1, . . . , n, (3.5)

where ci0 = xi(T ) > 0 and ci1 = pi(T )x
′
i(T )

αi ≥ 0. This applies to both cases (1.3)
and (1.4). Note that in view of (1.7) the solution is required to satisfy

∞∫

T

qi(s)xi+1(s)
βids = ∞, i = 1, . . . , n. (3.6)

Our task is to solve the system of integral equations (3.5) plus (3.6) in the class of
regularly varying functions. This can be accomplished through the analysis of regularly
varying functions satisfying the system of integral asymptotic relations

xi(t) ∼
t∫

T

(
1

pi(s)

s∫

T

qi(r)xi+1(r)
βidr

) 1
αi

ds, t→ ∞, i = 1, . . . , n. (3.7)

It turns out that one can acquire thorough knowledge of all possible regularly varying
solutions of positive indices of (3.7) plus (3.6), and this fact will play an essential role
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in constructing the strongly increasing solutions of system (1.1) by means of fixed
point techniques and in determining their accurate asymptotic behavior at infinity.

We begin by considering system (3.7) with pi(t) satisfying condition (1.4). Note
that λi ≥ αi, i = 1, . . . , n (cf. (3.4)). Suppose that (3.6)–(3.7) has a positive solution
(x1(t), . . . , xn(t)) ∈ RV(ρ1, . . . , ρn) on [T,∞) with ρi > 0, i = 1, . . . , n. Using (3.1)
and (3.2), we have

t∫

T

qi(s)xi+1(s)
βids =

t∫

T

sµi+βiρi+1mi(s)ξi+1(s)
βids, t ≥ T, i = 1, . . . , n. (3.8)

The divergence of (3.6) as t → ∞ implies µi + βiρi+1 ≥ −1, i = 1, . . . , n. It should
be noted that the equality is not allowed in any of the last inequalities. In fact, if
µi + βiρi+1 = −1 for some i, then from (3.8) we obtain

(
1

pi(t)

t∫

T

qi(s)xi+1(s)
βids

) 1
αi

= t
− λi

αi li(t)
− 1

αi

( t∫

T

s−1mi(s)ξi+1(s)
βids

) 1
αi

, (3.9)

for t ≥ T . If λi > αi, then the right-hand side of (3.9) is integrable on [T,∞), and
so (3.7) implies that limt→∞ xi(t) = const > 0, which is impossible. If λi = αi, then
integrating (3.9) gives

xi(t) ∼
t∫

T

s−1li(s)
− 1

αi

( s∫

T

r−1mi(r)ξi+1(r)
βidr

) 1
αi

ds ∈ SV = RV(0),

which contradicts the assumption that ρi > 0. Therefore, it holds that µi + βiρi+1 >
−1 for i = 1, . . . , n. Then, applying Karamata’s integration theorem to (3.8), we see
that

(
1

pi(t)

t∫

T

qi(s)xi+1(s)
βids

) 1
αi

∼ t
−λi+µi+βiρi+1+1

αi li(t)
− 1

αimi(t)
1
αi ξi+1(t)

βi
αi

(µi + βiρi+1 + 1)
1
αi

, t→ ∞,

(3.10)
for i = 1, . . . , n. Since the left-hand side of (3.10) is not integrable on [T,∞) we see
that (−λi+µi+βiρi+1+1)/αi ≥ −1, i = 1, . . . , n. Suppose that (−λi+µi+βiρi+1+
1)/αi = −1 for some i. Then, µi + βiρi+1 + 1 = λi − αi ≥ 0, which means that the
possibility λi = αi is ruled out, that is, λi > αi. In this case, integrating (3.10) from
T to t and using (3.7), we obtain

xi(t) ∼ (λi − αi)
− 1

αi

t∫

T

s−1li(s)
− 1

αimi(s)
1
αi ξi+1(s)

βi
αi ds ∈ SV, t→ ∞,
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a contradiction. Consequently, we must have (−λi + µi + βiρi+1 + 1)/αi > −1 for all
i, in which case, integrating (3.10) on [T, t], we conclude via Karamata’s integration
theorem and (3.7) that

xi(t) ∼
t
−λi+µi+βiρi+1+1

αi
+1
li(t)

− 1
αimi(t)

1
αi ξi+1(t)

βi
αi

(µi + βiρi+1 + 1)
1
αi

(
−λi+µi+βiρi+1+1

αi
+ 1

) , t→ ∞, i = 1, . . . , n. (3.11)

This shows that ρi = (−λi + µi + βiρi+1 + 1)/αi + 1, which can be expressed as

ρi −
βi
αi
ρi+1 =

αi − λi + µi + 1

αi
, i = 1, . . . , n. (3.12)

To solve the algebraic linear system (3.12) in ρi, i = 1, . . . , n, it suffices to observe
that the coefficient matrix

A = A
(β1
α1
, . . . ,

βn
αn

)
=




1 − β1

α1
0 . . . 0 0

0 1 − β2

α2
. . . 0 0

...
...

. . .
...

...
...

...
. . .

...
...

0 0 0 . . . 1 − βn−1

αn−1

− βn

αn
0 0 . . . 0 1




(3.13)

is invertible, because

|A| = An −Bn

An
> 0, where An = α1α2. . .αn, Bn = β1β2. . .βn, (3.14)

and its inverse is given explicitly by

A−1 =
An

An −Bn




1 β1

α1

β1β2

α1α2
. . . . . . β1β2...βn−1

α1α2...αn−1

1 β2

α2

β2β3

α2α3
. . . β2β3...βn−1

α2α3...αn−1

1 β3

α3
. . . β3...βn−1

α3...αn−1

. . .
. . .

...

1 βn−1

αn−1

∗ 1




, (3.15)

where the lower triangular elements are omitted for economy of notation. Let (Mij)
denote the matrix on the right-hand side of (3.15). It is easy to see that the i-th row
of (Mij) is obtained by shifting the vector

(
1,
βi
αi
,
βiβi+1

αiαi+1
, . . . ,

βiβi+1. . .βi+(n−2)

αiαi+1. . .αi+(n−2)

)
(αn+1 = α1, βn+1 = β1)



56 Jaroslav Jaroš and Kusano Takaŝi

(i− 1)-times to the right cyclically, so that the lower triangular elements Mij , i > j,
satisfy the relations

MijMji =
β1β2. . .βn
α1α2. . .αn

, i > j, i = 1, 2, . . . , n. (3.16)

Then the unique solution ρi, i = 1, . . . , n, of (3.12) is given explicitly by

ρi =
An

An −Bn

n∑

j=1

Mij
αj − λj + µj + 1

αj
, i = 1, . . . , n, (3.17)

from which it follows that all ρi are positive if

n∑

j=1

Mij
αj − λj + µj + 1

αj
> 0, i = 1, . . . , n. (3.18)

We observe that (3.11) can be rewritten in the form

xi(t) ∼
t
αi+1

αi pi(t)
− 1

αi qi(t)
1
αi xi+1(t)

βi
αi

Di
, t→ ∞, (3.19)

where
Di = (λi − αi + αiρi)

1
αi ρi, (3.20)

for i = 1, . . . , n. This is a cyclic system of asymptotic relations, from which one can
derive without difficulty the following independent explicit asymptotic formulas for
each xi(t):

xi(t) ∼
[ n∏

j=1

(
t
αj+1

αj pj(t)
− 1

αj qj(t)
1
αj

Dj

)Mij
] An

An−Bn

, t→ ∞, i = 1, . . . , n. (3.21)

Notice that (3.21) is rewritten in the form

xi(t) ∼ tρi

[ n∏

j=1

(
lj(t)

− 1
αj mj(t)

1
αj

Dj

)Mij
] An

An−Bn

, t→ ∞, i = 1, . . . , n. (3.22)

We now assume that (3.18) holds, define the constants ρi by (3.17) and consider
the functions Xi(t) ∈ RV(ρi) on [a,∞) defined by

Xi(t) =

[ n∏

j=1

(
t
αj+1

αj pj(t)
− 1

αj qj(t)
1
αj

Dj

)Mij
] An

An−Bn

, i = 1, . . . , n. (3.23)

Then Xi(t) satisfy the system of asymptotic relations (3.7), i.e.,

t∫

b

(
1

pi(s)

s∫

b

qi(r)Xi+1(r)
βidr

) 1
αi

ds ∼ Xi(t), t→ ∞, i = 1, , , , n, (3.24)
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for any b ≥ a, where Xn+1(t) = X1(t). In fact, noting that Xi(t) are expressed as

Xi(t) = tρiΞi(t), Ξi(t) =

[ n∏

j=1

(
lj(t)

− 1
αj mj(t)

1
αj

Dj

)Mij
] An

An−Bn

,

and using Karamata’s integration theorem, we obtain

(
1

pi(t)

t∫

b

qi(s)Xi+1(s)
βids

) 1
αi

∼ tρi−1li(t)
− 1

αi mi(t)
1
αi Ξi+1(t)

βi
αi

(λi − αi + αiρi)
1
αi

,

and

t∫

b

(
1

pi(s)

s∫

b

qi(r)Xi+1(r)
βidr

) 1
αi

ds ∼ tρi li(t)
− 1

αi mi(t)
1
αi Ξi+1(t)

βi
αi

Di
, (3.25)

as t→ ∞. Since simple calculation with the help of the relations

Mi+1,i
βi
αi

=
Bn

An
, Mi+1.j

βi
αi

=Mij , for j 6= i

between the i-th and (i+ 1)-th rows of the matrix A shows that

li(t)
− 1

αi mi(t)
1
αi

Di
Ξi+1(t)

βi
αi

=
li(t)

− 1
αimi(t)

1
αi

Di

[ n∏

j=1

(
lj(t)

− 1
αj mj(t)

1
αj

Dj

)Mi+1,j
βi
αi
] An

An−Bn

=

[ n∏

j=1

(
lj(t)

− 1
αj mj(t)

1
αj

Dj

)Mij
] An

An−Bn

= Ξi(t),

we conclude from (3.25) that Xi(t) satisfy the asymptotic relations (3.24) as desired.
Summarizing the above discussions, we obtain the following noteworthy result

which provide complete information about the existence and asymptotic behavior of
regularly varying solutions with positive indices of system (3.7).

Theorem 3.1. Suppose that pi ∈ RV(λi) and qi ∈ RV(µi), i = 1, . . . , n, and that
pi(t) satisfy condition (1.4). System of asymptotic relations (3.7) has regularly varying
solutions (x1(t), . . . , xn(t)) ∈ RV(ρ1, . . . , ρn) with ρi > 0, i = 1, . . . , n, if and only if
(3.18) holds, in which case ρi are uniquely determined by (3.17) and the asymptotic
behavior of any such solution is governed by the formula (3.21).

Next we consider the case where pi(t) satisfy condition (1.3) and show that for the
two special cases (i) λi = αi and (ii) λi < αi for all i = 1, . . . , n, complete analysis
can be made of strongly increasing solutions of systems of asymptotic relations (3.7)
in the framework of regular variation.
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Theorem 3.2. Let pi ∈ RV(λi) and qi ∈ RV(µi) for i = 1, . . . , n and pi(t) satisfy
condition (1.3).

(i) Suppose that λi = αi, i = 1, . . . , n. System (3.7) has regularly varying solutions
(x1(t), . . . , xn(t)) ∈ RV(ρ1, . . . , ρn) with ρi > 0, i = 1, . . . , n, if and only if

n∑

j=1

Mij
µj + 1

αj
> 0, i = 1, . . . , n, (3.26)

in which case ρi are uniquely determined by

ρi =
An

An −Bn

n∑

j=1

Mij
µj + 1

αj
, i = 1, . . . , n, (3.27)

and the asymptotic behavior of any such solutions is governed by the set of for-

mulas (3.21) with Dj = α
1/αj

j ρ
(αj+1)/αj

j , j = 1, . . . , n.
(ii) Suppose that λi < αi, i = 1, . . . , n. System (3.7) has regularly varying solutions

(x1(t), . . . , xn(t)) ∈ RV(ρ1, . . . , ρn) with ρi > (αi − λi)/αi, i = 1, . . . , n, if and
only if

n∑

j=1

Mij

(
µj + 1

αj
+
βj(αj+1 − λj+1)

αjαj+1

)
> 0, i = 1, . . . , n, (3.28)

where αn+1 = α1, λn+1 = λ1, in which case ρi are uniquely determined by (3.17)
and the asymptotic behavior of any such solution is governed by the set of for-
mulas (3.21).

Proof. (i) Suppose that (3.7) has a solution (x1(t), . . . , xn(t)) ∈ RV(ρ1, . . . , ρn) with
all ρi > 0. Starting from (3.8) one can proceed exactly as in the proof of Theorem 3.1
to reach the conclusion that (3.18) holds, that ρi are given by (3.17) and that all the
components xi(t) must obey the unique growth law (3.21). Note that since λi = αi,
(3.18) and (3.17) are simplified to (3.26) and (3.27), respectively, and in (3.21) Dj

reduce to Dj = α
1/αj

j ρ
(αj+1)/αj

j . This proves the “only if” part. To prove the “if” part
we need only to simply repeat the same argument as in Theorem 3.1.

(ii) Suppose that (3.7) has a solution (x1(t), . . . , xn(t)) ∈ RV(ρ1, . . . , ρn) with
ρi > (αi − λi)/αi, i = 1, . . . , n. We claim that µi + βiρi+1 > −1 for all i. In fact, if
µi + βiρi+1 = −1 for some i, then integrating (3.9) on [T, t] and using Karamata’s
integration theorem, we have

xi(t) ∼
αi

αi − λi
t
αi−λi

αi li(t)
− 1

αi

( ∞∫

t

s−1mi(s)ξi+1(s)
βids

) 1
αi

∈ RV

(
αi − λi
αi

)
, t→ ∞,

which contradicts the hypothesis that ρi > (αi − λi)/αi. Therefore, µi + βiρi+1 > −1
for all i and we see that (3.10) holds. The divergence of the integral of (3.10) on
[T,∞) implies that (−λi + µi + βiρi+1 + 1)/αi ≥ −1 for all i, but all of them should
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hold as strict inequalities because the equality for some i would imply that 0 <
µi+βiρi+1+1 = λi−αi < 0, an impossibility. This fact allows us to apply Karamata’s
integration theorem to the integral of (3.10) on [T, t], and as a consequence we obtain
(3.11) which shows that ρi must satisfy (3.12) so that they are determined uniquely
by the formulas (3.17). Putting σi = ρi − (αi − λi)/αi > 0, we transform (3.12) into

σi −
βi
αi
σi+1 =

µi + 1

αi
+
βi(αi+1 − λi+1)

αiαi+1
, i = 1, . . . , n,

from which (3.28) follows immediately. Finally, the asymptotic formula (3.21) follows
from the system of cyclic relations (3.19) into which (3.11) is transformed. Conversely,
suppose that (3.28) holds. If we define ρi by (3.17) and the functions Xi(t) by (3.23),
then it can be easily verified that Xi(t) satisfy the system of integral asymptotic
relations (3.24). This completes the proof.

Remark 3.3. It is easily seen that Theorem 3.1 and (i) of Theorem 3.2 can be unified
into the following theorem.

Theorem 3.4. Suppose that pi ∈ RV(λi) and qi ∈ RV(µi), i = 1, . . . , n. Suppose
in addition that λi ≥ αi, i = 1, . . . , n. System (3.7) has regularly varying solutions
(x1(t), . . . , xn(t)) ∈ RV(ρ1, . . . , ρn) with ρi > 0, i = 1, . . . , n, if and only if (3.18)
holds, in which case ρi are uniquely determined by (3.17) and the asymptotic behavior
of any such solution is governed by the set of formulas (3.21).

Note that this result applies to those systems of the form (3.7) in which some or
all of pi(t) such that λi = αi satisfy the condition

∫∞
a pi(t)

−1/αidt = ∞.

4. STRONGLY INCREASING SOLUTIONS OF (1.1)

This section is devoted to the study of the existence and the asymptotic behavior of
strongly increasing solutions of system (1.1) which are regularly varying of positive
indices. Our main results are the following two theorems in which use is made of the
notation and properties of matrix (3.13) and its inverse (3.15).

Theorem 4.1. Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1, . . . , n. Suppose that λi ≥ αi,
i = 1, . . . , n. System (1.1) possesses strongly increasing solutions in RV(ρ1, . . . , ρn)
with ρi > 0, i = 1, . . . , n, if and only if (3.18) holds, in which case ρi are given by
(3.17) and the asymptotic behavior of any such solution (x1(t), . . . , xn(t)) is governed
by the set of formulas (3.21).

Theorem 4.2. Let pi ∈ RV(λi) and qi ∈ RV(µi), i = 1, . . . , n. Suppose that λi < αi,
i = 1, . . . , n. System (1.1) possesses strongly increasing solutions in RV(ρ1, . . . , ρn)
with ρi > (αi − λi)/αi, i = 1, . . . , n, if and only if (3.28) holds, in which case ρi are
given by (3.17) and the asymptotic behavior of any such solution (x1(t), . . . , xn(t)) is
governed by the set of formulas (3.21).

We note that the “only if” parts of these theorems follow immediately from the
corresponding parts of Theorem 3.3 and (ii) of Theorem 3.2. The “if” parts are proved
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by way of the following results ensuring the existence of strongly increasing solutions
for systems of the form (1.1) with nearly regularly varying coefficients pi(t) and qi(t)
in the sense defined below.

Definition 4.3. Let f(t) be a regularly varying function of index σ and suppose that
g(t) satisfies kf(t) ≤ g(t) ≤ Kf(t) for some positive constants k, K and for all large t.
Then g(t) is said to be a nearly regularly varying function of index σ. Such a relation
between f(t) and g(t) is denoted by g(t) ≍ f(t) as t→ ∞.

Theorem 4.4. Let pi(t) and qi(t) be nearly regularly varying indices λi and µi,
respectively, that is, there exist p̃i ∈ RV(λi) and q̃i ∈ RV(µi) such that

pi(t) ≍ p̃i(t), qi(t) ≍ q̃i(t), t→ ∞, i = 1, . . . , n. (4.1)

Suppose in addition that λi ≥ αi, i = 1, . . . , n, and that (3.18) holds. Then, sys-
tem (1.1) possesses strongly increasing solutions (x1(t), . . . , xn(t)) which are nearly
regularly varying of positive index (ρ1, . . . , ρn) in the sense that

xi(t) ≍
[ n∏

j=1

(
t
αj+1

αj p̃j(t)
− 1

αj q̃j(t)
1
αj

Dj

)Mij
] An

An−Bn

, t→ ∞, i = 1, . . . , n, (4.2)

where ρi and Dj are defined by (3.17) and (3.20), respectively.

Theorem 4.5. Let pi(t) and qi(t) be nearly regularly varying of indices λi and µi,
respectively, i = 1, . . . , n. Suppose that λi < αi, i = 1, . . . , n, and that (3.28) holds.
Then, system (1.1) possesses strongly increasing solutions (x1(t), . . . , xn(t)) which
are nearly regularly varying of positive index (ρ1, . . . , ρn) such that ρi > (αi −λi)/αi,
i = 1, . . . , n, and satisfy (4.2), where ρi and Dj are defined by (3.17) and (3.20),
respectively.

Proof of Theorem 4.4. We assume that the regularly varying functions p̃i(t) and q̃i(t)
in (4.1) are expressed as

p̃i(t) = tλi li(t), q̃i(t) = tµimi(t), li,mi ∈ SV. (4.3)

By hypothesis there exist positive constants hi, Hi, ki and Ki such that

hip̃i(t) ≤ pi(t) ≤ Hip̃i(t), kiq̃i(t) ≤ qi(t) ≤ Kiq̃i(t), t ≥ a, i = 1, . . . , n. (4.4)

Let the functions Xi(t) ∈ RV(ρi) be defined by

Xi(t) = tρi

[ n∏

j=1

(
lj(t)

− 1
αj mj(t)

1
αj

Dj

)Mij
] An

An−Bn

, i = 1, . . . , n. (4.5)

It is known that

t∫

b

(
1

p̃i(t)

s∫

b

q̃i(r)Xi+1(r)
βidr

) 1
αi

ds ∼ Xi(t), t→ ∞, i = 1, . . . , n, (4.6)
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for any b ≥ a. By (4.6), there exists T > a such that

t∫

T

(
1

p̃i(t)

s∫

T

q̃i(r)Xi+1(r)
βidr

) 1
αi

ds ≤ 2Xi(t), t ≥ T, i = 1, . . . , n. (4.7)

We may assume that each Xi(t) is increasing on [T,∞) because it is known ([2,
Theorem 1.5.3]) that any regularly varying function of positive index is asymptotic to
an increasing function. Since (4.6) holds with b = T , one can choose T1 > T so large
that

t∫

T

(
1

p̃i(t)

s∫

T

q̃i(r)Xi+1(r)
βidr

) 1
αi

ds ≥ 1

2
Xi(t) for t ≥ T1, i = 1, . . . , n. (4.8)

Define the positive constants li and Li (li ≤ Li) by

li =

[ n∏

j=1

1

2

(
kj
Hj

)Mij
αj

] An
An−Bn

, Li =

[ n∏

j=1

4

(
Kj

hj

)Mij
αj

] An
An−Bn

, i = 1, . . . , n.

(4.9)
It is easy to see that li and Li in (4.9) satisfy the cyclic systems of equations

li =
1

2

(
ki
Hi

) 1
αi

l
βi
αi

i+1, Li = 4

(
Ki

hi

) 1
αi

L
βi
αi

i+1, i = 1, . . . , n, (ln+1 = l1, Ln+1 = L1).

Since

Li

li
=

[ n∏

j=1

8

(
HjKj

hjkj

)Mij
αj

] An
An−Bn

,

one can choose the constants hi, Hi, ki and Ki so that Li/li ≥ 2Xi(T1)/Xi(T ), that is,

2liXi(T1) ≤ LiXi(T ), i = 1, . . . , n, (4.10)

because these constants are independent of Xi(t) and the choice of T and T1.
Let us now define X to be the set of continuous vector functions (x1(t), . . . , xn(t))

on [T,∞) satisfying

liXi(t) ≤ xi(t) ≤ LiXi(t), t ≥ T, i = 1, . . . , n. (4.11)

Clearly, X is a closed convex subset of the locally convex space C[T,∞)n. Let Fi

denote the integral operators

Fix(t) = ci +

t∫

T

(
1

pi(s)

s∫

T

qi(r)x(r)
βidr

) 1
αi

ds, t ≥ T, i = 1, . . . , n, (4.12)
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where ci are positive constants such that

iXi(T1) ≤ ci ≤
1

2
LiXi(T ), i = 1, . . . , n, (4.13)

and define the mapping Φ : X → C[T,∞)n by

Φ(x1, x2, . . . , xn)(t)

= (F1x2(t),F2x3(t), . . . ,Fnxn+1(t)), t ≥ T, (xn+1(t) = x1(t)).
(4.14)

It can be shown that Φ is a self-map on X and sends X into a relatively compact
subset of C[T,∞)n, so that Φ has a fixed point in X by the Schauder-Tychonoff fixed
point theorem.

(i) Φ(X ) ∈ X . Let (x1, . . . , xn) ∈ X . Then, using (4.7)–(4.14) we see that

Fixi+1(t) ≥ ci ≥ liXi(T1) ≥ liXi(t) for T ≤ t ≤ T1,

Fixi+1(t) ≥
(
kil

βi

i+1

Hi

) 1
αi

t∫

T

(
1

p̃i(s)

s∫

T

q̃i(r)Xi+1(r)
βidr

) 1
αi

ds

≥ 1

2

(
kil

βi

i+1

Hi

) 1
αi

Xi(t) ≥ liXi(t) for t ≥ T1,

and

Fixi+1(t) ≤
1

2
LiXi(T ) +

(
KiL

βi

i+1

hi

) 1
αi

t∫

T

(
1

p̃i(s)

s∫

T

q̃i(r)Xi+1(r)
βidr

) 1
αi

ds

≤ 1

2
LiXi(T ) + 2

(
KiL

βi

i+1

hi

) 1
αi

Xi+1(t) ≤
1

2
LiXi(t) +

1

2
LiXi(t)

= LiXi(t) for t ≥ T.

This shows that Φ(x1, . . . , xn) ∈ X , that is, Φ maps X into itself.
(ii) Φ(X ) is relatively compact. The inclusion Φ(X ) ⊂ X implies that Φ(X ) is

locally uniformly bounded on [T,∞). From the inequalities

0 ≤ (Fixi+1)
′(t) ≤ L

βi
αi

i+1

(
1

pi(t)

t∫

T

qi(s)Xi+1(s)
βids

) 1
αi

, t ≥ T, i = 1, . . . , n,

holding for all (x1, . . . , xn) ∈ X it follows that Φ(X ) is locally equicontinuous on
[T,∞). The relative compactness of Φ(X ) then follows from the Arzela-Ascoli lemma.

(iii) Φ is a continuous map. Let {(xν1(t), . . . , xνn(t))} be a sequence in X converging
as ν → ∞ to (x1(t), . . . , xn(t)) ∈ X uniformly on compact subintervals of [T,∞).
Using (4.12) we obtain

|Fix
ν
i+1(t)−Fixi+1(t)| ≤

t∫

T

pi(s)
− 1

αi F ν
i (s)ds, t ≥ T, (4.15)
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where

F ν
i (t) =

∣∣∣∣∣

( t∫

T

qi(s)x
ν
i+1(s)

βids

) 1
αi

−
( t∫

T

qi(s)xi+1(s)
βids

) 1
αi

∣∣∣∣∣.

It is easy to see that

F ν
i (t) ≤

( t∫

T

qi(s)
∣∣∣xνi+1(s)

βi − xi+1(s)
βi

∣∣∣ds
) 1

αi

, (4.16)

if αi ≥ 1 and

F ν
i (t) ≤

1

αi

(
Li+1

t∫

T

qi(s)Xi+1(s)
βids

) 1
αi

−1 t∫

T

qi(s)
∣∣∣xνi+1(s)

βi −xi+1(s)
βi

∣∣∣ds, (4.17)

if αi < 1. Combining (4.15) with (4.16) or (4.17) and applying the Lebesgue dominated
convergence theorem, we conclude that

lim
ν→∞

Fix
ν
i+1(t) = Fixi+1(t) uniformly on any compact subset of [T,∞), i = 1, . . . , n,

which proves the continuity of Φ.
Therefore, by the Schauder-Tychonoff fixed point theorem there exists a fixed

point (x1, . . . , xn) ∈ X of Φ, which satisfies

xi(t) = Fixi+1(t) = ci +

t∫

T

(
1

pi(s)

s∫

T

qi(r)xi+1(r)
βidr

) 1
αi

ds, t ≥ T, i = 1, . . . , n.

(4.18)
This shows that (x1(t), . . . , xn(t)) is a solution of system (1.1) on [T,∞). Since the
solution obtained is a member of X , it is nearly regularly varying of positive index
(ρ1, . . . , ρn) and hence is a strongly increasing solution of (1.1). This completes the
proof.

The proof of Theorem 4.5 is essentially the same as above, and so it may be
omitted.

To complete the proof of the “if” parts of Theorems 4.1 and 4.2 it suffices to verify
the regularity of the nearly regularly varying solutions (x1, . . . , xn) obtained if pi(t)
and qi(t) are assumed to be regularly varying functions. To this end the following
generalized L’Hospital’s rule is utilized. See, for example, Haupt and Aumann [5].

Lemma 4.6. Let f(t), g(t) ∈ C1[T,∞) and suppose that

lim
t→∞

f(t) = lim
t→∞

g(t) = ∞ and g′(t) > 0 for all large t,

or
lim
t→∞

f(t) = lim
t→∞

g(t) = 0 and g′(t) < 0 for all large t.
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Then,

lim inf
t→∞

f ′(t)
g′(t)

≤ lim inf
t→∞

f(t)

g(t)
, lim sup

t→∞

f(t)

g(t)
≤ lim sup

t→∞

f ′(t)
g′(t)

.

Proof of the “if” parts of Theorem 4.1. Assume that pi ∈ RV(λi), λ ≥ αi, and qi ∈
RV(µi). Define the positive constants ρi by (3.17) and let Xi ∈ RV(ρi) denote the
functions on the right-hand side of (4.2) with p̃i(t) and q̃i(t) replaced by pi(t) and qi(t),
respectively. Then, Theorem 4.4 ensures the existence of a nearly regularly varying
solution (x1(t), . . . , xn(t)) of (1.1) such that xi(t) ≍ Xi(t) as t → ∞, i = 1, . . . , n.
Note that xi(t) satisfy the system of integral equations (4.18).

It remains to verify that xi(t) are regularly varying functions of index ρi, i =
1, . . . , n. We define

ui(t) =

t∫

T

(
1

pi(s)

s∫

T

qi(r)Xi+1(r)
βidr

) 1
αi

ds, i = 1, . . . , n, (4.19)

and put

li = lim inf
t→∞

xi(t)

ui(t)
, Li = lim sup

t→∞

xi(t)

ui(t)
.

Since xi(t) ≍ Xi(t) and

ui(t) ∼ Xi(t), t→ ∞, i = 1, . . . , n, (4.20)

it follows that 0 < li ≤ Li <∞, i = 1, . . . , n. Using Lemma 4.6 we obtain

li ≥ lim inf
t→∞

x′i(t)
u′i(t)

= lim inf
t→∞

(∫ t

T
qi(s)xi+1(s)

βids
) 1

αi

(∫ t

T
qi(s)Xi+1(s)βids

) 1
αi

= lim inf
t→∞

( ∫ t

T
qi(s)xi+1(s)

βids
∫ t

T
qi(s)Xi+1(s)βids

) 1
αi

=

(
lim inf
t→∞

∫ t

T
qi(s)xi+1(s)

βids
∫ t

T
qi(s)Xi+1(s)βids

) 1
αi

≥
(
lim inf
t→∞

qi(t)xi+1(t)
βi

qi(t)Xi+1(t)βi

) 1
αi

= lim inf
t→∞

(
xi+1(t)

Xi+1(t)

) βi
αi

= l
βi
αi

i+1,

where (4.20) has been used in the last step. Thus, li satisfy the cyclic system of
inequalities

li ≥ l
βi
αi

i+1, i = 1, . . . , n, (ln+1 = l1). (4.21)

Likewise, by taking the upper limits instead of the lower limits we are led to the cyclic
inequalities

Li ≤ L
βi
αi

i+1, i = 1, . . . , n, (Ln+1 = L1), (4.22)

satisfied by Li. From (4.21) and (4.22) we see that

li ≥ l
β1...βn
α1...αn

i , Li ≤ L
β1...βn
α1...αn

i ,
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whence, because of β1. . .βn/α1. . .αn < 1, it follows that li ≥ 1 and Li ≤ 1, and hence
that li = Li = 1 or limt→∞ xi(t)/ui(t) = 1 for i = 1, . . . , n. This combined with
(4.20) shows that xi(t) ∼ ui(t) ∼ Xi(t) as t → ∞, which implies that each xi(t) is
a regularly varying function of index ρi. This proves the “if” part of Theorem 4.1.
Essentially the same proof applies to the “if” part of Theorem 4.2.

5. APPLICATION TO PARTIAL DIFFERENTIAL EQUATIONS

The aim of the final section is to demonstrate that our main results on systems of
ordinary differential equations (1.1) can be applied to some classes of partial differ-
ential equations to shed light on the problem of existence and asymptotic behavior of
their radial positive solutions. Throughout this section x = (x1, . . . , xN ) represents the
space variable in RN , N ≥ 2, and |x| denotes the Euclidean length of x. All partial dif-
ferential equations will be considered in an exterior domain ΩR = {x ∈ RN : |x| ≥ R},
R > 0.

5.1. SYSTEMS OF p-LAPLACIAN EQUATIONS

We first consider the system of nonlinear p-Laplacian equations

div
(
|∇ui|p−2∇ui

)
= fi(|x|)|ui+1|γi−1ui+1, i = 1, . . . , n, (un+1 = u1) (5.1)

where p > 1 and γi > 0 are constants, and fi(t) are positive continuous functions
on [a,∞) which are regularly varying of indices νi, i = 1, . . . , n, respectively. Our
attention will be focused on radial solutions (u1(|x|), . . . , un(|x|)) of (5.1) defined in
ΩR. A radial vector function (u1(|x|), . . . , un(|x|)) is a solution of (5.1) in Ωa if and
only if (u1(t), . . . , un(t)) is a solution of the system of ordinary differential equations

(tN−1|u′i|p−2u′i)
′ = tN−1fi(t)|ui+1|γi−1ui+1, t ≥ a, i = 1, . . . , n, (un+1 = u1)

(5.2)
which is a special case of system (1.1) with

α1 = . . . = αn = p− 1, βi = γi, i = 1, . . . , n,

λ1 = . . . = λn = N − 1, µi = N − 1 + νi, i = 1, . . . , n.

It is assumed that
γ1. . .γn < (p− 1)n. (5.3)

Using the inverse of the matrix A
(

γ1

p−1 , . . .,
γn

p−1

)
associated with (5.2) (cf. (3.13)) we

define

(Mij) =
(p− 1)n − γ1. . .γn

(p− 1)n
A
( γ1
p− 1

, . . .,
γn
p− 1

)−1

. (5.4)

To analyze (5.2) we need to distinguish the two cases p ≥ N and p < N under
which conditions (1.3) and (1.4) are satisfied, respectively, for system (5.2).
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(i) Suppose that p ≤ N , i.e. either p < N (so that (1.4) is satisfied) or p = N in
which case (1.3) holds. In this case applying Theorem 4.1 to (5.2), we conclude that
system (5.1) possesses increasing radial solutions (u1(|x|), . . . , un(|x|)) such that ui ∈
RV(ρi), ρi > 0, i = 1, . . . , n, if and only if

n∑

j=1

Mij(p+ νj) > 0, i = 1, . . . , n. (5.5)

In this case ρi are uniquely determined by

ρi =
(p− 1)n−1

(p− 1)n − γ1. . .γn

n∑

j=1

Mij(p+ νj), i = 1, . . . , n, (5.6)

and moreover the asymptotic behavior of any such solution as |x| → ∞ is governed
by the growth law

ui(|x|) ∼ |x|ρi

[ n∏

j=1

(
ϕi(|x|)

1
p−1

(N − p+ (p− 1)ρj)
1

p−1 ρj

)Mij
] (p−1)n

(p−1)n−γ1...γn

, |x| → ∞, (5.7)

where ϕi ∈ SV are the regularly varying parts of fi(t): fi(t) = tνiϕi(t), i = 1, . . . , n.
(ii) Suppose that p > N . In this case from Theorem 4.2 applied to (5.2) it follows

that system (5.1) possesses increasing radial solutions (u1(|x|), . . . , un(|x|)) such that
ui ∈ RV(ρi), ρi > (p−N)/(p− 1), i = 1, . . . , n, if and only if

n∑

j=1

Mij

(
N + νj +

p−N

p− 1
γj

)
> 0, i = 1, . . . , n. (5.8)

In this case ρi are uniquely determined by (5.6) and the asymptotic behavior of any
such solution as |x| → ∞ is governed by the formulas (5.7).

We remark that the particular case of (5.1) in which fi(t) ≡ ci > 0, i.e.,

div
(
|∇ui|p−2∇ui

)
= ci|ui+1|γi−1ui+1, i = 1, . . . , n, (un+1 = u1) (5.9)

always possesses strongly increasing radial solutions (u1(|x|), . . . , un(|x|)) such that
ui ∈ RV(ρi), where ρi satisfy

ρi > 0, i = 1, . . . , n, if p ≤ N, ρi >
p−N

p− 1
, i = 1, . . . , n, if p > N.

5.2. NONLINEAR METAHARMONIC EQUATIONS

Next, the nonlinear metaharmonic equation

∆mu = g(|x|)|u|γ−1u, x ∈ ΩR, (5.10)
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is under consideration, where m ≥ 2 and γ > 0 are constants, and g(t) is a positive
continuous function on [R,∞) which is regularly varying of index ν. We are interested
in radial positive solutions u of (5.10) such that u and ∆ku, k = 1, . . . ,m − 1, are
regularly varying of positive indices. It is clear that seeking such solutions of (5.10)
is equivalent to seeking radial regularly varying solutions of positive indices of the
system

∆ui = ui+1, i = 1, . . . ,m− 1, ∆um = g(|x|)|um+1|γ−1um+1, x ∈ ΩR, (5.11)

where um+1 = u1. This system is equivalent to the system of ordinary differential
equations

(tN−1u′i)
′ = tN−1ui+1, i = 1, . . . ,m− 1,

(tN−1u′m)′ = tN−1g(t)|um+1|γ−1um+1, t ≥ R,
(5.12)

which is a special case of (1.1) with

α1 = . . . = αm = 1, βi = . . . = βm−1 = 1, βm = γ,

λ1 = . . . = λm = N − 1, µ1 = . . . = µm−1 = N − 1, µm = N − 1 + ν.

We assume that γ < 1. The m×m-matrix (3.13) associated with (5.12) reads
A(1, . . . , 1, γ). Define the matrix (Mij) by

(Mij) = (1 − γ)A(1, . . . , 1, γ)−1. (5.13)

As is easily checked, Mij = 1 for 1 ≤ i ≤ j ≤ m and Mij = γ for 1 ≤ j < i ≤ m.
Observe that conditions (1.3) and (1.4) for (5.12) reduce, respectively, to N = 2

and N ≥ 3. However, since λi ≥ αi for all i in this case, only Theorem 4.1
can be used to determine the structure of increasing regularly varying solutions
(u1(t), . . . , um(t)) ∈ RV(ρ1, . . . , ρm), ρi > 0, of the cyclic system (5.12). The regularity
indices ρi should be given by (3.17) which in the present situation reduce to

ρi =
2m+ ν

1− γ
− 2(i− 1), i = 1, . . . ,m, (5.14)

from which we see that all ρi are positive if and only if ρm > 0, that is,

2m+ ν

1− γ
> 2(m− 1). (5.15)

Taking this fact into account, we conclude from Theorem 4.1 that equation (5.10)
possesses radial increasing positive solutions u(|x|) in RV(ρ) with ρ > 0 if and only
if (5.15) holds, in which case ρ is given by ρ = (2m+ ν)/(1 − γ) and the asymptotic
behavior of u(|x|) as |x| → ∞ is governed by the growth formula

u(|x|) ∼ |x|ρ
[

ψ(|x|)
∏n

i=1

(
(N − 2 + ρi)ρi

)
] 1

1−γ

, |x| → ∞, (5.16)
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where ρi are as in (5.14) and ψ(t) denotes the slowly varying part of g(t) : g(t) =
tνψ(t).

Since (5.15) holds if ν = 0, one can assert that the particular case of (5.10)

∆mu = c|u|γ−1u, x ∈ ΩR,

where c > 0 is a constant, always possesses radial solutions u(|x|) ∈ RV(2m/(1− γ)),
and that any such solution has one and the same asymptotic behavior (5.16) with
ρ = 2m/(1− γ).
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